Skip to main content
Log in

New Mechanisms of Vascular Dysfunction in Cardiometabolic Patients: Focus on Epigenetics

  • Review article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Epigenetic processing takes centre stage in cardiometabolic diseases (obesity, metabolic syndrome, type 2 diabetes, hypertension), where it participates in adiposity, inflammation, endothelial dysfunction, vascular insulin resistance and atherosclerosis. Epigenetic modifications, defined as heritable changes in gene expression that do not entail mutation in the DNA sequence, are mainly induced by environmental stimuli (stress, pollution, cigarette smoking) and are gaining considerable interest due to their causal role in cardiovascular disease, and their amenability to pharmacological intervention. Importantly, epigenetic modifications acquired during life can be transmitted to the offspring and exert their biological effects across multiple generations. Indeed, such transgenerational transmission of epigenetic signals may contribute to anticipating cardiovascular and metabolic disease phenotypes already in children and young adults. A deeper understanding of environmental factors and their effects on the epigenetic machinery and transcriptional programs is warranted to develop effective mechanism-based therapeutic strategies. The clinical application of epigenetic drugs—also known as “epi-drugs”—is currently exploding in the field of cardiovascular disease. The present review describes the main epigenetic networks underlying cardiometabolic alterations and sheds light on specific points of intervention for pharmacological reprogramming in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288–98.

    PubMed  Google Scholar 

  2. Collaborators GBDO, et al. Health effects of overweight and obesity in 195 Countries over 25 years. N Engl J Med. 2017;377(1):13–27.

    Google Scholar 

  3. Alberti KG, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.

    CAS  PubMed  Google Scholar 

  4. Aguilar M, et al. Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA. 2015;313(19):1973–4.

    CAS  PubMed  Google Scholar 

  5. Davis FM, Gallagher KA. Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease. Arterioscler Thromb Vasc Biol. 2019;39(4):623–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dagenais GR, et al. Prognostic impact of body weight and abdominal obesity in women and men with cardiovascular disease. Am Heart J. 2005;149(1):54–60.

    PubMed  Google Scholar 

  7. Gast KB, et al. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS One. 2012;7(12):e52036.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321(6067):209–13.

    CAS  PubMed  Google Scholar 

  9. Prasher D, Greenway SC, Singh RB. The impact of epigenetics on cardiovascular disease. Biochem Cell Biol. 2020;98(1):12–22.

    CAS  PubMed  Google Scholar 

  10. Okano M, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    CAS  PubMed  Google Scholar 

  11. Miranda TB, Jones PA. DNA methylation: the nuts and bolts of repression. J Cell Physiol. 2007;213(2):384–90.

    CAS  PubMed  Google Scholar 

  12. Costantino S, Paneni F, Cosentino F. Targeting chromatin remodeling to prevent cardiovascular disease in diabetes. Curr Pharm Biotechnol. 2015;16(6):531–43.

    CAS  PubMed  Google Scholar 

  13. Vilkaitis G, et al. Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase. J Biol Chem. 2005;280(1):64–72.

    CAS  PubMed  Google Scholar 

  14. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11(9):607–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502(7472):472–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    CAS  PubMed  Google Scholar 

  17. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669–81.

    CAS  PubMed  Google Scholar 

  18. Gillette TG, Hill JA. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ Res. 2015;116(7):1245–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Berndsen CE, Denu JM. Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol. 2008;18(6):682–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Baccarelli A, Ghosh S. Environmental exposures, epigenetics and cardiovascular disease. Curr Opin Clin Nutr Metab Care. 2012;15(4):323–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cooper ME, El-Osta A. Epigenetics: mechanisms and implications for diabetic complications. Circ Res. 2010;107(12):1403–13.

    CAS  PubMed  Google Scholar 

  22. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123(19):2145–56.

    PubMed  PubMed Central  Google Scholar 

  23. Nan X, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–9.

    CAS  PubMed  Google Scholar 

  24. Eskeland R, Eberharter A, Imhof A. HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors. Mol Cell Biol. 2007;27(2):453–65.

    CAS  PubMed  Google Scholar 

  25. Thambirajah AA, et al. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain. Nucleic Acids Res. 2012;40(7):2884–977.

    CAS  PubMed  Google Scholar 

  26. Gurha P, Marian AJ. Noncoding RNAs in cardiovascular biology and disease. Circ Res. 2013;113(12):e115–e12020.

    CAS  PubMed  Google Scholar 

  27. Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116(4):737–50.

