Skip to main content
Log in

Spin State Estimation of Tumbling Small Bodies

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

It is expected that a non-trivial percentage of small bodies that future missions may visit are in non-principal axis rotation (i.e. “tumbling”). The primary contribution of this paper is the application of the Extended Kalman Filter (EKF) Simultaneous Localization and Mapping (SLAM) method to estimate the small body spin state, mass, and moments of inertia; the spacecraft position and velocity; and the surface landmark locations. The method uses optical landmark measurements, and an example scenario based on the Rosetta mission is used. The SLAM method proves effective, with order of magnitude decreases in the spacecraft and small body spin state errors after less than a quarter of the comet characterization phase. The SLAM method converges nicely for initial small body angular velocity errors several times larger than the true rates (effectively having no a priori knowledge of the angular velocity). Surface landmark generation and identification are not treated in this work, but significant errors in the initial body-fixed landmark positions are effectively estimated. The algorithm remains effective for a range of different truth spin states, masses, and center of mass offsets that correspond to expected tumbling small bodies throughout the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. http://aerosociety.com/News/Society-News/2998/Lecture-Report-Rosetta-How-We-Landed-on-a-Comet http://aerosociety.com/News/Society-News/2998/Lecture-Report-Rosetta-How-We-Landed-on-a-

References

  1. Bhaskaran, S., et al.: Rosetta Navigation at Comet Churyumov-Gerasimenko. 38th AAS GN&C Conference, 2015. AAS 15-122.

  2. Lamy, P.L., Toth, I., Davidsson, B.J., Groussin, O., Gutiérrez, P., Jorda, L., Kaasalainen, M., Lowry, S.C.: A portrait of the nucleus of comet 67P/Churyumov-Gerasimenko. Space Sci. Rev. 128 (1-4), 23–66 (2007). doi:10.1007/s11214-007-9146-x.

    Article  Google Scholar 

  3. Pravec, P., Harris, A., Vokrouhlickỳ, D., Warner, B., Kušnirák, P., Hornoch, K., Pray, D., Higgins, D., Oey, J., Galád, A., et al.: Spin rate distribution of small asteroids. Icarus. 197 (2), 497–504 (2008). doi:10.1016/j.icarus.2008.05.012.

    Article  Google Scholar 

  4. Scheeres, D., Schweickart, R.: The mechanics of moving asteroids. 2004 Planetary Defense Conference: Protecting Earth from Asteroids, 23–26 (2004). doi:10.2514/6.2004-1446.

  5. Scheeres, D.J.: Orbital Motion in Strongly Perturbed Environments. Springer (2012). doi:10.1007/978-3-642-03256-1.

  6. Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM algorithm. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 3562–3568 (2006). doi:10.1109/iros.2006.281644.

  7. Cocaud, C., Kubota, T.: Autonomous navigation near asteroids based on visual SLAM. Proceedings of the 23rd International Symposium on Space Flight Dynamics, Pasadena, California (2012).

  8. Bhaskaran, S., Nandi, S., Broschart, S., Wallace, M., Cangahuala, L., Olson, C.: Small body landings using autonomous onboard optical navigation. J. Astron. Sci. 58 (3), 409–427 (2011). doi:10.1007/bf03321177.

    Article  Google Scholar 

  9. Olson, C.: Analysis of Asteroid Landing Capabilities Using Autonomous Optical Navigation. Master’s thesis, The University of Texas at Austin, Austin, TX (2009).

    Google Scholar 

  10. Olson, C., Russell, R., Carpenter, J.: Small Body Optical Navigation Using The Additive Divided Difference Sigma Point Filter. 25th AAS/AIAA Space Flight Mechanics Meeting (2014). AAS 14-422.

  11. Seidelmann, P.K., Archinal, B., Ahearn, M., Conrad, A., Consolmagno, G., Hestroffer, D., Hilton, J., Krasinsky, G., Neumann, G., Oberst, J., et al.: Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006. Celest. Mech. Dyn. Astron. 98 (3), 155–180 (2007). doi:10.1007/s10569-007-9072-y.

    Article  MATH  Google Scholar 

  12. Karlgaard, C.D., Schaub, H.: Nonsingular attitude filtering using modified Rodrigues parameters. J. Astron. Sci. 57 (4), 777–791 (2009). doi:10.1007/bf03321529.

    Article  Google Scholar 

  13. Koschny, D., Solaz, R., Vallat, C.: Rosetta Project Glossary,” Jan 2007. RO-EST-LI-5012, http://www.rssd.esa.int/index.php?project=rosetta&page=glossary#CAM[retrieved9September2014].

  14. Russell, C., et al.: Dawn mission to Vesta and Ceres. Earth, Moon, Planet. 101 (1-2), 65–91 (2007). doi:10.1007/s11038-007-9151-9.

    Article  Google Scholar 

  15. Hawkins III, S.: Overview of the Multi-Spectral Imager on the NEAR spacecraft. Acta Astron. 39 (1), 265–271 (1996). doi:10.1016/s0094-5765(96)00144-0.

    Article  Google Scholar 

  16. Ishiguro, M., et al.: The Hayabusa Spacecraft Asteroid Multi-band Imaging Camera (AMICA). Icarus. 207 (2), 714–731 (2010). doi:10.1016/j.icarus.2009.12.035.

