The Influence of Fasting and Energy Restricting Diets on Blood Pressure in Humans: A Systematic Review and Meta-Analysis

Abstract

Introduction

To the best of our knowledge, no comprehensive meta-analysis has been carried out to investigate the effect of different approaches of fasting and calorie restriction on blood pressure. 

Aim

Thus, the present systematic review and meta-analysis was designed to examine the effect of fasting and energy restricting diets on blood pressure in adult subjects.

Methods

We searched PubMed/Medline, Scopus, the Cochrane Library, and Google Scholar up to June 2019. The clinical trials that examined the effects of fasting and energy restricting diets on Blood Pressure was identified using MESH and non-MESH terms.

Results

23 studies, including a total of 1397 participants, reported SBP and DBP as an outcome measure. Overall results from the random-effects model indicated that fasting and energy restricting administration elicited significant changes in SBP (weight mean difference (WMD): − 1.88 mmHg, 95% CI − 2.50, − 1.25) and DBP (WMD − 1.32 mmHg, 95% CI − 1.81, − 0.84, p = 0.000). Subgroup analyses displayed that intervention duration ≤ 12 weeks more effectively reduced SBP (WMD: -3.26 mmHg) and DBP (WMD − 1.32 mmHg). In addition, these analyses showed that fasting regimens (WMD − 3.26 mmHg) more effectively reduced SBP than energy restricting diets (WMD − 1.09 mmHg).

Conclusion

The principal finding of this study was that fasting and energy restricting diets elicited, overall, significant reductions in SBP and DBP. Subsequent subgroup analyses revealed that intervention duration ≤ 12 weeks and fasting regimens more effectively reduced SBP and DBP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    World Health Organization. A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013. Geneva: World Health Organization; 2013.

    Google Scholar 

  2. 2.

    Cicero AFG, Fogacci F, Borghi C. Cost-effectiveness analysis of different hypertension management strategies. Intern Emerg Med. 2019. https://doi.org/10.1007/s11739-019-02153-w.

    Article  PubMed  Google Scholar 

  3. 3.

    Cicero AFG, Fogacci F, Tocci G, et al. Awareness of major cardiovascular risk factors and its relationship with markers of vascular aging: data from the Brisighella Heart Study. Nutr Metab Cardiovasc Dis. 2020. https://doi.org/10.1016/j.numecd.2020.03.005.

    Article  PubMed  Google Scholar 

  4. 4.

    Appel LJ, Brands MW, Daniels SR, et al. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47:296–308.

    CAS  PubMed  Google Scholar 

  5. 5.

    Charakida M, Khan T, Johnson W, et al. Lifelong patterns of BMI and cardiovascular phenotype in individuals aged 60–64 years in the 1946 British birth cohort study: an epidemiological study. Lancet Diabetes Endocrinol. 2014;2:648–54.

    PubMed  Google Scholar 

  6. 6.

    Fantin F, Giani A, Zoico E, et al. Weight loss and hypertension in obese subjects. Nutrients. 2019;11:1667.

    CAS  PubMed Central  Google Scholar 

  7. 7.

    Franz MJ, Vanwormer JJ, Crain AL, et al. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J Am Diet Assoc. 2007;107:1755–67.

    PubMed  Google Scholar 

  8. 8.

    Moroshko I, Brennan L, O'Brien P. Predictors of dropout in weight loss interventions: a systematic review of the literature. Obes Rev. 2011;12:912–34.

    CAS  PubMed  Google Scholar 

  9. 9.

    Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19:181–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Harris L, Hamilton S, Azevedo LB, et al. Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database Syst Rev Implement Rep. 2018;16:507–47.

    Google Scholar 

  11. 11.

    Headland M, Clifton PM, Carter S, et al. Weight-loss outcomes: a systematic review and meta-analysis of intermittent energy restriction trials lasting a minimum of 6 months. Nutrients. 2016;8:354.

    PubMed Central  Google Scholar 

  12. 12.

    Horne BD, Muhlestein JB, Anderson JL. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr. 2015;102:464–70.

    CAS  PubMed  Google Scholar 

  13. 13.

    St-Onge M-P, Ard J, Baskin ML, et al. (2017) Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2017;135:e96–e121.

    PubMed  Google Scholar 

  14. 14.

    Johnson JB, Summer W, Cutler RG, et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med. 2007;42:665–74.

    CAS  PubMed  Google Scholar 

  15. 15.

