Skip to main content

Analytical Assessment of Drag-Modulation Trajectory Control for Planetary Entry

Abstract

Discrete-event drag-modulation trajectory control is assessed for planetary entry using the closed-form Allen-Eggers solution to the equations of motion. A control authority metric for drag-modulation trajectory control systems is derived. Closed-form analytical relationships are developed to assess range divert capability and to identify jettison condition constraints for limiting peak acceleration and peak heat rate. Closed-form relationships are also developed for drag-modulation systems with an arbitrary number of stages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. A section on mathematical notation is provided in the sequel.

Abbreviations

a :

sensed acceleration magnitude, Earth g

b :

exponent

C :

constant

C D :

hypersonic drag coefficient

e :

base of the natural logarithm

g :

acceleration due to gravity, m/s2

h :

altitude, m

H :

atmospheric scale height, m

i :

integer index

k :

stagnation-point convective heating constant, kg1/2/m

m :

mass, kg

n :

integer

N :

integer

\(\dot {Q}\) :

stagnation-point convective heat rate, W/cm2

r :

effective nose radius, m

R :

planetary radius, m

s :

range, km

S r e f :

aerodynamic reference area, m2

V :

velocity magnitude, m/s

V i :

velocity magnitude at jettison, m/s

β :

ballistic coefficient, kg/m2

γ :

flight-path angle, positive above local horizontal, rad

γ :

Allen-Eggers constant flight-path angle, rad

\(\bar {\gamma }\) :

Euler-Mascheroni constant

ρ :

atmospheric density, kg/m3

ρ i :

atmospheric density at jettison, kg/m3

References

  1. Allen, H.J., Eggers, A.J.: A study of the motion and aerodynamic heating of ballistic missiles entering the Earth’s atmosphere at high supersonic speeds. Tech. Rep. NACA-TR-1381, Ames Aeronautical Laboratory, Washington DC (1958)

  2. Bairstow, S.H., Barton, G.H.: Orion reentry guidance with extended range capability using predguid. In: AIAA Guidance, Navigation, and Control Conference, pp. 1–17. Hilton Head, South Carolina (2007)

  3. Barbera, F.J.: Closed-form solution for ballistic vehicle motion. J. Spacecr. Rocket. 18(1), 52–57 (1981)

    Article  Google Scholar 

  4. Bose, D. M., Shidner, J., Winski, R., Zumwalt, C., Cheatwood, F. M., Hughes, S.J.: The hypersonic inflatable aerodynamic decelerator (HIAD) mission applications study. In: AIAA Aerodynamic Decelerator Systems (ADS) Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia (2013)

  5. Braun, R. D., Manning, R.M.: Mars exploration entry, descent, and landing challenges. J. Spacecr. Rocket. 44(2), 310–323 (2007)

    Article  Google Scholar 

  6. Citron, S. J., Meir, T.C.: An analytic solution for entry into planetary atmospheres. AIAA J. 3(3), 470–475 (1965)

    Article  MATH  Google Scholar 

  7. Cohen, M.J.: Some closed form solutions to the problem of re-entry of lifting and non-lifting vehicles. In: 2nd Aerospace Sciences Meeting. Northhampton College of Advanced Technology, American Institute of Aeronautics and Astronautics, New York, NY (1965)

  8. Dutta, S., Bowes, A.L., Cianciolo, A.D., Glass, C.E., Powell, R.W.: Guidance scheme for modulation of drag devices to enable return from low Earth orbit. In: AIAA Atmospheric Flight Mechanics. AIAA, Grapevine, TX (2017)

  9. Dyakonov, A., Schoenenberger, M., Scallion, W., Van Norman, J., Novak, L.A., Tang, C.Y.: Aerodynamic interference due to MSL reaction control system. In: 41st AIAA Thermophysics conference, pp. 1–16. San Antonio, TX (2009)

  10. Dyakonov, A.A., Glass, C.E., Desai, P.N., Van norman, J.W.: Analysis of effectiveness of phoenix entry reaction control system. J. Spacecr. Rocket. 48(5), 746–755 (2011)

    Article  Google Scholar 

  11. Hall, J.L., Le, A.K.: Aerocapture trajectories for spacecraft with large towed ballutes. In: AAS/AIAA Space Flight Mechanics Meeting. Santa Barbara, CA (2001)

  12. Johnson, W.R., Lyons, D.T.: Titan ballute aerocapture using a perturbed TitanGRAM model. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit. Providence, RI (2004)

