Skip to main content
Log in

Reconfiguration and Control of Non-Equal Mass Three-Craft Coulomb Formation

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The paper studied reconfiguration of Coulomb formation from three-craft system to four-craft system. Assumed that three-craft Coulomb system already formed a triangle configuration, then, the fourth Coulomb craft is scheduled to join the existing system so as to form a new static configuration. New possible configurations such as quadrilateral in 2-dimension and tetrahedron in 3-dimension for four-craft Coulomb formation are discussed in the paper. The processing of reconfiguration will not change the original origin and triangle formation. Through the Particle Swarm Optimization (PSO) algorithm, the mass, the charge and the position of the fourth Coulomb craft can be calculated for these configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berryman, J., Schaub, H.: Analytical charge analysis for 2-and 3-craft Coulomb formations. AIAA J. Guid. Control Dyn. 30(6), 1701–1710 (2007)

    Article  Google Scholar 

  2. Huang, J., Ma, G., Liu, G.: Nonlinear dynamics and reconfiguration control of two-satellite Coulomb tether formation at libration points. Aerosp. Sci. Technol. 39, 501–512 (2014)

    Article  Google Scholar 

  3. Lawson, P., Dooley, J.: Technology Plan for the Terrestrial Planet Finder Interferometer, Technical Report 05-5, NASA Jet Propulsion Laboratory (2005)

  4. King, L., Parker, C., Deshmukh, S., Chong, J.: Craft Formation- Flying Using Inter-Vehicle Coulomb Forces, Technical Report, NASA Institute for Advanced Concepts (2002)

  5. Mullen, E., Gussenhoven, M., Hardy, D.: Scatha J. Geophys. Sci. 91, 1474–1490 (1986)

    Article  Google Scholar 

  6. Whipple, E., Olsen, R.: Importance of differential charging for con- trolling both natural and induced vehicle potentials on ats-5 and ats-6. In: Proceedings of the Third Craft Charging Technology Conference, pp 888–893 (1980)

  7. Escoubet, C., Fehringer, M., Goldstein, M.: The cluster mission. Ann. Geophys. 19, 1197–1200 (2001)

    Article  Google Scholar 

  8. Jones, D.R., Schaub, H.: Optimal reconfigurations of two-craft Coulomb formations along manifolds. Acta Astronaut. 83, 108–118 (2013)

    Article  Google Scholar 

  9. Natarajan, A.: A study of dynamics and stability of two-craft Coulomb tether formations. Ph.D. Dissertation, Aerospace and Ocean Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA (2007)

    Google Scholar 

  10. Inampudi, R.: Optimal reconfigurations of two-craft Coulomb formation in circular orbits. In: AAS/AIAA Astrodynamics Specialist Conference Guidance, pp 2–5, Toronto, Canada (2010)

  11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks, pp 1942–1948, Piscat away, NJ

  12. Pontani, M., Conway, B.: Particle swarm optimization applied to space trajectories. J. Guid. Control Dyn. 33, 1429–1441 (2010)

    Article  Google Scholar 

  13. Vasavada, H.A.: Four-Craft Virtual Coulomb Structure Analysis for 1 to 3 Dimensional Geometries, vol. 13. Virginia Polytechnic Institute and State University, Blacksburg, Virginia (2007)

  14. King, L., Parker, G., Deshmukh, S.: Craft Formation Flying using Inter-Vehicle Coulomb Forces. Technical Report, NASA/NIAC (2002)

  15. King, L., Parker, G., Deshmukh, S.: Study of intercraft coulomb forces and implication for formation flying. AIAA J. Propuls. Power 19(3) (2003)

  16. Berryman, J., Schaub, H.: Analytical charge analysis for 2 and 3 craft coulomb formations. AIAA J. Guid. Control Dyn. 30(6), 1701–1710 (2007). doi:10.2514/1.23785

  17. Natarajan, A.: A Study of Dynamics and Stability of Two-Craft Coulomb Tether Formations. Ph.D. thesis, Virginia Polytechnic Institute and State University (2007)

  18. Schaub, H., Hall, C.D., Berryman, J.: Necessary Conditions for Circularly- Restricted Static Coulomb Formations. AAS, Buffalo, NY (2005)

  19. Clohessy, W., Wiltshire, R.: Terminal guidance system for satellite rendevous. J. Aerosp. Sci. 27(9), 653–658 (1960)

  20. Bittencourt, J.: Fundamentals of Plasma Physics. Springer-Verlag, New York (2004)

    Book  MATH  Google Scholar 

  21. Gombosi, T.I.: Physics of the Space Environment. Cambridge University Press, England, U.K. (1998)

    Book  Google Scholar 

  22. Stiles, L., Seubert, C., Schaub, H.: Effective Coulomb Force Modeling in a Space Environment. AAS/AIAA Spaceflight Mechanics Meeeting, Charleston, SC (2012)

    Google Scholar 

  23. Jones, D.R., Schaub, H.: Collinear three-craft coulomb formation stability analysis and control. J. Guid Control Dyn. 37(1), 224–232 (2014)

    Article  Google Scholar 

  24. Vasavada, H., Schaub, H.: Analytic solutions for equal mass 4-craft static coulomb formation. J. Astron. Sci. 56(1), 740 (2008). doi:10.1007/BF03256540

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Ting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, W., Guangqing, X. & Nan, Z. Reconfiguration and Control of Non-Equal Mass Three-Craft Coulomb Formation. J of Astronaut Sci 63, 47–59 (2016). https://doi.org/10.1007/s40295-015-0083-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-015-0083-8

Keywords

Navigation