    Castello L, Froio T, Maina M, et al. Alternate-day fasting protects the rat heart against age-induced inflammation and fibrosis by inhibiting oxidative damage and NF-kB activation. Free Radic Biol Med. 2010;48:47–544.

    CAS  PubMed  Google Scholar 

  16. 16.

    Wan R, Ahmet I, Brown M, et al. Cardioprotective effect of intermittent fasting is associated with an elevation of adiponectin levels in rats. J Nutr Biochem. 2010;21:413–7.

    CAS  PubMed  Google Scholar 

  17. 17.

    Wan R, Camandola S, Mattson MP. Intermittent fasting and dietary supplementation with 2-deoxy-d-glucose improve functional and metabolic cardiovascular risk factors in rats. FASEB J. 2003;17:1133–4.

    CAS  PubMed  Google Scholar 

  18. 18.

    Li C, Sadraie B, Steckhan N, et al. Effects of a one-week fasting therapy in patients with type-2 diabetes mellitus and metabolic syndrome—a randomized controlled explorative study. Exp Clin Endocrinol Diabetes. 2017;125:618–24.

    CAS  PubMed  Google Scholar 

  19. 19.

    Harris L, McGarty A, Hutchison L, et al. Short-term intermittent energy restriction interventions for weight management: a systematic review and meta-analysis. Obes Rev. 2018;19:1–13.

    CAS  PubMed  Google Scholar 

  20. 20.

    Cioffi I, Evangelista A, Ponzo V, et al. Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: a systematic review and meta-analysis of randomized controlled trials. J Transl Med. 2018;16:371.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Barnosky AR, Hoddy KK, Unterman TG, et al. Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: a review of human findings. Transl Res. 2014;164:302–11.

    PubMed  Google Scholar 

  22. 22.

    Seimon RV, Roekenes JA, Zibellini J, et al. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol. 2015;418:153–72.

    CAS  PubMed  Google Scholar 

  23. 23.

    Davis C, Clarke R, Coulter S, et al. Intermittent energy restriction and weight loss: a systematic review. Eur J Clin Nutr. 2016;70:292.

    CAS  PubMed  Google Scholar 

  24. 24.

    Alhamdan B, Garcia-Alvarez A, Alzahrnai A, et al. Alternate-day versus daily energy restriction diets: which is more effective for weight loss? A systematic review and meta-analysis. Obes Sci Pract. 2016;2:293–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Moher D, Liberati A, Tetzlaff J, et al. Reprint—preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther. 2009;89:873–80.

    PubMed  Google Scholar 

  26. 26.

    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    CAS  PubMed  Google Scholar 

  27. 27.

    Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated. March 2011). The Cochrane Collaboration; 2011. http://www.training.cochrane.org/handbook.

  28. 28.

    Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2015;5:13.

    Google Scholar 

  29. 29.

    Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Palmer TM, Peters JL, Sutton AJ, et al. Contour-enhanced funnel plots for meta-analysis. Stata J. 2008;8:242.

    Google Scholar 

  31. 31.

    Hirsh SP, Pons M, Joyal SV, et al. Avoiding holiday seasonal weight gain with nutrient-supported intermittent energy restriction: a pilot study. J Nutr Sci. 2019;8:e11. https://doi.org/10.1017/jns.2019.8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Trepanowski JF, Kroeger CM, Barnosky A, et al. Effects of alternate-day fasting or daily calorie restriction on body composition, fat distribution, and circulating adipokines: secondary analysis of a randomized controlled trial. Clin Nutr. 2018;37:1871–8.

    CAS  PubMed  Google Scholar 

  33. 33.

    Wei M, Brandhorst S, Shelehchi M, et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aai8700.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Zuo L, He F, Tinsley GM, et al. Comparison of high-protein, intermittent fasting low-calorie diet and heart healthy diet for vascular health of the obese. Front Physiol. 2016;7:350.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Varady KA, Bhutani S, Klempel MC, et al. (2013) Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J. 2013;12:146. https://doi.org/10.1186/1475-2891-12-146.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Bhutani S, Klempel MC, Kroeger CM, et al. Alternate day fasting with or without exercise: effects on endothelial function and adipokines in obese humans. e-SPEN J. 2013;8:e205–e209209.

    Google Scholar 

  37. 37.

    Astbury NM, Aveyard P, Nickless A, et al. Doctor Referral of Overweight People to Low Energy total diet replacement Treatment (DROPLET): pragmatic randomised controlled trial. BMJ (Online). 2018. https://doi.org/10.1136/bmj.k3760.