  13. Kuo, Z.S., Liu, K.C., Chang, Y.S.: Explicit guidance of ballistic entry using improved matched asymptotic expansions. Trans. Jpn. Soc. Aeronaut. Space Sci. 50(168), 121–127 (2007)

    Article  Google Scholar 

  14. Levy, L.L.: The Use of Drag Modulation to Limit the Rate at Which Deceleration Increases During Nonlifting Entry. Tech. Rep. NASA TN D-1037, Ames Research Center, Washington, DC (1961)

  15. Loh, W.H.T.: A higher order theory of ballistic entry. In: American Astronautical Society Eighth Annual Meeting, pp. 529–540. American Astronautical Society 8th Annual Meeting, Washington, DC (1962)

  16. McRonald, A.D.: A lightweight inflatable hypersonic drag device for planetary entry. In: Association Aeronautique De France Conference. Arcachon, France (1999)

  17. Miller, B.P.: Approximate velocity, position and time relationship for ballistic re-entry. ARS J. 31(3), 437–438 (1961)

    Article  Google Scholar 

  18. Miller, K.L., Gulick, D., Lewis, J., Trochman, B., Stein, J., Lyons, D.T., Wilmoth, R.G.: Trailing ballute aerocapture: concept and feasibility assessment. In: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, AL (2003)

  19. Phillips, R.L., Cohen, C.B.: Use of drag modulation to reduce deceleration loads during atmospheric entry. ARS J. 29(6), 414–422 (1959)

    Article  Google Scholar 

  20. Putnam, Z.R., Braun, R.D.: Drag-modulation flight-control system options for planetary aerocapture. J. Spacecr. Rocket. 51(1), 139–50 (2014)

    Article  Google Scholar 

  21. Putnam, Z.R., Braun, R.D.: Precision landing at mars using Discrete-Event drag modulation. J. Spacecr. Rocket. 51(1), 128–138 (2014)

    Article  Google Scholar 

  22. Putnam, Z.R., Braun, R.D.: Extension and enhancement of the Allen-Eggers solution for ballistic entry trajectories. Journal of Guidance, Control, and Dynamics (2015)

  23. Randall, D.E.: Influence of staging on re-entry trajectory characteristics. J. Spacecr. Rocket. 7(3), 370–372 (1970)

    Article  Google Scholar 

  24. Robinson, A., Besonie, A.: On the problems of re-entry into the Earth’s atmosphere. J. Astronaut. Sci. 7(1), 7–21 (1960)

    Google Scholar 

  25. Rose, P.H., Hayes, J.E.: Drag modulation and celestial mechanics. In: 7th Annual Meeting of the American Astronautical Society. Dallas, TX (1961)

  26. Venkatapathy, E., Arnold, J., Fernandez, I., Hamm, K. R., Kinney, D., Laub, B., Makino, A., McGuire, M.K., Peterson, K., Prabhu, D., Empey, D., Dupzyk, I., Huynh, L., Hajela, P., Gage, P., Howard, A.R., Andrews, D.: Adaptive deployable entry and placement technology (ADEPT): a feasibility study for human missions to Mars. In: 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. American Institute of Aeronautics and Astronautics, Reston, Virigina (2012)

  27. Vinh, N.X., Johannesen, J.R., Mease, K.D., Hanson, J.M.: Explicit guidance of drag-modulated aeroassisted transfer between elliptical orbits. J. Guid. Control. Dyn. 9(3), 274–280 (1986)

    Article  Google Scholar 

  28. Warden, R.V.: Ballistic re-entries with a varying w/CD A. ARS J. 31(2), 208–213 (1961)

    Article  Google Scholar 

  29. Werner, M., Woollard, B., Tadanki, A., Pujari, S.R., Braun, R.D., Lock, R., Nelessen, A., Woolley, R.: Development of an earth smallsat flight test to demonstrate viability of mars aerocapture. In: 55th AIAA Aerospace Sciences Meeting, pp. 1–16. AIAA, American Institute of Aeronautics and Astronautics, Grapevine, TX (2017)

  30. Westhelle, C.H., Masciarelli, J.P.: Assessment of aerocapture flight at titan using a drag-only device. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, pp. 1–7. Austin, TX (2003)

Download references

Acknowledgements

This work was supported in part by a NASA Space Technology Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary R. Putnam.

Ethics declarations

Conflict of Interest Statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Putnam, Z.R., Braun, R.D. Analytical Assessment of Drag-Modulation Trajectory Control for Planetary Entry. J of Astronaut Sci 65, 470–489 (2018). https://doi.org/10.1007/s40295-018-0134-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-018-0134-z

Keywords

  • Entry
  • EDL
  • Drag modulation
  • Mars