Skip to main content
Log in

Polyphenols: a Promising Nutritional Approach to Prevent or Reduce the Progression of Prehypertension

  • Review Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Diet plays a crucial role in maintaining healthy blood pressure. Functional foods are increasingly popular among health-conscious consumers to reduce cardiovascular risk factors and improve vascular health. In particular, dietary polyphenols represent an extraordinary inventory of structurally different compounds that may represent promising candidate chemical entities to prevent or delay the onset of hypertension. In recent years, it has been recognized that prehypertension may be a predictor of clinical hypertension and consequently of cardiovascular risk. Moreover, prehypertension status is associated with increased levels of several inflammatory markers and it is also characterized by structural changes, including endothelial dysfunction and arteriolar hypertrophy. Despite the low bioavailability of polyphenols and the lack of clinical data from nutritional intervention studies, the antihypertensive role of polyphenols to control blood pressure and reduce inflammation and endothelial dysfunction has been subject of recent debate. The purpose of this article is to discuss the potential benefits of dietary polyphenols as a promising and effective nutritional strategy for the management of prehypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rothwell PM. Does blood pressure variability modulate cardiovascular risk? Curr Hypertens Rep. 2011;13:177–86.

    Article  PubMed  Google Scholar 

  2. Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet. 2010;375:906–15.

    Article  CAS  PubMed  Google Scholar 

  3. Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension. 2011;57:160–6.

    Article  CAS  PubMed  Google Scholar 

  4. Parati G, Ochoa JE, Bilo G. Blood pressure variability, cardiovascular risk, and risk for renal disease progression. Curr Hypertens Rep. 2012;14:421–31.

    Article  PubMed  Google Scholar 

  5. Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood-pressure variability. Nat Rev Cardiol. 2013;10:143–55.

    Article  PubMed  Google Scholar 

  6. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ, Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42:1206–52.

    Article  CAS  PubMed  Google Scholar 

  7. Vasan RS, Larson MG, Leip EP, Kannel WB, Levy D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham heart study: a cohort study. Lancet. 2001;358:1682–6.

    Article  CAS  PubMed  Google Scholar 

  8. Greenlund KJ, Croft JB, Mensah GA. Prevalence of heart disease and stroke risk factors in persons with prehypertension in the United States, 1999–2000. Arch Intern Med. 2004;164:2113–8.

    Article  PubMed  Google Scholar 

  9. Qureshi AI, Suri MF, Kirmani JF, Divani AA, Mohammad Y. Is prehypertension a risk factor for cardiovascular diseases? Stroke. 2005;36:1859–63.

    Article  PubMed  Google Scholar 

  10. Liszka HA, Mainous AG 3rd, King DE, Everett CJ, Egan BM. Prehypertension and cardiovascular morbidity. Ann Fam Med. 2005;3:294–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fernandez C, Sander GE, Giles TD. Prehypertension: defining the transitional phenotype. Curr Hypertens Rep. 2016;18:2.

    Article  PubMed  Google Scholar 

  12. Davis JT, Rao F, Naqshbandi D, Fung MM, Zhang K, Schork AJ, Nievergelt CM, Ziegler MG, O’Connor DT. Autonomic and hemodynamic origins of pre-hypertension: central role of heredity. J Am Coll Cardiol. 2012;59:2206–16.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nandeesha H, Bobby Z, Selvaraj N, Rajappa M. Pre-hypertension: is it an inflammatory state? Clin Chim Acta. 2015;451:338–42.

    Article  CAS  PubMed  Google Scholar 

  14. Pitsavos C, Chrysohoou C, Panagiotakos DB, Lentzas Y, Stefanadis C. Abdominal obesity and inflammation predicts hypertension among prehypertensive men and women: the ATTICA Study. Heart Vessels. 2008;23:96–103.

    Article  PubMed  Google Scholar 

  15. Wang G, Wang A, Tong W, Liu Y, Zhang Y. Association of elevated inflammatory and endothelial biomarkers with prehypertension among Mongolians in China. Hypertens Res. 2011;34:516–20.

    Article  CAS  PubMed  Google Scholar 

  16. Van Guilder GP. It is time to contend with the endothelial consequences of prehypertension. J Hum Hypertens. 2015;29:457–8.

    Article  PubMed  Google Scholar 

  17. Celik T, Yuksel UC, Fici F, Celik M, Yaman H, Kilic S, Iyisoy A, Dell’oro R, Grassi G, Yokusoglu M, Mancia G. Vascular inflammation and aortic stiffness relate to early left ventricular diastolic dysfunction in prehypertension. Blood Press. 2013;22:94–100.

    Article  CAS  PubMed  Google Scholar 

  18. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM, American Heart Association. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47:296–308.

    Article  CAS  PubMed  Google Scholar 

  19. Izzo R, de Simone G, Giudice R, Chinali M, Trimarco V, De Luca N, Trimarco B. Effects of nutraceuticals on prevalence of metabolic syndrome and on calculated Framingham Risk Score in individuals with dyslipidemia. J Hypertens. 2010;28:1482–7.

