Skip to main content
Log in

Predictive Ability of Serum Amino Acid Levels to Differentiate Fibromyalgia Patients from Healthy Subjects

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Fibromyalgia is a complex illness to diagnose and treat.

Objectives

To evaluate a broad range of circulating free amino acid (AA) levels in fibromyalgia patients as well as the ability of the AAs to differentiate fibromyalgia patients from healthy subjects.

Design

We carried out a case-control study to evaluate AA levels in 62 patients with fibromyalgia and 78 healthy subjects. This study adheres to the STROBE guidelines.

Methods

AAs content was assayed by HPLC in serum samples. The predictive value of AA levels in fibromyalgia was determined by receiver operating characteristic (ROC) curve and forward binary logistic regression analyses.

Results

Fibromyalgia patients showed higher serum levels of aspartic acid, glutamic acid, aminoadipic acid, asparagine, histidine, 3-methyl-histidine, 5-methyl-histidine, glycine, threonine, taurine, tyrosine, valine, methionine, isoleucine, phenylalanine, leucine, ornithine, lysine, branched chain AAs (BCAAs), large neutral AAs, essential AAs (EAAs), non-essential AAs (NEAAs), basic AAs, EAAs/NEAAs ratio, phenylalanine/tyrosine ratio, and global arginine bioavailability ratio than the controls. Serum alanine levels were lower in patients than in controls. According to ROC analysis, most of these AAs may be good markers for differentiating individuals with fibromyalgia from healthy subjects. Results of logistic regression showed that the combination of glutamic acid, histidine, and alanine had the greatest predictive ability to diagnose fibromyalgia.

Conclusions

Our results show an imbalance in serum levels of most AAs in patients with fibromyalgia, which suggest a metabolic disturbance. The determination of serum levels of these AAs may aid in the diagnosis of fibromyalgia, in combination with clinical data of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bidari A, Ghavidel Parsa B, Ghalehbaghi B. Challenges in fibromyalgia diagnosis: from meaning of symptoms to fibromyalgia labeling. Korean J Pain. 2018;31(3):147–54. https://doi.org/10.3344/kjp.2018.31.3.147.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siracusa R, Paola RD, Cuzzocrea S, Impellizzeri D. Fibromyalgia: pathogenesis, mechanisms, diagnosis and treatment options update. Int J Mol Sci. 2021;22(8):3891. https://doi.org/10.3390/ijms22083891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sarzi-Puttini P, Giorgi V, Marotto D, Atzeni F. Fibromyalgia: an update on clinical characteristics, aetiopathogenesis and treatment. Nat Rev Rheumatol. 2020;16(11):645–60. https://doi.org/10.1038/s41584-020-00506-w.

    Article  PubMed  Google Scholar 

  4. Qureshi AG, Jha SK, Iskander J, Avanthika C, Jhaveri S, Patel VH, Rasagna Potini B, Talha AA. Diagnostic challenges and management of fibromyalgia. Cureus. 2021;13(10): e18692. https://doi.org/10.7759/cureus.18692.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maffei ME. Fibromyalgia: recent advances in diagnosis, classification, pharmacotherapy and alternative remedies. Int J Mol Sci. 2020;21(21):7877. https://doi.org/10.3390/ijms21217877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chinn S, Caldwell W, Gritsenko K. Fibromyalgia pathogenesis and treatment options update. Curr Pain Headache Rep. 2016;20(4):25. https://doi.org/10.1007/s11916-016-0556-x.

    Article  PubMed  Google Scholar 

  7. Rus A, Molina F, Del Moral ML, Ramírez-Expósito MJ, Martínez-Martos JM. Catecholamine and indolamine pathway: a case–control study in fibromyalgia. Biol Res Nurs. 2018;20(5):577–86. https://doi.org/10.1177/1099800418787672.

    Article  CAS  PubMed  Google Scholar 

  8. Wu G. Functional amino acids in nutrition and health. Amino Acids. 2013;45(3):407–11. https://doi.org/10.1007/s00726-013-1500-6.

    Article  CAS  PubMed  Google Scholar 

  9. Benson C, Mifflin K, Kerr B, Jesudasan SJ, Dursun S, Baker G. Biogenic amines and the amino acids GABA and glutamate: relationships with pain and depression. Mod Trends Pharmacopsychiatry. 2015;30:67–79. https://doi.org/10.1159/000435933.

