Skip to main content
Log in

Association Between Central-Peripheral Blood Pressure Amplification and Structural and Functional Cardiac Properties in Children, Adolescents, and Adults: Impact of the Amplification Parameter, Recording System and Calibration Scheme

  • Original article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Introduction

Systolic blood pressure (SBPA) and pulse pressure amplification (PPA) were quantified using different methodological and calibration approaches to analyze (1) the association and agreement between different SBPA and PPA parameters and (2) the association between these SBPA and PPA parameters and left ventricle (LV) and atrium (LA) structural and functional characteristics.

Methods

In 269 healthy subjects, LV and LA parameters were echocardiography-derived. SBPA and PPA parameters were quantified using: (1) different equations (n = 9), (2) methodological approaches (n = 3): brachial sub-diastolic (Mobil-O-Graph®) and supra-systolic oscillometry (Arteriograph®) and aortic diameter waveform re-calibration (RCD; ultrasonography), and (3) using three different calibration schemes: systo-diastolic (SD), calculated mean (CM) and oscillometric mean (OscM).

Results

SBPA and PPA parameters obtained with different equations, techniques, and calibration schemes show a highly variable association level (negative, non-significant, and/or positive) among them. The association between SBPA and PPA with cardiac parameters were highly variable (negative, non-significant, or positive associations). Differences in BPA parameter data between approaches were more sensitive to the calibration method than to the device used. Both, SBPA and PPA obtained with brachial sub-diastolic technique and calibrated to CM or OscM showed higher levels of association with LV and LA structural characteristics.

Conclusions

Our data show that many of the parameters that assume to quantify the same phenomenon of BPA are not related to each other in the different age groups. Both, SBPA and PPA obtained with brachial sub-diastolic technique and calibrated to CM or OscM showed higher levels of association with LV and LA structural characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kroeker EJ, Wood EH. Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man. Circ Res. 1955;3:623–32.

    CAS  PubMed  Google Scholar 

  2. Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38:932–7.

    CAS  PubMed  Google Scholar 

  3. Ohte N, Saeki T, Miyabe H, Sakata S, Mukai S, Hayano J, Niki K, et al. Relationship between blood pressure obtained from the upper arm with a cuff-type sphygmomanometer and central blood pressure measured with a catheter-tipped micromanometer. Heart Vessels. 2007;22:410–5.

    PubMed  Google Scholar 

  4. Sharman JE, Avolio AP, Baulmann J, Benetos A, Blacher J, Blizzard CL, Boutouyrie P, et al. Validation of non-invasive central blood pressure devices: ARTERY Society task force consensus statement on protocol standardization. Eur Heart J. 2017;38(37):2805–12.

    PubMed  PubMed Central  Google Scholar 

  5. Salvi P, Safar ME, Labat C, Borghi C, Lacolley P, Benetos A. PARTAGE Study Investigators Heart disease and changes in pulse wave velocity and pulse pressure amplification in the elderly over 80 years: the PARTAGE Study. J Hypertens. 2010;28:2127–33.

    CAS  PubMed  Google Scholar 

  6. McEniery CM, Franklin SS, Cockcroft JR, Wilkinson IB. Isolated systolic hypertension in young people is not spurious and should be treated: pro side of the argument. Hypertension. 2016;68:269–75.

    CAS  PubMed  Google Scholar 

  7. Avolio AP, Van Bortel LM, Boutouyrie P, Cockcroft JR, McEniery CM, Protogerou AD, Roman MJ, et al. Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension. 2009;54(2):375–83.

    CAS  PubMed  Google Scholar 

  8. Papaioannou TG, Karageorgopoulou TD, Sergentanis TN, Protogerou AD, Psaltopoulou T, Sharman JE, Weber T, et al. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens. 2016;34(7):1237–48.

    CAS  PubMed  Google Scholar 

  9. Hope SA, Meredith IT, Cameron JD. Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics. Clin Sci (Lond). 2004;107:205–11.

    PubMed  Google Scholar 

  10. Papaioannou TG, Lekakis JP, Karatzis EN, Papamichael CM, Stamatelopoulos KS, Protogerou AD, Mavrikakis M, et al. Transmission of calibration errors (input) by generalized transfer functions to the aortic pressures (output) at different hemodynamic states. Int J Cardiol. 2006;110:46–52.

    PubMed  Google Scholar 

  11. Nakagomi A, Okada S, Shoji T, Kobayashi K. Crucial effect of calibration methods on the association between central pulsatile indices and coronary atherosclerosis. Am J Hypertens. 2017;30:24–7.

