Skip to main content
Log in

Serum Malondialdehyde Levels in Hypertensive Patients: A Non-invasive Marker of Oxidative Stress. A Systematic Review and Meta-analysis

  • Original article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Introduction

Previous analyses have reported a higher malondialdehyde (MDA) serum level in hypertensive patients (HTs) compared to normotensive subjects (NTs).

Aim

We performed a systematic review and meta-analysis of these studies to offer a comprehensive information on this issue.

Methods

The PubMed, EMBASE and Web of Science databases were analysed to locate English-language articles published from January 1, 2000 up to January 1 2021. Studies were identified using the following MeSH terms: “Malondialdehyde” AND “Arterial hypertension”. The difference of MDA serum levels between HTs and NTs was expressed as standardized mean difference (SMD) with 95% CI using a random-effect model.

Results

A total of of 4102 patients (2158 HTs and 1944 NTs, mean age 52.7 and 48.0 years, respectively) were included in 17 studies. Pooled mean MDA serum levels in HTs and NTs were 4.91 [standard error (SE): 0.34, 95% CI 4.23–5.59)] and 3.43 [SE 0.15, 95% CI 3.18–3.78] nmol/L, respectively. The SMD between HTs and NTs was 3.23 nmol/L (95% CI 2.54–3.92; Z-score for overall effect: 9.17, p < 0.0001, I2 = 98.6%). Egger’s test resulted significant at p = 0.009 while Begg’s test was not, p = 0.11. Subsequent adjustment via the trim-and-fill method did not predict a new model (studies trimmed = 0). Meta-regression analysis found no correlations either between SMD and age (p = 0.95) or BMI (p = 0.96) but a significant one considering the latitude of the study site as moderator variable (p = 0.001).

Conclusions

Among patients with HTs, serum MDA appears to have the greatest potential as non-invasive biomarkers of oxidative stress and endothelial dysfunction (ED).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexander RW. Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension. 1995;25:155–61. https://doi.org/10.1161/01.hyp.25.2.155.

    Article  CAS  PubMed  Google Scholar 

  2. Catena C, Novello M, Lapenna R, Baroselli S, Colussi G, Nadalini E, Favret G, Cavarape A, Soardo G, Sechi LA. New risk factors for atherosclerosis in hypertension: focus on the prothrombotic state and lipoprotein(a). J Hypertens. 2005;23:1617–31. https://doi.org/10.1097/01.hjh.0000178835.33976.e7.

    Article  CAS  PubMed  Google Scholar 

  3. Romero JC, Reckelhoff JF. State-of-the-Art lecture. Role of angiotensin and oxidative stress in essential hypertension. Hypertension. 1999;34:943–9. https://doi.org/10.1161/01.hyp.34.4.943.

    Article  CAS  PubMed  Google Scholar 

  4. Ferroni P, Basili S, Paoletti V, Davì G. Endothelial dysfunction and oxidative stress in arterial hypertension. Nutr Metab Cardiovasc Dis. 2006;16:222–33. https://doi.org/10.1016/j.numecd.2005.11.012.

    Article  CAS  PubMed  Google Scholar 

  5. Zalba G, San José G, Moreno MU, Fortuño MA, Fortuño A, Beaumont FJ, Díez J. Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension. 2001;38:1395–9. https://doi.org/10.1161/hy1201.099611.

    Article  CAS  PubMed  Google Scholar 

  6. Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative stress: a unifying paradigm in hypertension. Can J Cardiol. 2020;36:659–70. https://doi.org/10.1016/j.cjca.2020.02.081.

    Article  PubMed  Google Scholar 

  7. Rodrigo R, González J, Paoletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res. 2011;34:431–40. https://doi.org/10.1038/hr.2010.264.

    Article  CAS  PubMed  Google Scholar 

  8. Kramer JH, Mak IT, Weglicki WB. Differential sensitivity of canine cardiac sarcolemmal and microsomal enzymes to inhibition by free radical-induced lipid peroxidation. Circ Res. 1984;55:120–4. https://doi.org/10.1161/01.res.55.1.120.

