Advertisement

Which Target Blood Pressure in Year 2018? Evidence from Recent Clinical Trials

  • Sondre Heimark
  • Julian E. Mariampillai
  • Krzysztof Narkiewicz
  • Peter M. Nilsson
  • Sverre E. Kjeldsen
Review Article

Abstract

The Systolic Blood Pressure Intervention Trial (SPRINT) suggested a favourable effect of lowering blood pressure to < 120/80 mmHg in high-risk hypertensive patients; however, new American guidelines in 2017 have not followed SPRINT but lowered its recommended treatment target to < 130/80 mmHg. We aimed to review the latest research from large randomised controlled trials and observational analyses in order to investigate the evidence for new treatment targets. We assessed recent data from the Action to Control Cardiovascular Risk in Diabetes Blood Pressure (ACCORD) study, the International Verapamil-Trandolapril Study (INVEST), the Telmisartan, Ramipril or Both in Patients at High Risk for Vascular Events trial (ONTARGET)/the Telmisartan Randomised AssessmenNt Study in aCE iNtolerant participants with cardiovascular Disease (TRANSCEND) study and The Losartan Intervention For Endpoint Reduction in Hypertension (LIFE) study. These studies confirm a positive effect on cardiovascular protection with blood pressure lowering treatment to between 120–140 mmHg in patients with and without diabetes, but no additional effect of lowering blood pressure to < 120 mmHg; possibly too aggressive treatment may increase both cardiovascular morbidity and mortality. Thus, a target blood pressure < 130/80 mmHg appears appropriate in most high-risk hypertensive patients. Additionally, early and sustained BP control below this target is required for optimal cardiovascular protection.

Keywords

Antihypertensive drug-treatment Antihypertensive therapy Blood pressure measurement Blood pressure target Cardiovascular disease Hypertension Randomized controlled trial 

Notes

Compliance with Ethical Standards

Funding

No funding has been received in support of writing this article.

Conflict of interest

The two first authors have no conflict of interest to disclose. Peter M Nilsson has received speaking honoraria from Novo Nordisk, Merck, AstraZeneca and Boehringer-Ingelheim over past 3 years. Krzysztof Narkiewicz has received speaking honoraria from Berlin-Chemie/Menarini, Egis, Gedeon Richter, Krka and Servier. Sverre E. Kjeldsen has within the past 3 years received speaking honoraria from Bayer, MSD, Sanofi and Takeda.

Ethical approval

This article does not contain data derived by any current studies with human participants performed by any of the authors. The clinical studies mentioned were provided with specific ethical approval.

