Skip to main content
Log in

Physical Exercise Combined with Antihypertensive Drug Therapy on Left Ventricular Hypertrophy: Systematic Review and Meta-Analysis

  • Review article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Introduction

Physical exercise and antihypertensive drugs contribute to reduce or prevent hypertensive heart disease (HHD). The effect on blood pressure (BP) of both combined therapy is well documented, but not for the left ventricular (LV) function.

Aim

A systematic review and meta-analysis was conducted for LV biomarkers analysis regarding to HHD on subjects treated with antihypertensive drugs combined with physical exercise practice.

Methods

The search was conducted on the Pubmed, Bireme, Lilacs, Central (Cochrane) and Science direct databases, comprising undetermined period of time, including randomized studies comparing trained and sedentary subjects, both treated with antihypertensive drugs. We analyzed the influence of combined therapy on echocardiogram parameters and BP. A significance level of 5% and 95% CI was considered for all outcomes.

Results

Five studies (N = 1738) were included in meta-analysis. Combined therapy decreased significantly LV mass (CI − 21.63 to − 1.81, N = 783) and heart rate (HR; CI − 4.23 to − 1.59, N = 1738), compared to antihypertensive drugs alone. There was a trend to decrease LV mass index (LVMI; CI − 5.57 to 0.71, N = 1674), systolic BP (CI − 2.47 to 1.23, N = 1674) and diastolic BP (CI − 2.16 to 0.28, N = 1674), a trend to increase of ejection fraction (EF; 95% CI − 0.50 to 2.12, N = 783) and LV end-diastolic diameter (CI − 0.85 to 0.92, N = 847) was similar.

Conclusion

The antihypertensive therapy combined with physical exercise practice can reduce LV mass and HR. Therefore, combined therapy prescription should be considered for prevention and treatment of LV hypertrophy of hypertensive subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. González A, Ravassa S, López B, et al. Myocardial remodeling in hypertension toward a new view of hypertensive heart disease. Hypertension. 2018;72(3):549–58.

    PubMed  Google Scholar 

  2. Frohlich ED, Apstein C, Chobanian AV, et al. The heart in hypertension. N Engl J Med. 1992;327(14):998–1008.

    CAS  PubMed  Google Scholar 

  3. Gaasch WH, Zile MR. Left ventricular structural remodeling in health and disease with special emphasis on volume, mass, and geometry. J Am Coll Cardiol. 2011;58(17):1733–40.

    PubMed  Google Scholar 

  4. Tovillas-Morán FJ, Zabaleta-del-Olmo E, Dalfó-Baqué A, et al. Cardiovascular morbidity and mortality and left ventricular geometric patterns in hypertensive patients treated in primary care. Rev Esp Cardiol. 2009;62(3):246–54.

    PubMed  Google Scholar 

  5. Lu JC, Cui W, Zhang HL, et al. Additive beneficial effects of amlodipine and atorvastatin in reversing advanced cardiac hypertrophy in elderly spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 2009;36(11):1110–9.

    CAS  PubMed  Google Scholar 

  6. Ferreira Filho C, de Abreu LC, Valenti VE, et al. Anti-hypertensive drugs have different effects on ventricular hypertrophy regression. Clinics. 2010;65(7):723–8.

    PubMed  Google Scholar 

  7. Hegde SM, Solomon SD. Influence of physical activity on hypertension and cardiac structure and function. Curr Hypertens Rep. 2015;17(10):77.

    PubMed  PubMed Central  Google Scholar 

  8. Turner MJ, Spina RJ, Kohrt WM, Ehsani AA. Effect of endurance exercise training on left ventricular size and remodeling in older adults with hypertension. J Gerontol A Biol Sci Med Sci. 2000;55(4):M245–51.

    CAS  PubMed  Google Scholar 

  9. Hinderliter A, Sherwood A, Gullette ECD, et al. Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension. Arch Intern Med. 2002;162(12):1333–9.

    PubMed  Google Scholar 

  10. Dimeo F, Pagonas N, Seibert F, et al. Aerobic exercise reduces blood pressure in resistant hypertension. Hypertension. 2012;60(3):653–8.

    CAS  PubMed  Google Scholar 

  11. Martins-Meneses DT, Antunes HKM, De Oliveira NRC, et al. Mat Pilates training reduced clinical and ambulatory blood pressure in hypertensive women using antihypertensive medications. Int J Cardiol. 2015;179:262–8.

    PubMed  Google Scholar 

  12. Kokkinos PF, Narayan P, Colleran JA, et al. Effects of regular exercise on blood pressure and left ventricular hypertrophy in african-american men with severe hypertension. N Engl J Med. 1995;30(22):1462–7.

    Google Scholar 

  13. Deligiannis A, Kouidi E, Tassoulas E, et al. Cardiac effects of exercise rehabilitation in hemodialysis patients. Int J Cardiol. 1999;70(3):253–66.

