Skip to main content
Log in

Hypertension in African Americans with Heart Failure: Progression from Hypertrophy to Dilatation; Perhaps Not

  • Original Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Aim

Concentric hypertrophy is thought to transition to left ventricular (LV) dilatation and systolic failure in the presence of long standing hypertension (HTN). Whether or not this transition routinely occurs in humans is unknown.

Methods

We consecutively enrolled African American patients hospitalized for acute decompensated volume overload heart failure (HF) in this retrospective study. All patients had a history of HTN and absence of obstructive coronary disease. Patients were divided into those with normal left ventricular ejection fraction (LVEF) and reduced LVEF. LV dimensions were measured according to standard ASE recommendations. LV mass was calculated using the ASE formula with Devereux correction.

Results

Patients with normal LVEF HF were significantly older, female and had a longer duration of HTN with higher systolic blood pressure on admission. LV wall thickness was similarly elevated in both groups. LV mass was elevated in both groups however was significantly greater in the reduced LVEF HF group compared to the normal LVEF HF group. Furthermore, gender was an independent predictor for LV wall thickness in normal LVEF HF group.

Conclusion

In African American patients with HF our study questions the paradigm that concentric hypertrophy transitions to LV dilatation and systolic failure in the presence of HTN. Genetics and gender likely play a role in an individual’s response to long standing hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yancy CW. Heart failure in African Americans: a cardiovascular enigma. J Card Fail. 2000;6(3):183–6.

    Article  CAS  PubMed  Google Scholar 

  2. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344(22):1659–1667.

  3. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomized Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353(9169):2001–2007.

  4. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med. 1991;325(5):293–302.

  5. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, Shusterman NH. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med. 1996;334(21):1349–55.

    Article  CAS  PubMed  Google Scholar 

  6. Cohn JN, Archibald DG, Ziesche S, Franciosa JA, Harston WE, Tristani FE, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med. 1986;314(24):1547–52.

    Article  CAS  PubMed  Google Scholar 

  7. Cohn JN, Johnson G, Ziesche S, Cobb F, Francis G, Tristani F, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325(5):303–10.

    Article  CAS  PubMed  Google Scholar 

  8. Drazner MH, Dries DL, Peshock RM, Cooper RS, Klassen C, Kazi F, et al. Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study. Hypertension. 2005;46(1):124–9.

    Article  CAS  PubMed  Google Scholar 

  9. Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E. Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci USA. 1982;79(10):3310–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Litwin SE, Katz SE, Weinberg EO, Lorell BH, Aurigemma GP, Douglas PS. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation. 1995;91(10):2642–54.

    Article  CAS  PubMed  Google Scholar 

  11. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93(2):215–28.

    Article  CAS  PubMed  Google Scholar 

  12. Libby P, Bonow RO, Mann DL, Zipes DP, Braunwald E. Heart disease a textbook of cardiovascular medicine. In: Fedfield MM, editor. Heart failure with normal ejection fraction. Philadelphia: Saunders Elsevier; 2008. p. 641–56.

    Google Scholar 

  13. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2(5):358–67.

    Article  CAS  PubMed  Google Scholar 

  14. Devereux RB, Pini R, Aurigemma GP, Roman MJ. Measurement of left ventricular mass: methodology and expertise. J Hypertens. 1997;15(8):801–9.

    Article  CAS  PubMed  Google Scholar 

  15. Cooper JW, Nanda NC, Philpot EF, Fan P. Evaluation of valvular regurgitation by color Doppler. J Am Soc Echocardiogr. 1989;2(1):56–66.

    Article  CAS  PubMed  Google Scholar 

  16. Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG, Laragh JH. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med. 1986;105(2):173–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ghali JK, Liao Y, Simmons B, Castaner A, Cao G, Cooper RS. The rognostic role of left ventricular hypertrophy in patients with or without coronary artery disease. Ann Intern Med. 1992;117(10):831–6.

    Article  CAS  PubMed  Google Scholar 

  18. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–6.

    Article  CAS  PubMed  Google Scholar 

  19. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56(1):56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Katz AM. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med. 1990;322(2):100–10.

    Article  CAS  PubMed  Google Scholar 

  21. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367(9507):356–67.

    Article  PubMed  Google Scholar 

  22. Heymans S, Schroen B, Vermeersch P, Milting H, Gao F, Kassner A, et al. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation. 2005;112(8):1136–44.

    Article  CAS  PubMed  Google Scholar 

  23. Yano M, Ikeda Y, Matsuzaki M. Altered intracellular Ca2+ handling in heart failure. J Clin Invest. 2005;115(3):556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 2006;20(9):1546–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bredt DS, Snyder SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–95.

