Skip to main content

Solar Sail Transfers and Trajectory Design to Sun-Earth L4, L5: Solar Observations and Potential Earth Trojan Exploration


The Sun-Earth triangular Lagrange point, L5, offers an ideal location to monitor the space weather. Furthermore, L4, L5 may harbor Earth ‘Trojan’ asteroids and space dust that are of significant interest to the scientific community. No spacecraft has, thus far, entered an orbit in the vicinity of Sun-Earth triangular points in part because of high propellant costs. By incorporating solar sail dynamics in the model representing CR3BP, the concept of a mission to L4, L5 can be re-evaluated and the total ΔV can be reconsidered. A solar sail is employed to increase the energy of the spacecraft and deliver the spacecraft to an orbit about an artificial Lagrange point by leveraging solar radiation pressure and, potentially, without any insertion ΔV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21


  1. Baoyin, H., Mcinnes, C.R.: Solar sail halo orbits at the Sun–Earth artificial L 1 point. Celest. Mech. Dyn. Astron. 94(2), 155–171 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  2. Barden, B.T., Howell, K.C.: Fundamental motions near collinear libration points and their transitions. J. Astronaut. Sci. 46(4), 361–378 (1998)

    MathSciNet  Google Scholar 

  3. Biddy, C., Svitek, T.: Lightsail-1 solar sail design and qualification. In: Proceedings of the 41st aerospace mechanisms symposium, pp. 451-463. Jet Propulsion Lab., National Aeronautics and Space Administration Pasadena, CA (2012)

  4. Christou, A.A., Asher, D.J.: A long-lived horseshoe companion to the earth. Mon. Not. R. Astron. Soc. 414(4), 2965–2969 (2011).

    Article  Google Scholar 

  5. Connors, M., Wiegert, P., Veillet, C.: Earth’s Trojan asteroid. Nature 475(7357), 481 (2011).

    Article  Google Scholar 

  6. Davis, J.: Lightsail test mission declared success; first image complete, the planetary society (2015)

  7. Dvorak, R., Lhotka, C., Zhou, L.: The orbit of 2010 TK7: possible regions of stability for other Earth Trojan asteroids. Astron. Astrophys. 541, A127 (2012).

    Article  Google Scholar 

  8. Gerard, G., Jaume, L., Martínez, R.: Dynamics and mission design near libration points-vol I: fundamentals: the case of collinear libration points, vol. 2 world scientific (2001)

  9. Goodrich, E.F.: Numerical determination of short-period Trojan orbits in the restricted three-body problem. Astron. J. 71, 88 (1966).

    Article  Google Scholar 

  10. Gopalswamy, N., Davila, J., Cyr, O.S., Sittler, E., Auchère, F., Duvall, T., Hoeksema, J., Maksimovic, M., MacDowall, R., Szabo, A., Collier, M.: Earth-affecting solar causes observatory (EASCO): A potential international living with a star mission from sun-earth L5. J. Atmos. Solar-Terrestrial Phys. 73(5-6), 658–663 (2011).

    Article  Google Scholar 

  11. Gopalswamy, N., Davila, J.M., Auchère, F., Schou, J., Korendyke, C.M., Shih, A., Johnston, J.C., MacDowall, R.J., Maksimovic, M., Sittler, E., Szabo, A., Wesenberg, R., Vennerstrom, S., Heber, B.: Earth-affecting solar causes observatory (EASCO): a mission at the Sun-Earth L5. In: Fineschi, S., Fennelly, J. (eds.) Solar Physics and Space Weather Instrumentation IV. SPIE. (2011)

  12. Grebow, D.: Generating periodic orbits in the circular restricted three-body problem with applications to lunar south pole coverage. MSAA Thesis, School of Aeronautics and Astronautics Purdue University (2006)

  13. Heiligers, J., Hiddink, S., Noomen, R., McInnes, C.R.: Solar sail lyapunov and halo orbits in the earth–moon three-body problem. Acta Astronaut. 116, 25–35 (2015).

    Article  Google Scholar 

  14. Heiligers, J., McInnes, C.: Novel Solar Sail Mission Concepts for Space Weather Forecasting. In: 24Th AAS/AIAA space flight mechanics meeting 2014, pp. AAS–14 (2014)

  15. Howell, K.C.: Three-dimensional, periodic, ‘halo’ orbits. Celest. Mech. 32(1), 53–71 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  16. John, K., Graham, L., Abell, P.: Investigating Trojan Asteroids at the L4/L5 sun-earth lagrange points. In: Lunar and planetary science conference, vol. 46, p. 2845 (2015)

  17. Llanos, P., Miller, J., Hintz, G.: Mission and navigation design of integrated trajectories to L4,5 in the Sun-Earth system. In: AIAA/AAS Astrodynamics specialist conference. American institute of aeronautics and astronautics (2012),

  18. Llanos, P.J., Hintz, G.R., Lo, M.W., Miller, J.K.: Powered Heteroclinic and Homoclinic Connections between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations. In: AAS/AIAA astrodynamics specialist conference, AAS, pp. 13–786 (2013)