    CAS  PubMed  Google Scholar 

  14. Hambrecht R, Gielen S, Linke A, et al. Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure. JAMA. 2000;283(23):3095–101.

    CAS  PubMed  Google Scholar 

  15. Boman K, Gerdts E, Wachtell K, et al. Exercise and cardiovascular outcomes in hypertensive patients in relation to structure and function of left ventricular hypertrophy: The LIFE study. Eur J Cardiovasc Prev Rehabil. 2009;16(2):242–8.

    PubMed  Google Scholar 

  16. Joseph G, Marott JL, Biering-Sørensen T, et al. Level of physical activity, left ventricular mass, hypertension, and prognosis. Hypertension. 2020;75(3):693–701.

    CAS  PubMed  Google Scholar 

  17. Kelemen MH, Effron MB, Valenti SA, Stewart KJ. Exercise training combined with antihypertensive drug therapy. Effects on lipids, blood pressure, and left ventricular mass. JAMA. 1990;263(20):2766–71.

    CAS  PubMed  Google Scholar 

  18. Sandri M, Kozarez I, Adams V, et al. Age-related effects of exercise training on diastolic function in heart failure with reduced ejection fraction: the leipzig exercise intervention in chronic heart failure and aging (LEICA) Diastolic Dysfunction Study. Eur Hear Journal. 2012;33:1758–68.

    Google Scholar 

  19. Libonati JR. Cardiac remodeling and function following exercise and angiotensin II receptor antagonism. Eur J Appl Physiol. 2012;112(8):3149–54.

    PubMed  Google Scholar 

  20. Ziada AM, Hassan MO, Tahlilkar KI, et al. Long-term exercise training and angiotensin-converting enzyme inhibition differentially enhance myocardial capillarization in the spontaneously hypertensive rat. J Hypertens. 2005;23(6):1233–40.

    CAS  PubMed  Google Scholar 

  21. Pescatello LS, Franklin BA, Fagard R, et al. American College of Sports. Medicine position stand Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533–53.

    PubMed  Google Scholar 

  22. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.

    PubMed  Google Scholar 

  23. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    PubMed  Google Scholar 

  24. Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. JAMA. 2003;289(19):2560–72.

    CAS  PubMed  Google Scholar 

  25. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension [2018 ESC/ESH Guidelines for the management of arterial hypertension]. Kardiol Pol. 2019;77(2):71–159.

    PubMed  Google Scholar 

  26. Boudoulas KD, Borer JS, Boudoulas H. Heart rate, life expectancy and the cardiovascular system: therapeutic considerations. Cardiology. 2015;132(4):199–212.

    PubMed  Google Scholar 

  27. Nelson L, Jennings GL, Esler MD, et al. Effect of changing levels of physical activity on blood-pressure and haemodynamics in essential hypertension. Lancet. 1986;2(8505):473–6.

    CAS  PubMed  Google Scholar 

  28. Arita M, Hashizume T, Wanaka Y, et al. Effects of antihypertensive agents on blood pressure during exercise. Hypertens Res. 2001;24(6):671–8.

    CAS  PubMed  Google Scholar 

  29. Mizuno R, Fujimoto S, Saito Y, et al. Clinical importance of detecting exaggerated blood pressure response to exercise on antihypertensive therapy. Heart. 2016;102(11):849–54.

    CAS  PubMed  Google Scholar 

  30. Ambrosio GB, Benussi P, Trevi GP, et al. Maximal exercise test in patients with essential hypertension treated with propranolol. Eur J Cardiol. 1978;7(2–3):137–45.

    CAS  PubMed  Google Scholar 

  31. Pitsavos C, Chrysohoou C, Koutroumbi M, et al. The impact of moderate aerobic physical training on left ventricular mass, exercise capacity and blood pressure response during treadmill testing in borderline and mildly hypertensive males. Hellenic J Cardiol. 2011;52:6–14.

    PubMed  Google Scholar 

  32. Zheng H, Xie N, Xu H, et al. Effects of 4 month exercise on left ventricular remodeling and autonomic nervous system in hypertensive patients. Panminerva Med. 2016;58(1):1–7.

    CAS  PubMed  Google Scholar 

  33. Valentine JC, Pigott TD, Rothstein HR. How many studies do you need? A primer on statistical power for meta-analysis. J Educ Behav Stat. 2010;35(2):215–47.

    Google Scholar 

  34. Chan AW, Krleža-Jerić K, Schmid I, et al. Outcome reporting bias in randomized trials funded by the Canadian Institutes of Health Research. CMAJ. 2004;171(7):735–40.

    PubMed  PubMed Central  Google Scholar 

  35. Borenstein M, Hedges LV, Higgins JPT. Introduction to meta-analysis. Hoboken: Wiley; 2009.

    Google Scholar 

  36. Leandro G. Meta-analysis in medical research: the handbook for the understanding and practice of meta-analysis. Oxford: Blackwell Publishing; 2005.