References

  1. 1.
  2. 2.
    Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A randomized trial of intensive versus standard blood-pressure control. New Engl J Med. 2015;373:2103–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Drazen JM, Morrissey S, Campion EW, Jarcho JA. A SPRINT to the finish. New Engl J Med. 2015;373:2174–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Ruiz-Hurtado G, Banegas JR, Sarafidis PA, Volpe M, Williams B, Ruilope LM. Has the SPRINT trial introduced a new blood-pressure goal in hypertension? Nat Rev Cardiol. 2017;14:560–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Kjeldsen SE, Oparil S, Narkiewicz K, Hedner T. The J-curve phenomenon revisited again: SPRINT outcomes favor target systolic blood pressure below 120 mmHg. Blood Press. 2016;25:1–3.CrossRefPubMedGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
    Kjeldsen SE, Narkiewicz K, Hedner T, Mancia G. The SPRINT study: outcome may be driven by difference in diuretic treatment demasking heart failure and study design may support systolic blood pressure target below 140 mmHg rather than below 120 mmHg. Blood Press. 2016;25:63–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Kjeldsen SE, Lund-Johansen P, Nilsson PM, Mancia G. Unattended blood pressure measurements in the systolic blood pressure intervention trial: implications for entry and achieved blood pressure values compared with other trials. Hypertension. 2016;67:808–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Whelton PK, Carey RM, Aronow WS, Casey DE Jr., Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017. https://doi.org/10.1016/j.jacc.2017.11.006
  11. 11.
    Mariampillai JE, Eskas PA, Heimark S, Kjeldsen SE, Narkiewicz K, Mancia G. A Case for Less Intensive Blood Pressure Control: It Matters to Achieve Target Blood Pressure Early and Sustained Below 140/90mmHg. Prog Cardiovasc Dis. 2016;59:209–18.CrossRefPubMedGoogle Scholar
  12. 12.
    Hartaigh O. B, Szymonifka J, Okin PM. Achieving target SBP for lowering the risk of major adverse cardiovascular events in persons with diabetes mellitus. J Hypertens. 2018;36:101–9.CrossRefGoogle Scholar
  13. 13.
    Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, Messerli FH, et al. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA. 2003;290:2805–16.CrossRefPubMedGoogle Scholar
  14. 14.
    Wokhlu A, Smith SM, Gong Y, Handberg EM, Elgendy IY, Bavry AA, et al. Mortality implications of lower DBP with lower achieved systolic pressures in coronary artery disease: long-term mortality results from the INternational VErapamil-trandolapril STudy US cohort. J Hypertens. 2018;36:419–27.CrossRefPubMedGoogle Scholar
  15. 15.
    Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. New Engl J Med. 2008;358:1547–59.CrossRefPubMedGoogle Scholar
  16. 16.
    Bohm M, Schumacher H, Teo KK, Lonn EM, Mahfoud F, Mann JFE, et al. Achieved blood pressure and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials. Lancet. 2017;389:2226–37.CrossRefPubMedGoogle Scholar
  17. 17.
    Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.CrossRefPubMedGoogle Scholar
  18. 18.
    Okin PM, Hille DA, Kjeldsen SE, Dahlof B, Devereux RB. Impact of lower achieved blood pressure on outcomes in hypertensive patients. J Hypertens. 2012;30:802–10.CrossRefPubMedGoogle Scholar
  19. 19.
    Okin PM, Kjeldsen SE, Devereux RB. The relationship of all-cause mortality to average on-treatment systolic blood pressure is significantly related to baseline systolic blood pressure: implications for interpretation of the Systolic Blood Pressure Intervention Trial study. J Hypertens. 2017;35:916–23.Google Scholar
  20. 20.
    Brunstrom M, Carlberg B. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. BMJ (Clin Res Ed). 2016;352:i717.Google Scholar
  21. 21.
    Arguedas JA. Blood pressure targets: are clinical guidelines wrong? Curr Opin Cardiol. 2010;25:350–4.CrossRefPubMedGoogle Scholar
  22. 22.
    Bangalore S, Messerli FH, Wun CC, Zuckerman AL, DeMicco D, Kostis JB, et al. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) Trial. Eur Heart J. 2010;31:2897–908.CrossRefPubMedGoogle Scholar
  23. 23.
    Vidal-Petiot E, Ford I, Greenlaw N, Ferrari R, Fox KM, Tardif JC, et al. Cardiovascular event rates and mortality according to achieved systolic and diastolic blood pressure in patients with stable coronary artery disease: an international cohort study. Lancet. 2016;388:2142–52.CrossRefPubMedGoogle Scholar
  24. 24.
    Bangalore S, Messerli FH, Franklin SS, Mancia G, Champion A, Pepine CJ. Pulse pressure and risk of cardiovascular outcomes in patients with hypertension and coronary artery disease: an INternational VErapamil SR-trandolapril STudy (INVEST) analysis. Eur Heart J. 2009;30:1395–401.CrossRefPubMedGoogle Scholar
  25. 25.
    Messerli FH, Mancia G, Conti CR, Hewkin AC, Kupfer S, Champion A, et al. Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous? Ann Intern Med. 2006;144:884–93.CrossRefPubMedGoogle Scholar