    CAS  PubMed  Google Scholar 

  28. Correia de Sousa M, et al. Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci. 2019;20(24):6249.

    PubMed Central  Google Scholar 

  29. Boon RA, et al. Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol. 2016;67(10):1214–26.

    CAS  PubMed  Google Scholar 

  30. Cai Y, et al. A brief review on the mechanisms of miRNA regulation. Genom Proteom Bioinform. 2009;7(4):147–54.

    CAS  Google Scholar 

  31. Agarwal P, et al. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci. 2018;55(2):71–101.

    CAS  PubMed  Google Scholar 

  32. Roseboom TJ, et al. Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas. 2011;70(2):141–5.

    PubMed  Google Scholar 

  33. Heijmans BT, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA. 2008;105(44):17046–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev. 2006;82(8):485–91.

    PubMed  Google Scholar 

  35. Pembrey ME, et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14(2):159–66.

    PubMed  Google Scholar 

  36. Jawaid A, Roszkowski M, Mansuy IM. Transgenerational epigenetics of traumatic stress. Prog Mol Biol Transl Sci. 2018;158:273–98.

    CAS  PubMed  Google Scholar 

  37. Dabelea D, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000;49(12):2208–11.

    CAS  PubMed  Google Scholar 

  38. Clausen TD, et al. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J Clin Endocrinol Metab. 2009;94(7):2464–70.

    CAS  PubMed  Google Scholar 

  39. Toperoff G, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012;21(2):371–83.

    CAS  PubMed  Google Scholar 

  40. Chambers JC, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case–control study. Lancet Diabetes Endocrinol. 2015;3(7):526–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Florath I, et al. Type 2 diabetes and leucocyte DNA methylation: an epigenome-wide association study in over 1500 older adults. Diabetologia. 2016;59(1):130–8.

    CAS  PubMed  Google Scholar 

  42. Kulkarni H, et al. Novel epigenetic determinants of type 2 diabetes in Mexican–American families. Hum Mol Genet. 2015;24(18):5330–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sommese L, et al. Novel epigenetic-sensitive clinical challenges both in type 1 and type 2 diabetes. J Diabetes Complicat. 2018;32(11):1076–84.

    Google Scholar 

  44. Yang BT, et al. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol. 2012;26(7):1203–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ling C, et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia. 2008;51(4):615–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hall E, et al. DNA methylation of the glucagon-like peptide 1 receptor (GLP1R) in human pancreatic islets. BMC Med Genet. 2013;14:76.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. You D, et al. Dnmt3a is an epigenetic mediator of adipose insulin resistance. Elife. 2017;6:e30766.

    PubMed  PubMed Central  Google Scholar 

  48. Muniandy M, et al. Gene expression profile of subcutaneous adipose tissue in BMI-discordant monozygotic twin pairs unravels molecular and clinical changes associated with sub-types of obesity. Int J Obes (Lond). 2017;41(8):1176–84.

    CAS  Google Scholar 

  49. Barres R, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11.

    CAS  PubMed  Google Scholar 

  50. do Amaral CL, et al. DNA methylation pattern in overweight women under an energy-restricted diet supplemented with fish oil. Biomed Res Int. 2014;2014:675021.

    PubMed  PubMed Central  Google Scholar 

  51. Zhuang L, et al. Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nat Commun. 2018;9(1):1796.

    PubMed  PubMed Central  Google Scholar 

  52. El-Osta A, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205(10):2409–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Paneni F, et al. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ Cardiovasc Genet. 2015;8(1):150–8.

    CAS  PubMed  Google Scholar 

  54. Gillum MP, et al. SirT1 regulates adipose tissue inflammation. Diabetes. 2011;60(12):3235–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kao CL, et al. Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J Atheroscler Thromb. 2010;17(9):970–9.

    CAS  PubMed  Google Scholar 

  56. Ota H, et al. Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28(9):1634–9.

    CAS  PubMed  Google Scholar 

  57. Paneni F, et al. Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res. 2012;111(3):278–89.

    CAS  PubMed  Google Scholar 

  58. Migliaccio E, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature. 1999;402(6759):309–13.

    CAS  PubMed  Google Scholar 

  59. Zhou S, et al. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res. 2011;109(6):639–48.

    CAS  PubMed  Google Scholar 

  60. Paneni F, et al. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes. 2013;62(6):1800–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Boussageon R, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ. 2011;343:d4169.

    PubMed  PubMed Central  Google Scholar 

  62. Paneni F, Costantino S, Cosentino F. p66(Shc)-induced redox changes drive endothelial insulin resistance. Atherosclerosis. 2014;236(2):426–9.

    CAS  PubMed  Google Scholar 

  63. Zheng Z, et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes. 2012;61(1):217–28.

    CAS  PubMed  Google Scholar 

  64. Costantino S, et al. Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. Eur Heart J. 2019;40(4):383–91.

    CAS  PubMed  Google Scholar 

  65. Hasegawa Y, et al. Blockade of the nuclear factor-kappaB pathway in the endothelium prevents insulin resistance and prolongs life spans. Circulation. 2012;125(9):1122–33.

    CAS  PubMed  Google Scholar 

  66. Tian W, et al. Brahma-related gene 1 bridges epigenetic regulation of proinflammatory cytokine production to steatohepatitis in mice. Hepatology. 2013;58(2):576–88.

