Skip to main content

A Concise Guide to Feature Histograms with Applications to LIDAR-Based Spacecraft Relative Navigation


With the availability and popularity of 3D sensors, it is advantageous to re-examine the use of point cloud descriptors for the purpose of pose estimation and spacecraft relative navigation. One popular descriptor is the oriented unique repeatable clustered viewpoint feature histogram (OUR-CVFH), which is most often utilized in personal and industrial robotics to simultaneously recognize and navigate relative to an object. Recent research into using the OUR-CVFH descriptor for spacecraft navigation has produced favorable results. Since OUR-CVFH is the most recent innovation in a large family of feature histogram point cloud descriptors, discussions of parameter settings and insights into its functionality are spread among various publications and online resources. This paper organizes the history of feature histogram point cloud descriptors for a straightforward explanation of their evolution. This article compiles all the requisite information needed to implement OUR-CVFH into one location, as well as providing useful suggestions on how to tune the generation parameters. This work is beneficial for anyone interested in using this histogram descriptor for object recognition or navigation – may it be personal robotics or spacecraft navigation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. Agoston, M.K.: Computer graphics and geometric modelling: Mathematics. Springer-Verlag New york, Inc., Secaucus, NJ USA (2005)

    MATH  Google Scholar 

  2. Aldoma, A., Vincze, M., Blodow, N., Gossow, D., Gedikli, S., Rusu, R.B., Bradski, G., Garage, W.: CAD-Model Recognition and 6DOF Pose Estimation Using 3D Cues. In: IEEE International Conference on Computer Vision Workshops (2011)

  3. Aldoma, A., Tombari, F., Rusu, R.B., Vincze, M.: OUR-CVFH — Oriented, Unique and Repeatable Clustered Viewpoint Feature Histograms for Object Recognition and 6DOF Pose estimation, vol. 7476. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  4. Besl, P.J., Mckay, N.D.: A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  5. Chen, Y., Medioni, G.: Object Modeling by Registratoin of Multiple Range Images, 2724–2729 (1991)

  6. Christian, J., Robinson, S., D’souza, C., Ruiz, J.: Cooperative Relative Navigation of Spacecraft Using Flash Light Detection and Ranging Sensors. J. Guid. Control. Dyn. 37(2), 452–465 (2014)

    Article  Google Scholar 

  7. Christian, J.A., Cryan, S.: A Survey of LIDAR Technology and Its Use in Spacecraft Relative Navigation. In: AIAA Guidance, Navigation, and Control Conference, Boston, MA (2013)

  8. Dal Mutoi, C., Zanuttigh, P., Cortelazzo, G.: Time-of-Flight Cameras and Microsoft Kinect. Springer, New York, NY (2012)

    Book  Google Scholar 

  9. Markley, F.L., Crassidis, J.L.: Fundamentals of spacecraft attitude determination and control. Springer, New York, NY (2014)

    Book  MATH  Google Scholar 

  10. Foix, S., Alenyà, G., Torras, C.: Lock-in Time-of-Flight (ToF) Cameras: A Survey. IEEE Sens. J. 11(9), 1917–1926 (2011)

    Article  Google Scholar 

  11. Galante, J., Van Eepoel, J., Strube, M., Gill, N., Gonzalez, M., Hyslop, A., Patrick B.: Pose Measurement Performance of the Argon Relative Navigation Sensor Suite in Simulated Flight Conditions. In: AIAA Guidance, Navigation, and Control Conference (2012)

  12. Gaskell, R., Saito, J., Ishiguro, M., Kubota, T., Hashimoto, T., Hirata, N., Abe, S., Barnouin-Jha, O., Scheeres, D.: Gaskell Itokawa Shape Model V1.0. HAY-A-AMICA-5- ITOKAWASHAPE-V1.0. NASA Planetary Data System, 2008. Available online: (2016)

  13. Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge, MA (1974)

    Google Scholar 

  14. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J.: 3D object recognition in cluttered scenes with local surface features: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014)

    Article  Google Scholar 

  15. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.: a comprehensive performance evaluation of 3D local feature descriptors. Int. J. Comput. Vis. 116(1), 66–89 (2015)

    Article  MathSciNet  Google Scholar 

  16. ISS (High Res). NASA 3D Resources Available online: (2016)

  17. Kalman, R.: A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 82, 35–54 (1960)

    Article  Google Scholar 

  18. Kalman, R., Bucy, R.: New Results in Linear Filtering and Prediction. J. Basic Eng. 83, 95–108 (1961)

    Article  MathSciNet  Google Scholar 

  19. Klasing, K., Althoff, D., Wollherr, F., Buss, M.: Comparison of Surface Normal Estimation Methods for Range Sensing Applications. In: IEEE International Conference on Robotics and Automation (2007)

  20. Kullback, S., Leibler, R.: On Information and Sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lefferts, E., Markley, F., Shuster, M.: Kalman Filtering for Spacecraft Attitude Estimation. J. Guid. Control. Dyn. 5(5), 417–429 (1982)