  26. 26.
    Kjeldsen SE, Berge E, Bangalore S, Messerli FH, Mancia G, Holzhauer B, et al. No evidence for a J-shaped curve in treated hypertensive patients with increased cardiovascular risk: The VALUE trial. Blood Press. 2016;25:83–92.CrossRefPubMedGoogle Scholar
  27. 27.
    McEvoy JW, Chen Y, Rawlings A, Hoogeveen RC, Ballantyne CM, Blumenthal RS, et al. Diastolic blood pressure, subclinical myocardial damage, and cardiac events: implications for blood pressure control. J Am Coll Cardiol. 2016;68:1713–22.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hansson L, Zanchetti A, Carruthers SG, Dahlof B, Elmfeldt D, Julius S, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998;351:1755–62.CrossRefPubMedGoogle Scholar
  29. 29.
    Verdecchia P, Reboldi G, Angeli F, Trimarco B, Mancia G, Pogue J, et al. Systolic and diastolic blood pressure changes in relation with myocardial infarction and stroke in patients with coronary artery disease. Hypertension. 2015;65:108–14.CrossRefPubMedGoogle Scholar
  30. 30.
    Filipovsky J, Seidlerova J, Kratochvil Z, Karnosova P, Hronova M, Mayer O Jr. Automated compared to manual office blood pressure and to home blood pressure in hypertensive patients. Blood Press. 2016;25:228–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Emrich IE, Schulz DM, Heine GH. Blood-pressure and cholesterol lowering in the HOPE-3 trial. New Engl J Med. 2016;375:1190.CrossRefPubMedGoogle Scholar
  32. 32.
    Drawz PE, Pajewski NM, Bates JT, Bello NA, Cushman WC, Dwyer JP, et al. Effect of intensive versus standard clinic-based hypertension management on ambulatory blood pressure: results From the SPRINT (Systolic Blood Pressure Intervention Trial) Ambulatory Blood Pressure Study. Hypertension. 2017;69:42–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Sexton DJ, Canney M, O’Connell MDL, Moore P, Little MA, O’Seaghdha CM, et al. Injurious falls and syncope in older community-dwelling adults meeting inclusion criteria for SPRINT. JAMA Intern Med. 2017;177:1385–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Eskas PA, Heimark S, Mariampillai JE, Larstorp AC, Fadl Elmula FE, Hoieggen A. Adherence to medication and drug monitoring in apparent treatment-resistant hypertension. Blood Press. 2016;25:199–205.CrossRefPubMedGoogle Scholar
  35. 35.
    Heimark S, Eskas PA, Mariampillai JE, Larstorp AC, Hoieggen A, Fadl Elmula FE. Tertiary work-up of apparent treatment-resistant hypertension. Blood Press. 2016;25:312–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Patel KK, Arnold SV, Chan PS, Tang Y, Pokharel Y, Jones PG, et al. Personalizing the intensity of blood pressure control: modeling the heterogeneity of risks and benefits from SPRINT (Systolic Blood Pressure Intervention Trial). Circ Cardiovasc Qual Outcomes. 2017.  https://doi.org/10.1161/CIRCOUTCOMES.117.003624.
  37. 37.
    Lonn EM, Bosch J, Lopez-Jaramillo P, Zhu J, Liu L, Pais P, et al. Blood-pressure lowering in intermediate-risk persons without cardiovascular disease. New Engl J Med. 2016;374:2009–20.CrossRefPubMedGoogle Scholar
  38. 38.
    Bangalore S, Toklu B, Gianos E, Schwartzbard A, Weintraub H, Ogedegbe G, et al. Optimal systolic blood pressure target after SPRINT: insights from a network meta-analysis of randomized trials. AmJ Med. 2017;130(707–19):e8.Google Scholar
  39. 39.
    Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels - updated overview and meta-analyses of randomized trials. J Hypertens. 2016;34:613–22.CrossRefPubMedGoogle Scholar
  40. 40.
    Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387:435–43.CrossRefPubMedGoogle Scholar
  41. 41.
    Verdecchia P, Angeli F, Gentile G, Reboldi G. More versus less intensive blood pressure-lowering strategy: cumulative evidence and trial sequential analysis. Hypertension. 2016;68:642–53.CrossRefPubMedGoogle Scholar
  42. 42.
    Bundy JD, Li C, Stuchlik P, Bu X, Kelly TN, Mills KT, et al. Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis. JAMA Cardiol. 2017;2:775–81.CrossRefPubMedGoogle Scholar
  43. 43.
    Volpe M, Citoni B, Coluccia R, Battistoni A, Tocci G. Hypertension across the atlantic: a sprint or a marathon? BPCP. 2017;24:99–102.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sondre Heimark
    • 1
  • Julian E. Mariampillai
    • 2
  • Krzysztof Narkiewicz
    • 3
  • Peter M. Nilsson
    • 4
  • Sverre E. Kjeldsen
    • 5
    • 6
  1. 1.Department of MedicineDiakonhjemmet HospitalOsloNorway
  2. 2.Department of Emergency MedicineUllevaal University HospitalOsloNorway
  3. 3.Department of Hypertension and DiabetologyMedical University of GdanskGdańskPoland
  4. 4.Department of Clinical SciencesSkåne University HospitalMalmöSweden
  5. 5.Department of CardiologyUllevaal University HospitalOsloNorway
  6. 6.Institute of Clinical Medicine, Medical FacultyUniversity of OsloOsloNorway

Personalised recommendations