    CAS  PubMed  Google Scholar 

  67. De Santa F, et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J. 2009;28(21):3341–52.

    PubMed  PubMed Central  Google Scholar 

  68. Mullican SE, et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 2011;25(23):2480–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hoeksema MA, et al. Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol Med. 2014;6(9):1124–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang X, et al. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol Endocrinol. 2014;28(4):565–74.

    PubMed  PubMed Central  Google Scholar 

  71. Wang X, et al. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight. 2016;1(19):e87748.

    PubMed  PubMed Central  Google Scholar 

  72. Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res. 2011;90(3):421–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hermsdorff HH, et al. TNF-alpha promoter methylation in peripheral white blood cells: relationship with circulating TNFalpha, truncal fat and n-6 PUFA intake in young women. Cytokine. 2013;64(1):265–71.

    CAS  PubMed  Google Scholar 

  74. Madugundu GS, Cadet J, Wagner JR. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Res. 2014;42(11):7450–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kietzmann T, et al. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol. 2017;174(12):1533–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Le DD, Fujimori DG. Protein and nucleic acid methylating enzymes: mechanisms and regulation. Curr Opin Chem Biol. 2012;16(5–6):507–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pan L, et al. Oxidized guanine base lesions function in 8-oxoguanine DNA glycosylase-1-mediated epigenetic regulation of nuclear factor kappaB-driven gene expression. J Biol Chem. 2016;291(49):25553–666.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chervona Y, Costa M. The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic Biol Med. 2012;53(5):1041–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Niu Y, et al. Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med. 2015;82:22–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu T, et al. Master redox regulator Trx1 upregulates SMYD1 & modulates lysine methylation. Biochim Biophys Acta. 2015;1854(12):1816–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Picard F, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Barger JL, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One. 2008;3(6):e2264.

    PubMed  PubMed Central  Google Scholar 

  83. Lagouge M, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–22.

    CAS  PubMed  Google Scholar 

  84. Zhang L, et al. Inhibition of histone deacetylases preserves myocardial performance and prevents cardiac remodeling through stimulation of endogenous angiomyogenesis. J Pharmacol Exp Ther. 2012;341(1):285–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Advani A, et al. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism. Am J Pathol. 2011;178(5):2205–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu X, et al. Anti-inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion. Exp Ther Med. 2014;8(1):229–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Xie M, et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation. 2014;129(10):1139–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hong J, et al. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget. 2016;7(35):56071–82.

    PubMed  PubMed Central  Google Scholar 

  89. Morimoto T, et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Investig. 2008;118(3):868–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Srivastava G, Mehta JL. Currying the heart: curcumin and cardioprotection. J Cardiovasc Pharmacol Ther. 2009;14(1):22–7.

    CAS  PubMed  Google Scholar 

  91. Soni KB, Kuttan R. Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol. 1992;36(4):273–5.

    CAS  PubMed  Google Scholar 

  92. Kim CS, et al. Homocysteine promotes human endothelial cell dysfunction via site-specific epigenetic regulation of p66shc. Cardiovasc Res. 2011;92(3):466–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jahagirdar R, et al. A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice. Atherosclerosis. 2014;236(1):91–100.

    CAS  PubMed  Google Scholar 

  94. Ghosh GC, et al. RVX 208: A novel BET protein inhibitor, role as an inducer of apo A-I/HDL and beyond. Cardiovasc Ther. 2017;35:e12265.

    Google Scholar 

  95. Ray KK, et al. Effect of apabetalone added to standard therapy on major adverse cardiovascular events in patients with recent acute coronary syndrome and type 2 diabetes: a randomized clinical trial. JAMA. 2020;323(16):1565–73.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

FP is the recipient of a H.H. Sheikh Khalifa bin Hamad Al Thani Foundation Assistant Professorship at the Faculty of Medicine, University of Zurich. This work was supported by the Zürich Heart House, the Swiss Heart Foundation, Swiss Life Foundation, Kurt und Senta-Hermann Stiftung, the EMDO Stiftung, the Schweizerische Diabetes-Stiftung, the Olga-Mayenfish Stiftung (to FP); the Holcim Foundation and the Swiss Heart Foundation (to SC).

Author information

Authors and Affiliations

Authors

Contributions

SA, SM and SC drafted the manuscript and prepared the graphical illustrations. FP and TFL revised the manuscript for important intellectual content and gave final approval.

Corresponding author

Correspondence to Francesco Paneni.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosini, S., Mohammed, S.A., Lüscher, T.F. et al. New Mechanisms of Vascular Dysfunction in Cardiometabolic Patients: Focus on Epigenetics. High Blood Press Cardiovasc Prev 27, 363–371 (2020). https://doi.org/10.1007/s40292-020-00400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-020-00400-2

Keywords

Navigation