    Article  CAS  PubMed  Google Scholar 

  20. Trimarco V, Izzo R, Stabile E, Rozza F, Santoro M, Manzi MV, Serino F, Schiattarella GG, Esposito G, Trimarco B. Effects of a new combination of nutraceuticals with Morus alba on lipid profile, insulin sensitivity and endotelial function in dyslipidemic subjects. A cross-over, randomized, double-blind trial. High Blood Press Cardiovasc Prev. 2015;22:149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rozza F, de Simone G, Izzo R, De Luca N, Trimarco B. Nutraceuticals for treatment of high blood pressure values in patients with metabolic syndrome. High Blood Press Cardiovasc Prev. 2009;16:177–82.

    Article  CAS  PubMed  Google Scholar 

  22. Li B, Li F, Wang L, Zhang D. Fruit and vegetables consumption and risk of hypertension: a meta-analysis. J Clin Hypertens (Greenwich). 2016. doi:10.1111/jch.12777.

  23. Davinelli S, Sapere N, Visentin M, Zella D, Scapagnini G. Enhancement of mitochondrial biogenesis with polyphenols: combined effects of resveratrol and equol in human endothelial cells. Immun Ageing. 2013;10:28.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang WY, Davidge ST, Wu J. Bioactive natural constituents from food sources-potential use in hypertension prevention and treatment. Crit Rev Food Sci Nutr. 2013;53:615–30.

    Article  CAS  PubMed  Google Scholar 

  25. Habauzit V, Morand C. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Ther Adv Chronic Dis. 2012;3:87–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang Y, Wang S, Cai X, Mai W, Hu Y, Tang H, Xu D. Prehypertension and incidence of cardiovascular disease: a meta-analysis. BMC Med. 2013;11:177.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, Black HR, Grimm RH Jr, Messerli FH, Oparil S, Schork MA, Trial of Preventing Hypertension (TROPHY) Study Investigators. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med. 2006;354:1685–97.

    Article  CAS  PubMed  Google Scholar 

  28. Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol. 2015;71:40–56.

    Article  CAS  PubMed  Google Scholar 

  29. Scoditti E, Calabriso N, Massaro M, Pellegrino M, Storelli C, Martines G, De Caterina R, Carluccio MA. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys. 2012;527:81–9.

    Article  CAS  PubMed  Google Scholar 

  30. Mukai Y, Sato S. Polyphenol-containing azuki bean (Vigna angularis) seed coats attenuate vascular oxidative stress and inflammation in spontaneously hypertensive rats. J Nutr Biochem. 2011;22:16–21.

    Article  CAS  PubMed  Google Scholar 

  31. Loke WM, Proudfoot JM, Hodgson JM, McKinley AJ, Hime N, Magat M, Stocker R, Croft KD. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2010;30:749–57.

    Article  CAS  PubMed  Google Scholar 

  32. Jimenez R, Lopez-Sepulveda R, Romero M, Toral M, Cogolludo A, Perez-Vizcaino F, Duarte J. Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food Funct. 2015;6:409–14.

    Article  CAS  PubMed  Google Scholar 

  33. Ruijters EJ, Weseler AR, Kicken C, Haenen GR, Bast A. The flavanol (−)-epicatechin and its metabolites protect against oxidative stress in primary endothelial cells via a direct antioxidant effect. Eur J Pharmacol. 2013;715:147–53.

    Article  CAS  PubMed  Google Scholar 

  34. Cruz MN, Agewall S, Schenck-Gustafsson K, Kublickiene K. Acute dilatation to phytoestrogens and estrogen receptor subtypes expression in small arteries from women with coronary heart disease. Atherosclerosis. 2008;196:49–58.

    Article  CAS  PubMed  Google Scholar 

  35. Natsume M, Baba S. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice. Subcell Biochem. 2014;77:189–98.

    Article  CAS  PubMed  Google Scholar 

  36. da Costa CA, de Oliveira PR, de Bem GF, de Cavalho LC, Ognibene DT, da Silva AF, Dos Santos Valença S, Pires KM, da Cunha Sousa PJ, de Moura RS, Resende AC. Euterpe oleracea Mart.-derived polyphenols prevent endothelial dysfunction and vascular structural changes in renovascular hypertensive rats: role of oxidative stress. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:1199–209.

    Article  CAS  PubMed  Google Scholar 

  37. Martin S, Andriambeloson E, Takeda K, Andriantsitohaina R. Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production. Br J Pharmacol. 2002;135:1579–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma X, He D, Ru X, Chen Y, Cai Y, Bruce IC, Xia Q, Yao X, Jin J. Apigenin, a plant-derived flavone, activates transient receptor potential vanilloid 4 cation channel. Br J Pharmacol. 2012;166:349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ndiaye M, Chataigneau M, Lobysheva I, Chataigneau T, Schini-Kerth VB. Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB J. 2005;19:455–7.

    CAS  PubMed  Google Scholar 

  40. Anter E, Thomas SR, Schulz E, Shapira OM, Vita JA, Keaney JF Jr. Activation of endothelial nitric-oxide synthase by the p38 MAPK in response to black tea polyphenols. J Biol Chem. 2004;279:46637–43.