    PubMed  Google Scholar 

  12. Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, Kropf J, et al. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–32.

    CAS  PubMed  Google Scholar 

  13. Wassertheurer S, Hametner B, Mayer CC, Hafez A, Negishi K, Papaioannou TG, Protogerou AD, et al. Aortic systolic pressure derived with different calibration methods: associations to brachial systolic pressure in the general population. Blood Press Monit. 2018;23(3):134–40.

    PubMed  Google Scholar 

  14. Negishi K, Yang H, Wang Y, Nolan MT, Negishi T, Pathan F, Marwick TH, et al. Importance of calibration method in central blood pressure for cardiac structural abnormalities. Am J Hypertens. 2016;29(9):1070–6.

    PubMed  Google Scholar 

  15. Agnoletti D, Zhang Y, Salvi P, Borghi C, Topouchian J, Safar ME, Blacher J. Pulse pressure amplification, pressure waveform calibration and clinical applications. Atherosclerosis. 2012;224(1):108–12.

    CAS  PubMed  Google Scholar 

  16. Díaz A, Zócalo Y, Bia D. Normal percentile curves for left atrial size in healthy children and adolescents. Echocardiography. 2019;36(4):770–82.

    PubMed  Google Scholar 

  17. Diaz A, Zócalo Y, Bia D, Wray S, Fischer EC. Reference intervals and percentiles for carotid femoral pulse wave velocity in a healthy population aged between 9 and 87 years. J Clin Hypertens (Greenwich). 2018;20(4):659–71.

    Google Scholar 

  18. Diaz A, Zócalo Y, Bia D. Reference intervals and percentile curves of echocardiographic left ventricular mass, relative wall thickness and ejection fraction in healthy children and adolescents. Pediatr Cardiol. 2018;40(2):283–301.

    PubMed  Google Scholar 

  19. Díaz A, Bia D, Zócalo Y. Impact of methodological and calibration approach on the association of Central and peripheral systolic blood pressure with cardiac structure and function in children, adolescents and adults. High Blood Press Cardiovasc Prev. 2019;26(6):509–34.

    PubMed  Google Scholar 

  20. Stang J, Story M. Chapter 1: Adolescent growth and development. In: Stang J, Story (eds) Guidelines for adolescent nutrition services. 2005. https://www.epi.umn.edu/let/pubs/adol_book.shtm. Accessed 1 June 2020.

  21. Stützle W, Gasser T, Molinari L, Largo RH, Prader A, Huber PJ. Shape-invariant modelling of human growth. Ann Hum Biol. 1980;7(6):507–28.

    PubMed  Google Scholar 

  22. Sawyer SM, Azzopardi PS, Wickremarathne D, Patton GC. The age of adolescence. Lancet Child Adolesc Health. 2018;2(3):223–8.

    PubMed  Google Scholar 

  23. WHO Global recommendations on physical activity for health. World Health Organization. 2010. https://www.who.int/dietphysicalactivity/factsheet_recommendations/en/. Accessed 1 June 2020.

  24. Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, Invitti C, et al. European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887–920.

    CAS  PubMed  Google Scholar 

  25. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, Christiaens T, et al. ESH/ESC Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;2013(31):1281–357.

    Google Scholar 

  26. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–115.

    CAS  PubMed  Google Scholar 

  27. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, et al. European network for non-invasive investigation of large arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    PubMed  Google Scholar 

  28. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, Lai WW, Geva T. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23(5):465–95.

    PubMed  Google Scholar 

  29. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70.

    PubMed  Google Scholar 

  30. Orde S, Slama M, Hilton A, Yastrebov K, McLean A. Pearls and pitfalls in comprehensive critical care echocardiography. Crit Care. 2017;21(1):279. https://doi.org/10.1186/s13054-017-1866-z.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation. 1984;70:425–31.

    CAS  PubMed  Google Scholar 

  32. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.

    CAS  PubMed  Google Scholar 

  33. Baulmann J, Schillings U, Rickert S, Uen S, Düsing R, Illyes M, Cziraki A, et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens. 2008;26(3):523–8.

    CAS  PubMed  Google Scholar 

  34. Horváth IG, Németh A, Lenkey Z, Alessandri N, Tufano F, Kis P, Gaszner B, et al. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens. 2010;28(10):2068–75.