    Article  PubMed  Google Scholar 

  10. Peek AL, Rebbeck T, Puts NA, Watson J, Aguila MR, Leaver AM. Brain GABA and glutamate levels across pain conditions: a systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool. Neuroimage. 2020;210: 116532. https://doi.org/10.1016/j.neuroimage.2020.116532.

    Article  CAS  PubMed  Google Scholar 

  11. Goudet C, Magnaghi V, Landry M, Nagy F, Gereau RW 4th, Pin JP. Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev. 2009;60(1):43–56. https://doi.org/10.1016/j.brainresrev.2008.12.007.

    Article  CAS  PubMed  Google Scholar 

  12. Ramírez-Expósito MJ, Ruíz-Sanjuan MD, Martínez-Martos JM. Influence of dietary fats on circulating amino acid profile in experimental breast cancer. J Clin Mol Med. 2017;1:1–5. https://doi.org/10.15761/JCMM.1000104.

    Article  Google Scholar 

  13. Ruggiero V, Mura M, Cacace E, Era B, Peri M, Sanna G, Fais A. Free amino acids in fibromyalgia syndrome: relationship with clinical picture. Scand J Clin Lab Investig. 2017;77(2):93–7. https://doi.org/10.1080/00365513.2016.1269362.

    Article  CAS  Google Scholar 

  14. Bi X, Henry CJ. Plasma-free amino acid profiles are predictors of cancer and diabetes development. Nutr Diabetes. 2017;7(3): e249. https://doi.org/10.1038/nutd.2016.55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bazzichi L, Palego L, Giannaccini G, Rossi A, De Feo F, Giacomelli C, et al. Altered amino acid homeostasis in subjects affected by fibromyalgia. Clin Biochem. 2009;42(10–11):1064–70. https://doi.org/10.1016/j.clinbiochem.2009.02.025.

    Article  CAS  PubMed  Google Scholar 

  16. Russell IJ, Michalek JE, Vipraio GA, Fletcher EM, Wall K. Serum amino acids in fibrositis/fibromyalgia syndrome. J Rheumatol Suppl. 1989;19:158–63.

    CAS  PubMed  Google Scholar 

  17. Yunus MB, Dailey JW, Aldag JC, Masi AT, Jobe PC. Plasma tryptophan and other amino acids in primary fibromyalgia: a controlled study. J Rheumatol. 1992;19(1):90–4.

    CAS  PubMed  Google Scholar 

  18. Maes M, Verkerk R, Delmeire L, Van Gastel A, van Hunsel F, Scharpé S. Serotonergic markers and lowered plasma branched-chain-amino acid concentrations in fibromyalgia. Psychiatry Res. 2000;97(1):11–20. https://doi.org/10.1016/s0165-1781(00)00204-3.

    Article  CAS  PubMed  Google Scholar 

  19. Clos-Garcia M, Andrés-Marin N, Fernández-Eulate G, Abecia L, Lavín JL, van Liempd S, et al. Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia. EBioMedicine. 2019;46:499–511. https://doi.org/10.1016/j.ebiom.2019.07.031.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Menzies V, Starkweather A, Yao Y, Thacker LR 2nd, Garrett TJ, Swift-Scanlan T, et al. Metabolomic differentials in women with and without fibromyalgia. Clin Transl Sci. 2020;13(1):67–77. https://doi.org/10.1111/cts.12679.

    Article  CAS  PubMed  Google Scholar 

  21. Hsu WH, Han DS, Ku WC, Chao YM, Chen CC, Lin YL. Metabolomic and proteomic characterization of sng and pain phenotypes in fibromyalgia. Eur J Pain. 2022;26(2):445–62. https://doi.org/10.1002/ejp.1871.

    Article  CAS  PubMed  Google Scholar 

  22. Salgueiro M, García-Leiva JM, Ballesteros J, Hidalgo J, Molina R, Calandre EP. Validation of a Spanish version of the Revised Fibromyalgia Impact Questionnaire (FIQR). Health Qual Life Outcomes. 2013;11:132. https://doi.org/10.1186/1477-7525-11-132.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marques AP, Assumpção A, Matsutani LA, Bragança-Pereira CA, Lage L. Pain in fibromyalgia and discrimination power of the instruments: Visual Analog Scale, Dolorimetry and the McGill Pain Questionnaire. Acta Reumatol Port. 2008;33(3):345–51.