    Article  CAS  PubMed  Google Scholar 

  41. Ndiaye M, Chataigneau T, Andriantsitohaina R, Stoclet JC, Schini-Kerth VB. Red wine polyphenols cause endothelium-dependent EDHF-mediated relaxations in porcine coronary arteries via a redox-sensitive mechanism. Biochem Biophys Res Commun. 2003;310:371–7.

    Article  CAS  PubMed  Google Scholar 

  42. Nishida S, Satoh H. Role of gap junction involved with endothelium-derived hyperpolarizing factor for the quercetin-induced vasodilatation in rat mesenteric artery. Life Sci. 2013;92:752–6.

    Article  CAS  PubMed  Google Scholar 

  43. Xu YC, Leung SW, Leung GP, Man RY. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca(2+)-activated K(+) channels. Br J Pharmacol. 2015;172:3003–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stoclet JC, Chataigneau T, Ndiaye M, Oak MH, El Bedoui J, Chataigneau M, Schini-Kerth VB. Vascular protection by dietary polyphenols. Eur J Pharmacol. 2004;500:299–313.

    Article  CAS  PubMed  Google Scholar 

  45. Park E, Edirisinghe I, Choy YY, Waterhouse A, Burton-Freeman B. Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: a randomised, double-blinded, two-arm, parallel, placebo-controlled trial. Br J Nutr. 2016;115:226–38.

    Article  CAS  PubMed  Google Scholar 

  46. Vaisman N, Niv E. Daily consumption of red grape cell powder in a dietary dose improves cardiovascular parameters: a double blind, placebo-controlled, randomized study. Int J Food Sci Nutr. 2015;66(3):342–9.

    Article  CAS  PubMed  Google Scholar 

  47. Hassellund SS, Flaa A, Kjeldsen SE, Seljeflot I, Karlsen A, Erlund I, Rostrup M. Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: a double-blind randomized placebo-controlled crossover study. J Hum Hypertens. 2013;27:100–6.

    Article  CAS  PubMed  Google Scholar 

  48. Taubert D, Roesen R, Lehmann C, Jung N, Schömig E. Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide: a randomized controlled trial. JAMA. 2007;298:49–60.

    Article  CAS  PubMed  Google Scholar 

  49. Moreno-Luna R, Muñoz-Hernandez R, Miranda ML, Costa AF, Jimenez-Jimenez L, Vallejo-Vaz AJ, Muriana FJ, Villar J, Stiefel P. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am J Hypertens. 2012;25:1299–304.

    CAS  PubMed  Google Scholar 

  50. McKay DL, Chen CY, Saltzman E, Blumberg JB. Hibiscus sabdariffa L. tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. J Nutr. 2010;140:298–303.

    Article  CAS  PubMed  Google Scholar 

  51. Botden IP, Draijer R, Westerhof BE, Rutten JH, Langendonk JG, Sijbrands EJ, Danser AH, Zock PL, van den Meiracker AH. Red wine polyphenols do not lower peripheral or central blood pressure in high normal blood pressure and hypertension. Am J Hypertens. 2012;25:718–23.

    Article  CAS  PubMed  Google Scholar 

  52. Ras RT, Zock PL, Zebregs YE, Johnston NR, Webb DJ, Draijer R. Effect of polyphenol-rich grape seed extract on ambulatory blood pressure in subjects with pre- and stage I hypertension. Br J Nutr. 2013;110:2234–41.

    Article  CAS  PubMed  Google Scholar 

  53. Ried K, Frank OR, Stocks NP. Dark chocolate or tomato extract for prehypertension: a randomised controlled trial. BMC Complement Altern Med. 2009;8(9):22.

    Article  Google Scholar 

  54. Accardi G, Aiello A, Gambino CM, Virruso C, Caruso C, Candore G. Mediterranean nutraceutical foods: strategy to improve vascular ageing. Mech Ageing Dev. 2016;S0047–6374(16):30011–2.

    Google Scholar 

  55. Siow RC, Mann GE. Dietary isoflavones and vascular protection: activation of cellular antioxidant defenses by SERMs or hormesis? Mol Asp Med. 2010;31(6):468–77.

    Article  CAS  Google Scholar 

  56. Scapagnini G, Davinelli S, Kaneko T, Koverech G, Koverech A, Calabrese EJ, Calabrese V. Dose response biology of resveratrol in obesity. J Cell Commun Signal. 2014;8:385–91.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vasto S, Buscemi S, Barera A, Di Carlo M, Accardi G, Caruso C. Mediterranean diet and healthy ageing: a Sicilian perspective. Gerontology. 2014;60:508–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Davinelli.

Ethics declarations

Conflict of interest

None.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davinelli, S., Scapagnini, G. Polyphenols: a Promising Nutritional Approach to Prevent or Reduce the Progression of Prehypertension. High Blood Press Cardiovasc Prev 23, 197–202 (2016). https://doi.org/10.1007/s40292-016-0149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-016-0149-0

Keywords

Navigation