    PubMed  Google Scholar 

  35. Zahnd G, Kapellas K, van Hattem M, van Dijk A, Sérusclat A, Moulin P, van der Lugt A, et al. A fully-automatic method to segment the carotid artery layers in ultrasound imaging—application to quantify the compression-decompression pattern of the intima-media complex during the cardiac cycle. Ultrasound Med Biol. 2017;43(1):239–57.

    PubMed  Google Scholar 

  36. Zahnd G, Orkisz M, Vray D. CAROLAB. 2017. https://doi.org/10.5281/zenodo.398680.

  37. Vermeersch SJ, Rietzschel ER, De Buyzere ML, De Bacquer D, De Backer G, Van Bortel LM, Gillebert TC, et al. Determining carotid artery pressure from scaled diameter waveforms: comparison and validation of calibration techniques in 2026 subjects. Physiol Meas. 2008;29(11):1267–80.

    CAS  PubMed  Google Scholar 

  38. Zócalo Y, Bia D, Armentano RL, González-Moreno J, Varela G, Calleriza F, Reyes-Caorsi W. Resynchronization improves heart-arterial coupling reducing arterial load determinants. Europace. 2013;15(4):554–65.

    PubMed  Google Scholar 

  39. Wojciechowska W, Li Y, Stolarz-Skrzypek K, Kawecka-Jaszcz K, Staessen JA, Wang JG. European Project on Genes in Hypertension and the JingNing Study Investigators. Cross-sectional and longitudinal assessment of arterial stiffening with age in European and Chinese populations. Front Physiol. 2012;3:209.

    PubMed  PubMed Central  Google Scholar 

  40. Nakagomi A, Shoji T, Okada S, Ohno Y, Kobayashi Y. Validity of the augmentation index and pulse pressure amplification as determined by the SphygmoCor XCEL device: a comparison with invasive measurements. Hypertens Res. 2018;41(1):27–32.

    PubMed  Google Scholar 

  41. Benetos A, Thomas F, Joly L, Blacher J, Pannier B, Labat C, Salvi P, Safar ME, et al. Pulse pressure amplification a mechanical biomarker of cardiovascular risk. J Am Coll Cardiol. 2010;55:1032–7.

    PubMed  Google Scholar 

  42. Pichler G, Martinez F, Vicente A, Solaz E, Calaforra O, Redon J. Pulse pressure amplification and its determinants. Blood Press. 2016;25(1):21–7.

    PubMed  Google Scholar 

  43. Laurent P, Albaladejo P, Blacher J, Rudnichi A, Smulyan H, Safar ME. Heart rate and pulse pressure amplification in hypertensive subjects. Am J Hypertens. 2003;16:363–70.

    PubMed  Google Scholar 

  44. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104.

    PubMed  Google Scholar 

  45. Manios E, Vemmos K, Tsivgoulis G, Barlas G, Koroboki E, Spengos K, Zakopoulos N. Comparison of noninvasive oscillometric and intra-arterial blood pressure measurements in hyperacute stroke. Blood Press Monit. 2007;12:149–56.

    PubMed  Google Scholar 

  46. Umana E, Ahmed W, Fraley MA, Alpert MA. Comparison of oscillometric and intraarterial systolic and diastolic blood pressures in lean, overweight, and obese patients. Angiology. 2006;57:41–5.

    PubMed  Google Scholar 

  47. Kobayashi H, Kinou M, Takazawa K. Correlation between the brachial blood pressure values obtained using the cuff method and the central blood pressure values obtained invasively. Intern Med. 2013;52:1675–80.

    PubMed  Google Scholar 

  48. Cloud GC, Rajkumar C, Kooner J, Cooke J, Bulpitt CJ. Estimation of central aortic pressure by SphygmoCor requires intra-arterial peripheral pressures. Clin Sci (Lond). 2003;105:219–25.

    PubMed  Google Scholar 

  49. Smulyan H, Sheehe PR, Safar ME. A preliminary evaluation of the mean arterial pressure as measured by cuff oscillometry. Am J Hypertens. 2008;21:166–71.

    PubMed  Google Scholar 

  50. Salvi P, Bellasi A, Di Iorio B. Does it make sense to measure only the brachial blood pressure? Blood Purif. 2013;36(1):21–5.

    PubMed  Google Scholar 

  51. Bai B, Teliewubai J, Lu Y, Yu S, Xiong J, Chi C, Zhou Y, et al. Comparison of pulse wave velocity and pulse pressure amplification in association with target organ damage in community-dwelling elderly: The Northern Shanghai Study. Hypertens Res. 2018;41(5):372–81.