    Article  CAS  PubMed  Google Scholar 

  26. Kempf T, Wollert KC. Nitric oxide and the enigma of cardiac hypertrophy. Bioessays. 2004;26(6):608–15.

    Article  CAS  PubMed  Google Scholar 

  27. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest. 1998;101(4):812–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng TH, Shih NL, Chen SY, Lin JW, Chen YL, Chen CH, et al. Nitric oxide inhibits endothelin-1-induced cardiomyocyte hypertrophy through cGMP-mediated suppression of extracellular-signal regulated kinase phosphorylation. Mol Pharmacol. 2005;68(4):1183–92.

    Article  CAS  PubMed  Google Scholar 

  29. Grieve DJ, MacCarthy PA, Gall NP, Cave AC, Shah AM. Divergent biological actions of coronary endothelial nitric oxide during progression of cardiac hypertrophy. Hypertension. 2001;38(2):267–73.

    Article  CAS  PubMed  Google Scholar 

  30. Piech A, Dessy C, Havaux X, Feron O, Balligand JL. Differential regulation of nitric oxide synthases and their allosteric regulators in heart and vessels of hypertensive rats. Cardiovasc Res. 2003;57(2):456–67.

    Article  CAS  PubMed  Google Scholar 

  31. Paulus WJ. The role of nitric oxide in the failing heart. Heart Fail Rev. 2001;6(2):105–18.

    Article  CAS  PubMed  Google Scholar 

  32. Janssens S, Pokreisz P, Schoonjans L, Pellens M, Vermeersch P, Tjwa M, et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res. 2004;94(9):1256–62.

    Article  CAS  PubMed  Google Scholar 

  33. Ruetten H, Dimmeler S, Gehring D, Ihling C, Zeiher AM. Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload. Cardiovasc Res. 2005;66(3):444–53.

    Article  CAS  PubMed  Google Scholar 

  34. Ruiz-Hurtado G, Fernandez-Velasco M, Mourelle M, Delgado C. LA419, a novel nitric oxide donor, prevents pathological cardiac remodeling in pressure-overloaded rats via endothelial nitric oxide synthase pathway regulation. Hypertension. 2007;50(6):1049–56.

    Article  CAS  PubMed  Google Scholar 

  35. Drexler H, Kastner S, Strobel A, Studer R, Brodde OE, Hasenfuss G. Expression, activity and functional significance of inducible nitric oxide synthase in the failing human heart. J Am Coll Cardiol. 1998;32(4):955–63.

    Article  CAS  PubMed  Google Scholar 

  36. Ennezat PV, Van Belle E, Asseman P, Cohen-Solal A, Evans T, Lejemtel TH. Steady endothelial nitric oxide synthase expression in heart failure. Acta Cardiol. 2007;62(3):265–8.

    Article  PubMed  Google Scholar 

  37. Morawietz H, Rohrbach S, Rueckschloss U, Schellenberger E, Hakim K, Zerkowski HR, et al. Increased cardiac endothelial nitric oxide synthase expression in patients taking angiotensin-converting enzyme inhibitor therapy. Eur J Clin Invest. 2006;36(10):705–12.

    Article  CAS  PubMed  Google Scholar 

  38. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA. 1999;96(2):657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature. 2002;416(6878):337–9.

    Article  CAS  PubMed  Google Scholar 

  40. Khan SA, Skaf MW, Harrison RW, Lee K, Minhas KM, Kumar A, et al. Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases. Circ Res. 2003;92(12):1322–9.

    Article  CAS  PubMed  Google Scholar 

  41. Bendall JK, Damy T, Ratajczak P, Loyer X, Monceau V, Marty I, et al. Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation. 2004;110(16):2368–75.

    Article  CAS  PubMed  Google Scholar 

  42. Damy T, Ratajczak P, Shah AM, Camors E, Marty I, Hasenfuss G, et al. Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet. 2004;363(9418):1365–7.

    Article  CAS  PubMed  Google Scholar 

  43. Burkard N, Rokita AG, Kaufmann SG, Hallhuber M, Wu R, Hu K, et al. Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ Res. 2007;100(3):e32–44.

    Article  CAS  PubMed  Google Scholar 

  44. Loyer X, Gomez AM, Milliez P, Fernandez-Valasco M, Vangheluwe P, Vinet L, et al. Cardiomyocyte overexpression of neuronal nitric oxide synthase delays transition toward heart failure in response to pressure overload by preserving calcium cycling. Circulation. 2008;117(25):3187–98.

    Article  CAS  PubMed  Google Scholar 

  45. Fukuchi M, Hussain SN, Giaid A. Heterogeneous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure: their relation to lesion site and beta-adrenergic receptor therapy. Circulation. 1998;98(2):132–9.

    Article  CAS  PubMed  Google Scholar 

  46. Patten RD, Denofrio D, El-Zaru M, Kakkar R, Saunders J, Celestin F, et al. Ventricular assist device therapy normalizes inducible nitric oxide synthase expression and reduces cardiomyocyte apoptosis in the failing human heart. J Am Coll Cardiol. 2005;45(9):1419–24.