    Article  Google Scholar 

  38. 38.

    Lee S, Norheim F, Langleite TM, et al. Effect of energy restriction and physical exercise intervention on phenotypic flexibility as examined by transcriptomics analyses of mRNA from adipose tissue and whole-body magnetic resonance imaging. Physiol Rep. 2016;4:e13019.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Bowen J, Brindal E, James-Martin G, et al. Randomized trial of a high protein, partial meal replacement program with or without alternate day fasting: similar effects on weight loss, retention status, nutritional, metabolic, and behavioral outcomes. Nutrients. 2018;10:E1145.

    PubMed  Google Scholar 

  40. 40.

    Venchiarutti RL, Byth K, Marks JL, et al. Comparing the effectiveness of general dietary advice versus a very low energy diet in an obese outpatient population in Australia. Eat Weight Disord. 2019;24:739–47.

    PubMed  Google Scholar 

  41. 41.

    Lambert EA, Sari CI, Eikelis N, et al. Effects of moxonidine and low-calorie diet: cardiometabolic benefits from combination of both therapies. Obesity. 2017;25:1894–902.

    CAS  PubMed  Google Scholar 

  42. 42.

    Izadi V, Haghighatdoost F, Moosavian P, et al. Effect of low-energy-dense diet rich in multiple functional foods on weight-loss maintenance, inflammation, and cardiovascular risk factors: a randomized controlled trial. J Am Coll Nutr. 2018;37:399–405.

    CAS  PubMed  Google Scholar 

  43. 43.

    Karimi G, Azadbakht L, Haghighatdoost F, et al. Low energy density diet, weight loss maintenance, and risk of cardiovascular disease following a recent weight reduction program: a randomized control trial. J Res Med Sci. 2016;21:32.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kessler CS, Stange R, Schlenkermann M, et al. A nonrandomized controlled clinical pilot trial on 8 wk of intermittent fasting (24 h/wk). Nutrition. 2018;46:143–152.e2.

    PubMed  Google Scholar 

  45. 45.

    Ismail S, Shamsuddin K, Latiff KA, et al. Voluntary fasting to control post-Ramadan weight gain among overweight and obese women. Sultan Qaboos Univ Med J. 2015;15:98–104.

    Google Scholar 

  46. 46.

    Teng NIMF, Shahar S, Rajab NF, et al. Improvement of metabolic parameters in healthy older adult men following a fasting calorie restriction intervention. Aging Male. 2013;16:177–83.

    CAS  PubMed  Google Scholar 

  47. 47.

    Harder-Lauridsen NM, Rosenberg A, Benatti FB, et al. Ramadan model of intermittent fasting for 28 d had no major effect on body composition, glucose metabolism, or cognitive functions in healthy lean men. Nutrition. 2017;37:92–103.

    CAS  PubMed  Google Scholar 

  48. 48.

    Fernandes JFR, Da Silva AL, Kaiser SE, et al. The effects of moderate energy restriction on apnoea severity and CVD risk factors in obese patients with obstructive sleep apnoea. Br J Nutr. 2015;114:2022–31.

    CAS  PubMed  Google Scholar 

  49. 49.

    Harrison DG, Gongora MC. Oxidative stress and hypertension. Med Clin. 2009;93:621–35.

    CAS  Google Scholar 

  50. 50.

    Kizhakekuttu TJ, Widlansky ME. Natural antioxidants and hypertension: promise and challenges. Cardiovasc Ther. 2010;28:e20–e32.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Widlansky ME, Gokce N, Keaney JF, et al. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003;42:1149–60.

    CAS  PubMed  Google Scholar 

  52. 52.

    Rebrin I, Forster MJ, Sohal RS. Association between life-span extension by caloric restriction and thiol redox state in two different strains of mice. Free Radic Biol Med. 2011;51:225–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Zainal TA, Oberley TD, Allison DB, et al. Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J. 2000;14:1825–36.

    CAS  PubMed  Google Scholar 

  54. 54.

    Lane M, Ingram D, Roth G. Calorie restriction in nonhuman primates: effects on diabetes and cardiovascular disease risk. Toxicol Sci. 1999;52:41–8.

    CAS  PubMed  Google Scholar 

  55. 55.

    Burt VL, Whelton P, Roccella EJ, et al. Prevalence of hypertension in the US adult population: results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension. 1995;25:305–13.