    Article  Google Scholar 

  17. Gaskell, R., Barnouin-Jha, O., Scheeres, D., Konopliv, A., Mukai, T., Abe, S., Saito, J., Ishiguro, M., Kubota, T., Hashimoto, T., et al.: Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 43 (6), 1049–1061 (2008). doi:10.1111/j.1945-5100.2008.tb00692.x.

    Article  Google Scholar 

  18. Castellini, F., Santayana, R.P.D., Wokes, D., Kielbassa, S.: Optical Navigation for Rosetta Operations Near Comet Churyumov-Gerasimenko. AAS/AIAA Astrodynamics Specialist Conference. Hilton Head, SC (2013). AAS 13-812.

  19. Juan, L., Gwun, O.: A comparison of sift, pca-sift and surf. Int. J. Image Process. (IJIP). 3 (4), 143–152 (2009).

    Google Scholar 

  20. Mastrodemos, N., Rush, B.P., Owen Jr., W.: Optical Navigation For the Rosetta Mission. 38th AAS GN&C Conference (2015). AAS 15-123.

  21. Owen, W. Jr.: Methods of Optical Navigation. 21st AAS/AIAA Space Flight Mechanics Meeting, New Orleans, LA (2011). AAS 11-215.

  22. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 13 (3), 108–117 (2006). doi:10.1109/mra.2006.1678144.

    Article  Google Scholar 

  23. Tapley, B., Schutz, B., Born, G.: Statistical Orbit Determination. Elsevier Academic Press (2004).

  24. Landi, A., Boldrini, F., Procopio, D.: Mars express and rosetta autonomous Str: in flight experience. Guid. Navig. Control Syst. 606, 55 (2006).

    Google Scholar 

  25. Liebe, C.: Accuracy performance of star trackers-a tutorial. IEEE Trans. Aerosp. Electron. Syst. 38 (2), 587–599 (2002). doi:10.1109/taes.2002.1008988.

    Article  Google Scholar 

  26. Abrahamson, M., Bhaskaran, S.: Lidar and Optical-based Autonomous Navigation For Small Body Proximity Operations. 25th AAS/AIAA Space Flight Mechanics Meeting. Santa Fe, NM (2014). AAS 14-420.

  27. Maciejowski, J.M.: Multivariable feedback design. 1989. p. 223.

  28. Chen, C.-T.: Linear system theory and design. Oxford University Press, Inc. (1995).

  29. Brogan, W.L.: Modern control theory. Pearson Education India (1974).

  30. Olson, C., Wright, C., Long, A.: Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission. 22nd AAS/AIAA Space Flight Mechanics Meeting (2012). AAS 12-199.

  31. Werner, R.A.: Spherical harmonic coefficients for the potential of a constant-density polyhedron. Comput. Geosci. 23 (10), 1071–1077 (1997). doi:10.1016/s0098-3004(97)00110-6.

    Article  Google Scholar 

  32. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65 (3), 313–344 (1996). doi:10.1007/bf00053511.

    MathSciNet  MATH  Google Scholar 

  33. Diebel, J.: Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix. 58, 15–16 (2006).

    Google Scholar 

  34. Long, A., Lee, T.: GPS Enhanced Onboard Navigation System (GEONS) Mathematical Specifications, Version 3.

  35. Crassidis, J.L., Markley, F.L.: Attitude estimation using modified Rodrigues parameters. Flight Mechanics/Estimation Theory Symposium (1996).

  36. Glassmeier, K.-H., Boehnhardt, H., Koschny, D., Kührt, E., Richter, I.: The Rosetta mission: flying towards the origin of the solar system. Space Sci. Rev. 128 (1-4), 1–21 (2007). doi:10.1007/s11214-006-9140-8.

    Article  Google Scholar 

  37. Wokes, D., Essert, J.: Development of Rosetta’s Initial Stage Comet Rendezvous Guidance Systems. AIAA/AAS Astrodynamics Specialist Conference (2012). doi:10.2514/6.2012-5061.

  38. Zanetti, R., DeMars, K., Bishop, R.: Underweighting nonlinear measurements. J. Guid., Control, Dyn. 33 (5), 1670–1675 (2010). doi:10.2514/1.50596.

    Article  Google Scholar 

  39. Bayard, D., Brugarolas, P.: An estimation algorithm for vision-based exploration of small bodies in space. IEEE Am. Control Conf., 4589–4595 (2005). doi:10.1109/acc.2005.1470719.

  40. Gates, C.: A Simplified Model of Midcourse Maneuver Execution Errors. Technical Report 32-504, Jet Propulsion Laboratory, Pasadena, CA (1963).

    Google Scholar 

  41. Bryson, M., Kim, J., Sukkarieh, S.: Information and observability metrics of inertial SLAM for on-line path-planning on an aerial vehicle. IEEE international conference on robotics and automation, Spain (2005).

    Google Scholar 

Download references

Acknowledgments

The work described in this paper was funded by NASA’s Chief Technology Office through a NASA Space Technology Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corwin Olson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olson, C., Russell, R.P. & Bhaskaran, S. Spin State Estimation of Tumbling Small Bodies. J of Astronaut Sci 63, 124–157 (2016). https://doi.org/10.1007/s40295-015-0080-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-015-0080-y

Keywords

Navigation