    PubMed  Google Scholar 

  52. Sibiya MJ, Norton GR, Booysen HL, Tade G, Libhaber CD, Ballim I, Sareli P, et al. Aortic backward waves rather than stiffness account for independent associations between pulse pressure amplification and left ventricular mass in a young to middle-aged sample. J Am Soc Hypertens. 2017;11(6):350–8.

    PubMed  Google Scholar 

  53. Hashimoto J, Imai Y, O’Rourke MF. Indices of pulse wave analysis are better predictors of left ventricular mass reduction than cuff pressure. Am J Hypertens. 2007;20:378–84.

    PubMed  Google Scholar 

  54. Wassertheurer S, Hametner B, Sharman J, Weber T. Systolic blood pressure amplification and waveform calibration. Hypertens Res. 2017;40(5):518.

    PubMed  Google Scholar 

  55. Picone DS, Schultz MG, Peng X, Black JA, Dwyer N, Roberts-Thomson P, Qasem A, et al. Intra-arterial analysis of the best calibration methods to estimate aortic blood pressure. J Hypertens. 2019;37(2):307–15.

    CAS  PubMed  Google Scholar 

  56. Papaioannou TG, Protogerou AD, Stefanadis C. What to anticipate from pulse pressure amplification. J Am Coll Cardiol. 2010;55(10):1038–40.

    PubMed  Google Scholar 

  57. Wassertheurer S, Baumann M. Assessment of systolic aortic pressure and its association to all-cause mortality critically depends on waveform calibration. J Hypertens. 2015;33:1884–8.

    CAS  PubMed  Google Scholar 

  58. Nakagomi A, Okada S, Shoji T, Kobayashi Y. Comparison of invasive and brachial cuff-based noninvasive measurements for the assessment of blood pressure amplification. Hypertens Res. 2017;40(3):237–42.

    PubMed  Google Scholar 

  59. Regnault V, Thomas F, Safar ME, Osborne-Pellegrin M, Khalil RA, Pannier B, Lacolley P. Sex difference in cardiovascular risk: role of pulse pressure amplification. J Am Coll Cardiol. 2012;59:1771–7.

    PubMed  PubMed Central  Google Scholar 

  60. Wassertheurer S, Burkhardt K, Heemann U, Baumann M. Aortic to brachial pulse pressure amplification as functional marker and predictor of renal function loss in chronic kidney disease. J Clin Hypertens (Greenwich). 2014;16(6):401–5.

    Google Scholar 

  61. Benetos A, Gautier S, Labat C, Salvi P, Valbusa F, Marino F, Toulza O, et al. Mortality and cardiovascular events are best predicted by low central/peripheral pulse pressure amplification but not by high blood pressure levels in elderly nursing home subjects: the PARTAGE (Predictive Values of Blood Pressure and Arterial Stiffness in Institutionalized Very Aged Population) study. J Am Coll Cardiol. 2012;60:1503–11.

    PubMed  Google Scholar 

  62. Safar ME, Blacher J, Pannier B, Guerin AP, Marchais SJ, Guyonvarc’h PM, London GM. Central pulse pressure and mortality in end-stage renal disease. Hypertension. 2002;39:735–8.

    CAS  PubMed  Google Scholar 

  63. Duarte SV, de Souza RJ, Pinho JF, Dos Santos LM, Alves-Neves CM, Magalhães GS, Ribeiro-Oliveira A Jr, et al. Changes in aortic pulse wave components, pulse pressure amplification, and hemodynamic parameters of children and adolescents with type 1 diabetes. Pediatr Diabetes. 2019;20(2):202–9.

    CAS  PubMed  Google Scholar 

  64. Zachariah JP. Pulse wave reflection in children: amplification through the lifecourse. J Hypertens. 2017;35(7):1363–5.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Silvina Schang for your technical assistance. We thank the children and adolescents (and their families), and adults for their participation in the study. This study (data and statistical analysis software) was partially supported by Agencia Nacional de Investigación e Innovación (ANII) and extrabudgetary funds provided by CUiiDARTE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Díaz.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest attached to this work.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, A., Bia, D. Association Between Central-Peripheral Blood Pressure Amplification and Structural and Functional Cardiac Properties in Children, Adolescents, and Adults: Impact of the Amplification Parameter, Recording System and Calibration Scheme. High Blood Press Cardiovasc Prev 28, 185–249 (2021). https://doi.org/10.1007/s40292-021-00440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-021-00440-2

Keywords

Navigation