    Article  CAS  PubMed  Google Scholar 

  9. Baykal Y, Yilmaz MI, Celik T, Gok F, Rehber H, Akay C, Kocar IH. Effects of antihypertensive agents, alpha receptor blockers, beta blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and calcium channel blockers, on oxidative stress. J Hypertens. 2003;21:1207–11. https://doi.org/10.1097/00004872-200306000-00022.

    Article  CAS  PubMed  Google Scholar 

  10. Lykkesfeldt J, Viscovich M, Poulsen HE. Plasma malondialdehyde is induced by smoking: a study with balanced antioxidant profiles. Br J Nutr. 2004;92:203–6. https://doi.org/10.1079/BJN20041191.

    Article  CAS  PubMed  Google Scholar 

  11. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097

  12. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses, 2012. http://www.ohrica/programs/clinical_epidemiology/oxford.asp,

  13. Sterne JA, Gavaghan D, Egger M. Publication and related bias in metaanalysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol. 2000;53:1119–29.

    Article  CAS  Google Scholar 

  14. McGinn T, Wyer PC, Newman TB, Keitz S, Leipzig R, For GG. Tips for learners of evidence-based medicine: 3. Measures of observer variability (kappa statistic). CMAJ. 2004;171:1369–73.

    Article  Google Scholar 

  15. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  Google Scholar 

  16. Decharatchakul N, Settasatian C, Settasatian N, Komanasin N, Kukongviriyapan U, Intharapetch P, Senthong V, Sawanyawisuth K. Association of combined genetic variations in SOD3, GPX3, PON1, and GSTT1 with hypertension and severity of coronary artery disease. Heart Vessels. 2020;35:918–29. https://doi.org/10.1007/s00380-020-01564-6.

    Article  PubMed  Google Scholar 

  17. Verma MK, Jaiswal A, Sharma P, Kumar P, Singh AN. Oxidative stress and biomarker of TNF-α, MDA and FRAP in hypertension. J Med Life. 2019;12:253–9. https://doi.org/10.25122/jml-2019-0031.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yale BM, Yeldu MH. Serum nitric oxide and malondialdehyde in a hypertensive population in Sokoto, Nigeria. Int J Res Med Sci. 2018;6:3929–34. https://doi.org/10.18203/2320-6012.ijrms20184885.

    Article  Google Scholar 

  19. Sadanand G, Nanda K, Muralidhara Krishna CS, Veerabhadra Goud GK. Serum paraoxonase activity and oxidative stress in primary hypertension. Inter J Biomed Res. 2017;8:92–6. https://doi.org/10.7439/ijbr.

    Article  CAS  Google Scholar 

  20. Liu Q, Han L, Du Q, Zhang M, Zhou S, Shen X. The association between oxidative stress, activator protein-1, inflammatory, total antioxidant status and artery stiffness and the efficacy of olmesartan in elderly patients with mild-to-moderate essential hypertension. Clin Exp Hypertens. 2016;38:365–9. https://doi.org/10.3109/10641963.2015.1131285.

    Article  CAS  PubMed  Google Scholar 

  21. Agarwal BK, Saxena T, Naz S. Study of oxidative stress in Essential hypertension. Biomed Pharma J. 2015;8:463–6. https://doi.org/10.13005/bpj/635.

    Article  Google Scholar 

  22. El Hassar C, Merzouk H, Merzouk SA, Malti N, Meziane A, Narce M. Long-term use of angiotensin II receptor antagonists and calcium-channel antagonists in Algerian hypertensive patients: effects on metabolic and oxidative parameters. Free Radic Biol Med. 2015;79:147–53. https://doi.org/10.1016/j.freeradbiomed.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  23. Ahmad A, Singhal U, Hossain MM, Islam N, Rizvi I. The role of the endogenous antioxidant enzymes and malondialdehyde in essential hypertension. J Clin Diagn Res. 2013;7:987–90. https://doi.org/10.7860/JCDR/2013/5829.3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen X, Wu Y, Liu L, Su Y, Peng Y, Jiang L, Liu X, Huang D. Relationship between high density lipoprotein antioxidant activity and carotid arterial intima-media thickness in patients with essential hypertension. Clin Exp Hypertens. 2010;32:13–20. https://doi.org/10.3109/10641960902929487.

