Electric Solar Wind Sail Kinetic Energy Impactor for Asteroid Deflection Missions



An electric solar wind sail uses the natural solar wind stream to produce low but continuous thrust by interacting with a number of long thin charged tethers. It allows a spacecraft to generate a thrust without consuming any reaction mass. The aim of this paper is to investigate the use of a spacecraft with such a propulsion system to deflect an asteroid with a high relative velocity away from an Earth collision trajectory. To this end, we formulate a simulation model for the electric solar wind sail. By summing thrust vectors exerted on each tether, a dynamic model which gives the relation between the thrust and sail attitude is proposed. Orbital maneuvering by fixing the sail’s attitude and changing tether voltage is considered. A detailed study of the deflection of fictional asteroids, which are assumed to be identified 15 years before Earth impact, is also presented. Assuming a spacecraft characteristic acceleration of 0.5 mm/s 2, and a projectile mass of 1,000 kg, we show that the trajectory of asteroids with one million tons can be changed enough to avoid a collision with the Earth. Finally, the effectiveness of using this method of propulsion in an asteroid deflection mission is evaluated in comparison with using flat photonic solar sails.


Electric solar wind sail Near Earth asteroid’s deflection Propellantless propulsion systems Kinetic energy impactor 



The present study was supported by JSPS KAKENHI Grant Number 15J08268.