    CAS  PubMed  Google Scholar 

  56. 56.

    Walford RL, Mock D, Verdery R, et al. Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Gerontol Ser A Biol Sci Med Sci. 2002;57:B211–B224224.

    Google Scholar 

  57. 57.

    Dolinsky VW, Dyck JR. Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta (BBA). 2011;1812:1477–89.

    CAS  Google Scholar 

  58. 58.

    Fontana L, Meyer TE, Klein S, et al. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci. 2004;101:6659–63.

    CAS  PubMed  Google Scholar 

  59. 59.

    Rahmani J, Varkaneh HK, Clark C, et al. The influence of fasting and energy restricting diets on IGF-1 levels in humans: a systematic review and meta-analysis. Ageing Res Rev. 2019;53:100910.

    CAS  PubMed  Google Scholar 

  60. 60.

    Dharmashankar K, Widlansky ME. Vascular endothelial function and hypertension: insights and directions. Curr Hypertens Rep. 2010;12:448–55.

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Klempel MC, Kroeger CM, Varady KA. Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet. Metabolism. 2013;62:137–43.

    CAS  PubMed  Google Scholar 

  62. 62.

    Ryan AS, Nicklas BJ. Reductions in plasma cytokine levels with weight loss improve insulin sensitivity in overweight and obese postmenopausal women. Diabetes Care. 2004;27:1699–705.

    PubMed  Google Scholar 

  63. 63.

    Jae SY, Fernhall B, Heffernan KS, et al. Effects of lifestyle modifications on C-reactive protein: contribution of weight loss and improved aerobic capacity. Metabolism. 2006;55:825–31.

    CAS  PubMed  Google Scholar 

  64. 64.

    Scagliusi FB, Ferriolli E, Pfrimer K, et al. Characteristics of women who frequently under report their energy intake: a doubly labelled water study. Eur J Clin Nutr. 2009;63:1192.

    CAS  PubMed  Google Scholar 

  65. 65.

    Schwingshackl L, Hoffmann G. Low-carbohydrate diets and cardiovascular risk factors. Obes Rev. 2013;14:183–4.

    CAS  PubMed  Google Scholar 

  66. 66.

    Nielsen BM, Nielsen MM, Toubro S, et al. Past and current body size affect validity of reported energy intake among middle-aged Danish men. J Nutr. 2009;139:2337–433.

    CAS  PubMed  Google Scholar 

  67. 67.

    Kris-Etherton P, Eckel RH, Howard BV, et al. Lyon diet heart study: benefits of a Mediterranean-Style, National Cholesterol Education Program/American Heart Association Step I dietary pattern on cardiovascular disease. Circulation. 2001;103:1823–5.

    CAS  PubMed  Google Scholar 

  68. 68.

    Fontana L, Weiss EP, Villareal DT, et al. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008;7:681–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Tam CS, Frost EA, Xie W, et al. No effect of caloric restriction on salivary cortisol levels in overweight men and women. Metabolism. 2014;63:194–8.

    CAS  PubMed  Google Scholar 

  70. 70.

    Fontana L, Villareal DT, Das SK, et al. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: a randomized clinical trial. Aging Cell. 2016;15:22–7.

    CAS  PubMed  Google Scholar 

  71. 71.

    Barnosky A, Kroeger CM, Trepanowski JF, et al. Effect of alternate day fasting on markers of bone metabolism: an exploratory analysis of a 6-month randomized controlled trial. Nutr Healthy Aging. 2017;4:255–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;54:1046–55.

    CAS  PubMed  Google Scholar 

  73. 73.

    Brandhorst S, Choi IY, Wei M, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and health span. Cell Metab. 2015;22:86–99.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors sincerely thank Shahid Beheshti University of Medical Sciences for all moral and material supports. This study was supported by grants from the Student Research Committee Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran (Grant’s ID: (19388) IR.SBMU.RETECH.REC.1398.665).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Parvin Mirmiran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 379 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kord-Varkaneh, H., Nazary-Vannani, A., Mokhtari, Z. et al. The Influence of Fasting and Energy Restricting Diets on Blood Pressure in Humans: A Systematic Review and Meta-Analysis. High Blood Press Cardiovasc Prev 27, 271–280 (2020). https://doi.org/10.1007/s40292-020-00391-0

Download citation

Keywords

  • Meta-analysis
  • Blood pressure
  • Fasting
  • Energy restricting