    Article  CAS  PubMed  Google Scholar 

  25. Pavithran P, Nandeesha H, Sathiyapriya V, Bobby Z, Madanmohan T. Short-term heart variability and oxidative stress in newly diagnosed essential hypertension. Clin Exp Hypertens. 2008;30:486–96. https://doi.org/10.1080/10641960802251875.

    Article  CAS  PubMed  Google Scholar 

  26. Armas-Padilla MC, Armas-Hernández MJ, Sosa-Canache B, Cammarata R, Pacheco B, Guerrero J, Carvajal AR, Hernández-Hernández R, Israili ZH, Valasco M. Nitric oxide and malondialdehyde in human hypertension. Am J Ther. 2007;14:172–6. https://doi.org/10.1097/01.pap.0000249914.75895.48.

    Article  PubMed  Google Scholar 

  27. Abdilla N, Tormo MC, Fabia MJ, Chaves FJ, Saez G, Redon J. Impact of the components of metabolic syndrome on oxidative stress and enzymatic antioxidant activity in essential hypertension. J Hum Hypertens. 2007;21:68–75. https://doi.org/10.1038/sj.jhh.1002105.

    Article  CAS  PubMed  Google Scholar 

  28. Uzun H, Karter Y, Aydin S, Curgunlu A, Simşek G, Yücel R, Vehiyd S, Ertürk N, Kutlu A, Benian A, Yaldiran A, Oztürk E, Erdine S. Oxidative stress in white coat hypertension; role of paraoxonase. J Hum Hypertens. 2004;18:523–8. https://doi.org/10.1038/sj.jhh.1001697.

    Article  CAS  PubMed  Google Scholar 

  29. Parslow RA, Sachdev P, Salonikas C, Lux O, Jorm AF, Naidoo D. Associations between plasma antioxidants and hypertension in a community-based sample of 415 Australians aged 60–64. J Hum Hypertens. 2005;19:219–26. https://doi.org/10.1038/sj.jhh.1001809.

    Article  CAS  PubMed  Google Scholar 

  30. Qureshi M, Khsandwala H, Haq IU, Prasad K. Elevated levels of plasma homocysteine in hypertensive patients with diabetes mellitus. J Cardiovasc Pharmacol Ther. 2003;8:261–6. https://doi.org/10.1177/107424840300800403.

    Article  CAS  PubMed  Google Scholar 

  31. Donmez G, Derici U, Erbas D, Arinsoy T, Onk A, Sindel S, Hasanoglu E. The effects of losartan and enalapril therapies on the levels of nitric oxide, malondialdehyde, and glutathione in patients with essential hypertension. Jpn J Physiol. 2002;52:435–40. https://doi.org/10.2170/jjphysiol.52.435.

    Article  CAS  PubMed  Google Scholar 

  32. Saez G, Tormos MC, Giner V, Lozano JV, Chaves FJ, Armengod ME, Redon J. Oxidative stress and enzymatic antioxidant mechanisms in essential hypertension. Am J Hyper. 2001;14(suppl 1):248A. https://doi.org/10.1016/S0895-7061(01)01983-5.

    Article  Google Scholar 

  33. Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44:248–52. https://doi.org/10.1161/01.HYP.0000138070.47616.9d.

    Article  CAS  PubMed  Google Scholar 

  34. Vaziri ND, Wang XQ, Oveisi F, Rad B. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension. 2000;36:142–6. https://doi.org/10.1161/01.hyp.36.1.142.

    Article  CAS  PubMed  Google Scholar 

  35. Portaluppi F, Boari B, Manfredini R. Oxidative stress in essential hypertension. Curr Pharm Des. 2004;10:1695–8. https://doi.org/10.2174/1381612043384619.

    Article  CAS  PubMed  Google Scholar 

  36. Benjamin N, Vane J. Nitric oxide and hypertension. Circulation. 1996;94:1197–8. https://doi.org/10.1161/01.cir.94.6.1197.

    Article  CAS  PubMed  Google Scholar 

  37. Ibrahim MM. RAS inhibition in hypertension. J Hum Hypertens. 2006;20:10110–8. https://doi.org/10.1038/sj.jhh.1001960.