  19. Llanos, P.J., Miller, J.K., Hintz, G.R.: Navigation Analysis for an L5 Mission in the Sun-Earth System. In: AAS/AIAA Astrodynamicist specialist conference, Girdwood, vol. 142, pp. 11–503 (2011)

  20. Lo, M.W., Llanos, P.J., Hintz, G.R.: An L5 Mission to Observe the Sun and Space Weather, Part I. In: AAS/AIAA Astrodynamicist Specialist Conference, San Diego, vol. 136, pp. 10–121 (2010)

  21. Macdonald, M., McInnes, C.: Solar sail science mission applications and advancement. Adv. Space Res. 48(11), 1702–1716 (2011).

    Article  Google Scholar 

  22. Markellos, V.V.: Asymmetric periodic orbits in three dimensions. Mon. Not. R. Astron. Soc. 184(2), 273–281 (1978).

    Article  MATH  Google Scholar 

  23. McInnes, C.: Solar Sailing. Technology dynamics and mission applications, vol. 1. Springer, London (1999)

    Google Scholar 

  24. McInnes, C.R., McDonald, A.J.C., Simmons, J.F.L., MacDonald, E.W.: Solar sail parking in restricted three-body systems. J. Guid. Control. Dyn. 17(2), 399–406 (1994).

    Article  MATH  Google Scholar 

  25. Mori, O., Tsuda, Y., Sawada, H., Funase, R., Saiki, T., Yonekura, K., Hoshino, H., Minamino, H., Endo, T., Kawaguchi, J., et al.: World’s first demonstration of solar power sailing by IKAROS. In: Proceedings of 2nd International symposium on solar sailing (2010)

  26. Ozimek, M.T., Grebow, D.J., Howell, K.C.: Design of solar sail trajectories with applications to lunar south pole coverage. J. Guid. Control. Dyn. 32(6), 1884–1897 (2009).

    Article  Google Scholar 

  27. Pavlak, T.A.: Trajectory design and orbit maintenance strategies in multi-body dynamical regimes. Ph.D. thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette IN (2013)

  28. Pezent, J.B., Sood, R., Heaton, A.: Near Earth Asteroid (NEA) Scout Solar Sail Contingency Trajectory Design and Analysis. In: 2018 space flight mechanics meeting. American Institute of Aeronautics and Astronautics. (2018)

  29. Prado, A.F.: Orbital maneuvers between the lagrangian points and the primaries in the earth-sun system. J. Braz. Soc. Mech. Sci. Eng. 28(2), 131–139 (2006).

    Article  Google Scholar 

  30. Simo, J., McInnes, C.R.: Solar Sail Trajectories at the Earth-Moon Lagrange Points. In: 59Th International astronautical congress (2008)

  31. Sood, R.: Solar sail applications for mission design in sun-planet systems from the perspective of the circular restricted three-body problem. Master’s thesis, Purdue University, West Lafayette, IN. ProQuest: AAI1535164 (2012)

  32. Szebehely, V., Geyling, F.T.: Theory of orbits: The restricted problem of three bodies. J. Appl. Mech. 35(3), 624 (1968).

    Article  Google Scholar 

  33. Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Yonekura, K., Hoshino, H., Kawaguchi, J.: Achievement of IKAROS — Japanese deep space solar sail demonstration mission. Acta Astronaut. 82(2), 183–188 (2013).

    Article  Google Scholar 

  34. Vourlidas, A.: Mission to the sun-earth l5lagrangian point: an optimal platform for space weather research. Space Weather 13(4), 197–201 (2015).

    Article  Google Scholar 

  35. Waters, T.J., McInnes, C.R.: Periodic orbits above the ecliptic in the solar-sail restricted three-body problem. J. Guid. Control. Dyn. 30(3), 687–693 (2007).

    Article  Google Scholar 

  36. Wawrzyniak, G.G., Howell, K.C.: Generating solar sail trajectories in the Earth-Moon system using augmented finite-difference methods. Int. J. Aerosp. Eng. 2011, 1–13 (2011).

    Article  Google Scholar 

  37. Wie, B.: Solar sail attitude control and dynamics, part two. J. Guid. Control. Dyn. 27(4), 536–544 (2004).

    Article  MathSciNet  Google Scholar 

  38. Wright, J.L., Kantrowitz, A.: Space sailing. Phys. Today 45(12), 85–85 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rohan Sood.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An earlier version was presented as a conference paper AAS 16-467 at the 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, February 14-18, 2016

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sood, R., Howell, K. Solar Sail Transfers and Trajectory Design to Sun-Earth L4, L5: Solar Observations and Potential Earth Trojan Exploration. J of Astronaut Sci 66, 247–281 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Multi-body dynamics
  • Solar sail
  • Sun-Earth triangular Lagrange points
  • Solar radiation pressure
  • Solar observations
  • Earth Trojan asteroids