    Article  Google Scholar 

  22. Levenberg, K.: A Method for the Solution of Certain Non-Linear Problems in Least Squares. Q. Appl. Math., 1964–168 (1944)

  23. Maronna, R., Martin, D., Yohai, V.: Robust Statistics: Theory and Methods. John Wiley & Sons, Ltd, West Sussex, England

  24. Marquardt, D.: An algorithm for Least-Squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  25. Naasz, B., Moreau, M.: Autonomous RPOD Challenges for the Coming Decade. In: 35Th Annual AAS Guidance and Control Conference, Breckenridge, CO (2012)

  26. Opromolla, R., Fasano, G., Rufino, G., Grassi, M.: A Model-Based 3D template matching technique for pose acquisition of an uncooperative space object. Sensors 15(3), 6360–6382 (2015)

    Article  Google Scholar 

  27. Opromolla, R., Fasano, G., Rufino, G., Grassi, M.: Large Space Debris Pose Acquisition in Close Proximity Operations, pp. 491–496 (2015)

  28. Opromolla, R., Fasano, G., Rufino, G., Grassi, M.: Uncooperative Pose Estimation with a LIDAR-based System. Acta Astronaut. 110, 287–297 (2015)

    Article  Google Scholar 

  29. Rhodes, A., Christian, J., Kim, E., Evans, T.: LIDAR-Based Relative Navigation of Non-Cooperative Objects using Point Cloud Descriptors (2016)

  30. Robinson, S., Christian, J.: Pattern Design for 3D Point Matching. NAVIGATION: Journal of The Institute of Navigation 62(3), 189–203 (2015)

    Article  Google Scholar 

  31. Rohrschneider, R., Tandy, W., Bladt, J., Gravseth, I.: Simulation Results of ISS AR&D Using Only Range Images. In: AIAA Guidance, Navigation, and Control Conference, Minneapolis, MN (2012)

  32. Ruel, S., Luu, T., Anctil, M., Gagnon, S.: Target Localization from 3D Data for On-orbit Autonomous Rendezvous and Docking. In: IEEE in Aerospace Conference, pp. 1–8 (2008)

  33. Rusu, R.B., Blodow, N., Beetz, M.: Fast Point Feature Histograms (FPFH) for 3D Registration. In: IEEE International Conference Robotics and Automation (2009)

  34. Rusu, R.B., Cousins, S.: 3D is Here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA). Shanghai, China (2011)

  35. Rusu, R.B., Holzbach, A., Beetz, M., Bradski, G.: Detecting and Segmenting Objects for Mobile Manipulation. In: ICCV S3DV Workshops (2009)

  36. Rusu, R.B., Maron, Z.C., Blodow, N., Beetz, M.: Persistent Point Feature Histograms for 3D Point Clouds. In: 10Th International Conference Intelligent Autonomous Systems (2008)

  37. Rusu, R.B., Marton, Z.C., Blodow, N., Beetz, M.: Learning Information Point Classes for the Acquisition of Object Model Maps. In: ICARCV (2008)

  38. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: towards 3D point cloud based object maps for household environments. Journal of Robotics and Autonomous Systems 56, 927–941 (2008)

    Article  Google Scholar 

  39. Rusu, R.B., ad Romain Thibauz, G.B., Hsu, J., Garage, W.: Fast 3D Recognition and Pose Using the Viewpoint Feature Histogram. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)

  40. Sell, J., Rhodes, A., Woods, J., Christian, J., Evans, T.: Pose Performance of LIDAR-Based Navigation for Satellites Servicing. In: AIAA/AAS Astrodynamics Specialist Conference (2014)

  41. Woffinden, D., Geller, D.: observability criteria for Angles-Only navigation. IEEE Trans. Aerosp. Electron. Syst. 45(3), 1194–1208 (2009)

    Article  Google Scholar 

  42. Woods, J.O., Christian, J.A.: GLIDAR: An OpenGL-based, Real-Time, and Open Source 3D Sensor Simulator for Testing Comuter Vision Algorithms. J. Imaging 2(5) (2016)

  43. Woods, J.O., Christian, J.A.: LIDAR-based Relative Navigation with respect to Non-cooperative Objects. Acta Astronaut. (2016)

  44. Woods, J.O., Christian, J.A., Evans, T.A.: A 6-DOF Pose Initialization Strategy for LIDAR-Based Non-Cooperative Navigation. In: 38Th AAS Guidance, Navigation, and Control Conference (2015)

  45. Zhang, Z.: Microsoft Kinect Sensor and its Effect. IEEE Multimedia 19, 4–10 (2012)

    Article  Google Scholar 

Download references


This work was made possible by NASA Goddard Space Flight Center through a contract with the Satellite Servicing Capabilities Office (contract NNG14CR58C, subcontract METSB0043).

Author information

Authors and Affiliations


Corresponding author

Correspondence to John A. Christian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rhodes, A.P., Christian, J.A. & Evans, T. A Concise Guide to Feature Histograms with Applications to LIDAR-Based Spacecraft Relative Navigation. J of Astronaut Sci 64, 414–445 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Relative navigation
  • Spacecraft
  • Feature histograms