    PubMed  Google Scholar 

  24. Munguía-Izquierdo D, Segura-Jiménez V, Camiletti-Moirón D, Pulido-Martos M, Alvarez-Gallardo IC, Romero A, et al. Multidimensional Fatigue Inventory: Spanish adaptation and psychometric properties for fibromyalgia patients. The Al-Andalus study. Clin Exp Rheumatol. 2012;30(6 Suppl 74):94–102.

    PubMed  Google Scholar 

  25. Soriano-Maldonado A, Ruiz JR, Aparicio VA, Estévez-López F, Segura-Jiménez V, Álvarez-Gallardo IC, et al. Association of physical fitness with pain in women with fibromyalgia: the al-Ándalus Project. Arthritis Care Res (Hoboken). 2015;67(11):1561–70. https://doi.org/10.1002/acr.22610.

    Article  PubMed  Google Scholar 

  26. Sanz J, Navarro ME. Propiedades Psicométricas de Una Versión Española Del Inventario de Ansiedad de Beck (BAI) En Estudiantes Universitarios. Ansiedad y Estrés. 2003;9:59–84.

  27. Magán I, Sanz J, García-Vera MP. Psychometric properties of a Spanish version of the Beck Anxiety Inventory (BAI) in general population. Span J Psychol. 2008;11(2):626–40.

    Article  PubMed  Google Scholar 

  28. Hita-Contreras F, Martínez-López E, Latorre-Román PA, Garrido F, Santos MA, Martínez-Amat A. Reliability and validity of the Spanish version of the Pittsburgh Sleep Quality Index (PSQI) in patients with fibromyalgia. Rheumatol Int. 2014;34(7):929–36. https://doi.org/10.1007/s00296-014-2960-z.

    Article  PubMed  Google Scholar 

  29. Martínez-Martos JM, Pulido-Navas ME, Ramírez-Expósito MJ. Altered plasma global arginine bioavailability ratio in early-stage Alzheimer’s disease. TOBIOMJ. 2018;8(1):34–41. https://doi.org/10.2174/1875318301808010034.

    Article  Google Scholar 

  30. Fekkes D, van der Cammen TJM, van Loon CP, Verschoor C, van Harskamp F, de Koning I, et al. Abnormal amino acid metabolism in patients with early stage Alzheimer dementia. J Neural Transm (Vienna). 1998;105(2–3):287–94. https://doi.org/10.1007/s007020050058.

    Article  CAS  PubMed  Google Scholar 

  31. Fekkes D, Pepplinkhuizen L, Verheij R, Bruinvels J. Abnormal plasma levels of serine, methionine, and taurine in transient acute polymorphic psychosis. Psychiatry Res. 1994;51(1):11–8. https://doi.org/10.1016/0165-1781(94)90043-4.

    Article  CAS  PubMed  Google Scholar 

  32. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5. https://doi.org/10.1002/1097-0142(1950)3:1%3c32::aid-cncr2820030106%3e3.0.co;2-3.

    Article  CAS  PubMed  Google Scholar 

  33. Aroke EN, Powell-Roach KL. The metabolomics of chronic pain conditions: a systematic review. Biol Res Nurs. 2020;22(4):458–71. https://doi.org/10.1177/1099800420941105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rose AJ. Amino acid nutrition and metabolism in health and disease. Nutrients. 2019;11(11):2623. https://doi.org/10.3390/nu11112623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dai Z, Zheng W, Locasale JW. Amino acid variability, tradeoffs and optimality in human diet. Nat Commun. 2022;13(1):6683. https://doi.org/10.1038/s41467-022-34486-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hood DA, Terjung RL. Amino acid metabolism during exercise and following endurance training. Sports Med. 1990;9(1):23–35. https://doi.org/10.2165/00007256-199009010-00003.

    Article  CAS  PubMed  Google Scholar 

  37. Gaine PC, Pikosky MA, Martin WF, Bolster DR, Maresh CM, Rodriguez NR. Level of dietary protein impacts whole body protein turnover in trained males at rest. Metabolism. 2006;55(4):501–7. https://doi.org/10.1016/j.metabol.2005.10.012.

    Article  CAS  PubMed  Google Scholar 

  38. Dalangin R, Kim A, Campbell RE. The role of amino acids in neurotransmission and fluorescent tools for their detection. Int J Mol Sci. 2020;21(17):E6197. https://doi.org/10.3390/ijms21176197.