    Article  CAS  Google Scholar 

  38. Nickenig G, Harrison DG. The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: part II: AT(1) receptor regulation. Circulation. 2002;105:530–6. https://doi.org/10.1161/hc0402.102619.

    Article  CAS  PubMed  Google Scholar 

  39. Yoo SM, Choi SH, Jung MD, Lim SC, Baek SH. Short-term use of telmisartan attenuates oxidation and improves Prdx2 expression more than antioxidant β-blockers in the cardiovascular systems of spontaneously hypertensive rats. Hypertens Res. 2015;38:106–15. https://doi.org/10.1038/hr.2014.151.

    Article  CAS  PubMed  Google Scholar 

  40. Ganafa AA, Walton M, Eatman D, Abukhalaf IK, Bayorh MA. Amlodipine attenuates oxidative stress-induced hypertension. Am J Hypertens. 2004;17:743–8. https://doi.org/10.1016/j.amjhyper.2004.05.013.

    Article  CAS  PubMed  Google Scholar 

  41. Celik T, Iyisoy A, Kursaklioglu H, Kardesoglu E, Kilic S, Turhan H, Yilmaz MI, Ozcan O, Yaman H, Isik E, Fici F. Comparative effects of nebivolol and metoprolol on oxidative stress, insulin resistance, plasma adiponectin and soluble P-selectin levels in hypertensive patients. J Hypertens. 2006;24:591–6. https://doi.org/10.1097/01.hjh.0000209993.26057.de.

    Article  CAS  PubMed  Google Scholar 

  42. Dohi Y, Ohashi M, Sugiyama M, Takase H, Sato K, Ueda R. Candesartan reduces oxidative stress and inflammation in patients with essential hypertension. Hypertens Res. 2003;26:691–7. https://doi.org/10.1291/hypres.26.691.

    Article  CAS  PubMed  Google Scholar 

  43. Abdel-Zaher AO, Elkoussi AE, Abudahab LH, Elbakry MH, Elsayed EA. Effect of simvastatin on the antihypertensive activity of losartan in hypertensive hypercholesterolemic animals and patients: role of nitric oxide, oxidative stress, and high-sensitivity C-reactive protein. Fundam Clin Pharmacol. 2014;28:237–48. https://doi.org/10.1111/fcp.12020.

    Article  CAS  PubMed  Google Scholar 

  44. Khoubnasabjafari M, Ansarin K, Jouyban A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Bioimpacts. 2015;5:123–7. https://doi.org/10.15171/bi.2015.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daiber A, Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radic Biol Med. 2020;157:15–37. https://doi.org/10.1016/j.freeradbiomed.2020.02.026.

    Article  CAS  PubMed  Google Scholar 

  46. Kapuku G, Treiber F, Raouane F, Halbert J, Davis H, Young-Mayes S, Robinson V, Harshfield G. Race/ethnicity determines the relationships between oxidative stress markers and blood pressure in individuals with high cardiovascular disease risk. J Hum Hypertens. 2017;31:70–5. https://doi.org/10.1038/jhh.2016.39.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MZ contributed to the study conception and design. Literature search was performed by MZ and EC and AD. Data collection and analysis were performed by MZ and GZ. The first draft of the manuscript was written by MZ and all authors commented on previous versions of the manuscript. CB critically revised the manuscript. All authors read and approved the final manuscript

Corresponding author

Correspondence to Marco Zuin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

PRISMA checklist (DOCX 29 KB)

40292_2022_514_MOESM2_ESM.jpg

Funnel plots for the pooled estimation of the mean serum malondialdehyde levels in hypertensive patients (Panel A) and normotensive subjects (Panel B) (JPG 84 KB)

40292_2022_514_MOESM3_ESM.jpg

Funnel plots for the comparison of serum malondialdehyde levels between hypertensive patients and normotensive subjects (JPG 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuin, M., Capatti, E., Borghi, C. et al. Serum Malondialdehyde Levels in Hypertensive Patients: A Non-invasive Marker of Oxidative Stress. A Systematic Review and Meta-analysis. High Blood Press Cardiovasc Prev 29, 263–273 (2022). https://doi.org/10.1007/s40292-022-00514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-022-00514-9

Keywords

Navigation