    Article  CAS  PubMed  Google Scholar 

  47. Kalinowski L, Dobrucki IT, Malinski T. Race-specific differences in endothelial function: predisposition of African Americans to vascular diseases. Circulation. 2004;109(21):2511–7.

    Article  PubMed  Google Scholar 

  48. Ferdinand KC. African American heart failure trial: role of endothelial dysfunction and heart failure in African Americans. Am J Cardiol. 2007;99(6B):3D–6D.

    Article  CAS  PubMed  Google Scholar 

  49. Cardillo C, Kilcoyne CM, Cannon RO 3rd, Panza JA. Racial differences in nitric oxide-mediated vasodilator response to mental stress in the forearm circulation. Hypertension. 1998;31(6):1235–9.

    Article  CAS  PubMed  Google Scholar 

  50. Carson P, Ziesche S, Johnson G, Cohn JN. Racial differences in response to therapy for heart failure: analysis of the vasodilator-heart failure trials. Vasodilator-Heart Failure Trial Study Group. J Card Fail. 1999;5(3):178–87.

    Article  CAS  PubMed  Google Scholar 

  51. Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005;111(21):2837–49.

    Article  PubMed  Google Scholar 

  52. Mann DL. Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol. 2003;65:81–101.

    Article  CAS  PubMed  Google Scholar 

  53. Sundstrom J, Evans JC, Benjamin EJ, Levy D, Larson MG, Sawyer DB, et al. Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation. 2004;109(23):2850–6.

    Article  PubMed  Google Scholar 

  54. Bradham WS, Bozkurt B, Gunasinghe H, Mann D, Spinale FG. Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: a current perspective. Cardiovasc Res. 2002;53(4):822–30.

    Article  CAS  PubMed  Google Scholar 

  55. Polyakova V, Hein S, Kostin S, Ziegelhoeffer T, Schaper J. Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J Am Coll Cardiol. 2004;44(8):1609–18.

    Article  CAS  PubMed  Google Scholar 

  56. Schubert A, Walther T, Falk V, Binner C, Loscher N, Kanev A, et al. Extracellular matrix gene expression correlates to left ventricular mass index after surgical induction of left ventricular hypertrophy. Basic Res Cardiol. 2001;96(4):381–7.

    Article  CAS  PubMed  Google Scholar 

  57. Nagatomo Y, Carabello BA, Coker ML, McDermott PJ, Nemoto S, Hamawaki M, Spinale FG. Differential effects of pressure or volume overload on myocardial MMP levels and inhibitory control. Am J Physiol Heart Circ Physiol. 2000;278(1):H151–61.

    CAS  PubMed  Google Scholar 

  58. Heymans S, Lupu F, Terclavers S, Vanwetswinkel B, Herbert JM, Baker A, et al. Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol. 2005;166(1):15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–39.

    Article  CAS  PubMed  Google Scholar 

  60. Lambert E, Dasse E, Haye B, Petitfrere E. TIMPs as multifacial proteins. Crit Rev Oncol Hematol. 2004;49(3):187–98.

    Article  PubMed  Google Scholar 

  61. Klapholz M, Maurer M, Lowe AM, Messineo F, Meisner JS, Mitchell J, et al. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J Am Coll Cardiol. 2004;43(8):1432–8.

    Article  PubMed  Google Scholar 

  62. Douglas PS, Katz SE, Weinberg EO, Chen MH, Bishop SP, Lorell BH. Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. J Am Coll Cardiol. 1998;32(4):1118–25.

    Article  CAS  PubMed  Google Scholar 

  63. Pernenkil R, Vinson JM, Shah AS, Beckham V, Wittenberg C, Rich MW. Course and prognosis in patients > or =70 years of age with congestive heart failure and normal versus abnormal left ventricular ejection fraction. Am J Cardiol. 1997;79(2):216–9.

    Article  CAS  PubMed  Google Scholar 

  64. Sugden PH, Clerk A. Akt like a woman: gender differences in susceptibility to cardiovascular disease. Circ Res. 2001;88(10):975–7.

    Article  CAS  PubMed  Google Scholar 

  65. Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR, Anversa P. Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995;26(4):1068–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None.

Conflict of interest

Authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Klapholz.

Additional information

Study performed at Rutgers University-New Jersey Medical School, Newark, New Jersey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solanki, P., Zakir, R.M., Patel, R.J. et al. Hypertension in African Americans with Heart Failure: Progression from Hypertrophy to Dilatation; Perhaps Not. High Blood Press Cardiovasc Prev 22, 61–68 (2015). https://doi.org/10.1007/s40292-014-0070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-014-0070-3

Keywords

Navigation