  1. 1.
    Alvarez, L. W., Alvarez, W., Asaro, F., Michael, H. V.: Extra-terrestrial cause for the cretaceous-tertiary extinction. Science 208(4448), 1095–1108 (1980). doi: 10.2307/1683699 CrossRefGoogle Scholar
  2. 2.
    Binzel, R.P.: The torino impact hazard scale. Planetary and Space Science 48, 297–303 (2000). doi: 10.1016/S0032-0633(00)00006-4 CrossRefGoogle Scholar
  3. 3.
    Carry, B.: Density of asteroids. Planetary and Space Science 73(1), 98–118 (2012). doi: 10.1016/j.pss.2012.03.009 CrossRefGoogle Scholar
  4. 4.
    Chapman, C. R., Morrison, D.: Impact on the Earth by asteroids and comets: Assessing the hazard. Nature 367(6458), 33–39 (1994). doi: 10.1038/367033a0 CrossRefGoogle Scholar
  5. 5.
    Chyba, C. F., Thomas, P. J., Zahnle, K. J.: The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid. Nature 361, 40–44 (1993). doi: 10.1038/361040a0 CrossRefGoogle Scholar
  6. 6.
    Dachwald, B., Wie, B.: Solar sail kinetic energy impactor trajectory optimization for an asteroid-deflection mission. J. Spacecr. Rocket. 44(4), 755–764 (2007). doi: 10.2514/1.22586 CrossRefGoogle Scholar
  7. 7.
    Envall, J., Janhunen, P., Toivanen, P., Pajusalu, M., Ilbis, E., Kalde, J., Averin, M., Kuuste, H., Laizans, K., Allik, V., Rauhala, T., Seppänen, H., Kiprich, S., Ukkonen, J., Haeggstrom, E., Kalvas, T., Tarvainen, O., Kauppinen, J., Nuottajärvi, A., Koivisto, H.: E-sail test payload of the ESTCube-1 nanosatellite. In: Proceedings of the Estonian Academy of Sciences (2014)Google Scholar
  8. 8.
    Ivashkin, V., Smirnov, V.: An analysis of some methods of asteroid hazard mitigation for the earth. Planetary and Space Science 43(6), 821–825 (1995). doi: 10.1016/0032-0633(94)00225-G CrossRefGoogle Scholar
  9. 9.
    Izzo, D.: Optimization of interplanetary trjectories for impulsive and continuous asteroid deflection. J. Guid. Control. Dyn. 30(2), 401–408 (2007). doi: 10.2514/1.21685 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Izzo, D., de Negueruela, C., Ongaro, F., Walker, R.: Strategies for near earth object impact hazard mitigation. In: Proceedings of the Space Flight Mechanics Conference, AAS, Copper Mountain, Colorado (2005)Google Scholar
  11. 11.
    Janhunen, P.: Electric sail for spacecraft propulsion. J. Propuls. Power 20(4), 763–764 (2004). doi: 10.2514/1.8580 CrossRefGoogle Scholar
  12. 12.
    Janhunen, P.: The electric sail - a new propulsion method which may enable fast missions to the outer solar system. J. Br. Interplanet. Soc. 61, 322–325 (2008)Google Scholar
  13. 13.
    Janhunen, P.: Increased electric sail thrust through removal of trapped shielding electrons by orbit chaotisation due to spacecraft body. Ann. Geophys. 27(8), 3089–3100 (2009). doi: 10.5194/angeo-27-3089-2009 CrossRefGoogle Scholar
  14. 14.
    Janhunen, P., Sandroos, A.: Simulation study of solar wind push on a charged wire: Basis of solar wind electric sail propulsion. Ann. Geophys. 25(3), 755–767 (2007). doi: 10.5194/angeo-25-755-2007 CrossRefGoogle Scholar
  15. 15.
    Janhunen, P., Toivanen, P. K.: Electric sailing under observed solar wind conditions. Astronautics and Space Sciences 5, 61–69 (2019)Google Scholar
  16. 16.
    Janhunen, P., Quarta, A. A., Mengali, G.: Electric solar wind sail mass budget model. Geocentric Instrumentation Methods and Data Systems 2, 85–95 (2013). doi: 10.5194/gi-2-85-2013 CrossRefGoogle Scholar
  17. 17.
    Khurshid, O., Tikka, T., Praks, J., Hallikainen, M.: Accomodating the plasma brake experimant on-board the aalto-1 satellite. In: Proceedings of the Estonian Academy of Sciences (2014)Google Scholar
  18. 18.
    Lu, E. T., Love, S.: Gravitational tractor for towing asteroids. Nature 438, 177 (2005). doi: 10.1038/438177a CrossRefGoogle Scholar
  19. 19.
    McInnes, C. R.: Solar sailing; technology, dynamics and mission applications 2, 32–55 (1999)Google Scholar
  20. 20.
    Mengali, G., Quarta, A. A.: Optimal nodal flyby with near-Earth asteroids using electric sail. Acta Astronautica 104, 450–457 (2014). doi: 10.1016/j.actaastro.2014.02.012 CrossRefGoogle Scholar
  21. 21.
    Mengali, G., Quarta, A. A., Janhunen, P.: Electric sail performance analysis. J. Spacecr. Rocket. 45(1), 122–129 (2007). doi: 10.2514/1.31769 CrossRefGoogle Scholar
  22. 22.
    Quarta, A. A., Mengali, G.: Electric sail mission analysis for outer solar exploration. J. Spacecr. Rocket. 33(3), 740–755 (2008). doi: 10.2514/1.47006 Google Scholar
  23. 23.
    Quarta, A.A., Mengali, G.: Electric sail missions to potentially hazardous asteroids. Acta Astronautica 66, 1506–1519 (2013). doi: 10.1016/j.actaastro.2009.11.021 CrossRefGoogle Scholar
  24. 24.
    Quarta, A. A., Mengali, G., Janhunen, P.: Electric sail for a near-earth asteroid sample return mission: Case 1998 ky26. J. Aerosp. Eng. 27(6) (2014). doi: 10.1061/(ASCE)AS.1943-5525.0000285
  25. 25.
    Rabinowitz, D., Helin, E., Lawrence, K., Pravdo, S.: A reduced estimate of the number of kilometre-sized near-earth asteroids. Nature 403(6766), 165–166 (2000). doi: 10.1038/35003128 CrossRefGoogle Scholar
  26. 26.
    Sittler, E. C., Scudder, J. D.: An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 au: Voyager and mariner 10. J. Geophys. Res. 85, 5131–5137 (1980). doi: 10.1029/JA085iA10p05131 CrossRefGoogle Scholar
  27. 27.
    Slavin, J. A., Holzer, R. E.: Solar wind flow about the terrestrial planets, 1. modeling bow shock position and shape. J. Geophys. Res 418(11), 11, 401–11 (1981). doi: 10.1029/JA086iA13p11401 CrossRefGoogle Scholar
  28. 28.
    Slavinskis, A. M.P., Kuuste, H., Ilbis, E., Eenmäe, T., Sünter, I., ans, K. L., Ehrpais, H., Liias, P., Kulu, E., Viru, J., Kalde, J., Kvell, U., Kütt, J., Zälite, K., Kahn, K., Lätt, S., Envall, J., Toivanen, P., Polkko, J., Janhunen, P., Rosta, R., Kalvas, T., Vendt, R., Allik, V., Noorma, M.: ESTCube-1 in-orbit experience and lessons learned. IEEE Aerospace and Electronics Systems Magazine 30(8), 13–22 (2015). doi: 10.1109/MAES.2015.150034 CrossRefGoogle Scholar
  29. 29.
    Toivanen, P. K., Janhunen, P.: Spin plane control and thrust vectoring of electric solar wind sail. J. Propuls. Power 29(1), 178–185 (2013). doi: 10.2514/1.B34330 CrossRefGoogle Scholar
  30. 30.
    Vasile, M., Colombo, C.: Optimal impact strategies for asteroid deflection. J. Guid. Control. Dyn. 31(4), 858–872 (2008). doi: 10.2514/1.33432 CrossRefGoogle Scholar
  31. 31.
    Vasilyev, N.V.: The Tunguska meteorite problem today. Planet Space Science 46(2/3), 129–150 (1998). doi: 10.1016/S0032-0633(97)00145-1 CrossRefGoogle Scholar
  32. 32.
    Wie, B.: Solar sail kinetic energy impactor (KEI) mission for impacting/deflecting near-earth asteroids. In: 41st AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit, AIAA, Tucson, AZ (2005)Google Scholar
  33. 33.
    Wright, J.: Space Sailing, pp 227–233. Gordon and Breach Science Publisher (1992)Google Scholar
  34. 34.
    Yamaguchi, K., Yamakawa, H.: Orbital maneuver of electric sail using on/off thrust control. Koku-Uchu-Gijyutsu(Aerospace Technology Japan, the Japan Society for Aeronautical and Space Sciences) 12:79–88 (2013)Google Scholar

Copyright information

© American Astronautical Society 2016

Authors and Affiliations

  1. 1.Division of Creative Research and Development of Humanosphere, Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji-cityJapan

Personalised recommendations