    Google Scholar 

  37. Berwanger O, Suzumura EA, Buehler AM, et al. How to critically assess systematic reviews and meta-analyses? Rev Bras Ter Intensiva. 2007;19(4):475–80.

    PubMed  Google Scholar 

  38. Egger M, Smith GD. Meta-analysis: potentials and promise. Br Med J Lond. 1997;315(7119):1371–4.

    CAS  Google Scholar 

  39. Higgins J, Thompson S, Deeks J, et al. Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J Health Serv Res Policy. 2002;7(1):51–61.

    PubMed  Google Scholar 

  40. Pigotti T. Statistics for social and behavioral sciences advisors. New York, Dordrecht, Heidelberg, London: Springer; 2012.

    Google Scholar 

  41. Glasziou P, Irwig L, Bain C, et al. Systematic reviews in health care: a practical guide. Cambridge: Cambridge University Press; 2001.

    Google Scholar 

  42. Kim YH, Her A-Y, Choi BG, et al. Impact of left ventricular hypertrophy in hypertensive patients underwent successful percutaneous coronary intervention with drug eluting stents on long-term clinical outcomes. Medicine. 2018;97(35):1–9.

    Google Scholar 

  43. Simpson HJ, Gandy SJ, Houston JG, et al. Left ventricular hypertrophy: reduction of blood pressure already in the normal range further regresses left ventricular mass. Heart. 2010;96(2):148–52.

    CAS  PubMed  Google Scholar 

  44. Zhang K, Chen J, Liu Y, et al. Diastolic blood pressure reduction contributes more to the regression of left ventricular hypertrophy: a meta-analysis of randomized controlled trials. J Hum Hypertens. 2013;27(11):698–706.

    CAS  PubMed  Google Scholar 

  45. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14.

    PubMed  Google Scholar 

  46. Barberato SH, Romano MMD, Beck ALS, et al. Position statement on indications of echocardiography in adults–2019. Arq Bras Cardiol. 2019;113(1):135–81.

    PubMed  PubMed Central  Google Scholar 

  47. Bombelli M, Facchetti R, Carugo S, et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27(12):2458–64.

    CAS  PubMed  Google Scholar 

  48. Verdecchia P, Angeli F, Borgioni C, et al. Changes in cardiovascular risk by reduction of left ventricular mass in hypertension: a meta-analysis. Am J Hypertens. 2003;16(11 Pt 1):895–9.

    PubMed  Google Scholar 

  49. Avanza Junior AC, El Aouar LM, Mill JG. Reduction in left ventricular hypertrophy in hypertensive patients treated with enalapril, losartan or the combination of enalapril and losartan. Arq Bras Cardiol. 2000;74(2):111–7.

    Google Scholar 

  50. Nogueira JB. Left ventricular hypertrophy in systemic hypertension. Benefits of its reversal. Arq Bras Cardiol. 1999;73(1):103–12.

    CAS  PubMed  Google Scholar 

  51. Teleb M, Shanker A, Dwivedi AK, et al. Effect of exercise on left ventricular mass index by echocardiography in mild and moderate hypertension: a meta-analysis. Res Cardiovasc Med. 2017;6:50–6.

    Google Scholar 

  52. Adams V, Linke A, Kränkel N, et al. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation. 2005;111(5):555–62.

    CAS  PubMed  Google Scholar 

  53. Roque FR, Briones AM, García-Redondo AB, et al. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol. 2013;168(3):686–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dinenno FA, Tanaka H, Monahan KD, et al. Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J Physioloy. 2001;534(1):287–95.

    CAS  Google Scholar 

  55. Bernardo BC, Weeks KL, Pretorius L, et al. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacology Ther. 2010;128(1):191–227.

    CAS  Google Scholar 

  56. Barbosa MM, Nunes MCP, Campos-Filho O, et al. Sociedade Brasileira de Cardiologia. Diretrizes das indicações da ecocardiografia. Arq Bras Cardiol. 2009;93(6):e265–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Grabe-Guimarães.

Ethics declarations

Funding

There was not grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Conflicts of interest/Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals.

Consent to participate

Not applicable.

Consent for publication

I confirm all authors consent to publication of this work.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Study Association

This article is part of the Ph.D. thesis work performed by Quênia Janaína Tomaz de Castro, at Pharmaceutical Science Program at School of Pharmacy, UFOP.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, Q.J.T., Tomaz, F.S.C., Watai, P.Y. et al. Physical Exercise Combined with Antihypertensive Drug Therapy on Left Ventricular Hypertrophy: Systematic Review and Meta-Analysis. High Blood Press Cardiovasc Prev 27, 493–503 (2020). https://doi.org/10.1007/s40292-020-00403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-020-00403-z

Keywords

Navigation