    Article  CAS  Google Scholar 

  39. Peres MFP, Zukerman E, Senne Soares CA, Alonso EO, Santos BFC, Faulhaber MHW. Cerebrospinal fluid glutamate levels in chronic migraine. Cephalalgia. 2004;24(9):735–9. https://doi.org/10.1111/j.1468-2982.2004.00750.x.

    Article  CAS  PubMed  Google Scholar 

  40. Pyke TL, Osmotherly PG, Baines S. Measuring glutamate levels in the brains of fibromyalgia patients and a potential role for glutamate in the pathophysiology of fibromyalgia symptoms: a systematic review. Clin J Pain. 2017;33(10):944–54. https://doi.org/10.1097/AJP.0000000000000474.

    Article  PubMed  Google Scholar 

  41. Harte SE, Clauw DJ, Napadow V, Harris RE. Pressure pain sensitivity and insular combined glutamate and glutamine (Glx) are associated with subsequent clinical response to sham but not traditional acupuncture in patients who have chronic pain. Med Acupunct. 2013;25(2):154–60. https://doi.org/10.1089/acu.2013.0965.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Julio-Pieper M, Flor PJ, Dinan TG, Cryan JF. Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol Rev. 2011;63(1):35–58. https://doi.org/10.1124/pr.110.004036.

    Article  CAS  PubMed  Google Scholar 

  43. Ellerbrock I, Sandström A, Tour J, Fanton S, Kadetoff D, Schalling M, et al. Serotonergic gene-to-gene interaction is associated with mood and GABA concentrations but not with pain-related cerebral processing in fibromyalgia subjects and healthy controls. Mol Brain. 2021;14(1):81. https://doi.org/10.1186/s13041-021-00789-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Larson AA, Giovengo SL, Russell JI, Michalek JE. Changes in the concentrations of amino acids in the cerebrospinal fluid that correlate with pain in patients with fibromyalgia: implications for nitric oxide pathways. Pain. 2000;87(2):201–11. https://doi.org/10.1016/S0304-3959(00)00284-0.

    Article  CAS  PubMed  Google Scholar 

  45. Malatji BG, Meyer H, Mason S, Engelke UFH, Wevers RA, van Reenen M, et al. A diagnostic biomarker profile for fibromyalgia syndrome based on an NMR metabolomics study of selected patients and controls. BMC Neurol. 2017;17(1):88. https://doi.org/10.1186/s12883-017-0863-9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Martinez-Lavin M. Biology and therapy of fibromyalgia. Stress, the stress response system, and fibromyalgia. Arthritis Res Ther. 2007;9(4):216. https://doi.org/10.1186/ar2146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Torpy DJ, Papanicolaou DA, Lotsikas AJ, Wilder RL, Chrousos GP, Pillemer SR. Responses of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis to interleukin-6: a pilot study in fibromyalgia. Arthritis Rheum. 2000;43(4):872–80. https://doi.org/10.1002/1529-0131(200004)43:4%3c872::AID-ANR19%3e3.0.CO;2-T.

    Article  CAS  PubMed  Google Scholar 

  48. Bote ME, García JJ, Hinchado MD, Ortega E. Inflammatory/stress feedback dysregulation in women with fibromyalgia. NeuroImmunoModulation. 2012;19(6):343–51. https://doi.org/10.1159/000341664.

    Article  CAS  PubMed  Google Scholar 

  49. Martinez-Lavin M, Vidal M, Barbosa RE, Pineda C, Casanova JM, Nava A. Norepinephrine-evoked pain in fibromyalgia. A randomized pilot study [ISRCTN70707830]. BMC Musculoskelet Disord. 2002;3:2. https://doi.org/10.1186/1471-2474-3-2.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kadetoff D, Kosek E. Evidence of reduced sympatho-adrenal and hypothalamic-pituitary activity during static muscular work in patients with fibromyalgia. J Rehabil Med. 2010;42(8):765–72. https://doi.org/10.2340/16501977-0597.

    Article  PubMed  Google Scholar 

  51. Barjandi G, Louca Jounger S, Löfgren M, Bileviciute-Ljungar I, Kosek E, Ernberg M. Plasma tryptophan and kynurenine in females with temporomandibular disorders and fibromyalgia—an exploratory pilot study. J Oral Rehabil. 2020;47(2):150–7. https://doi.org/10.1111/joor.12892.

    Article  CAS  PubMed  Google Scholar 

  52. Martínez Y, Li X, Liu G, Bin P, Yan W, Más D, et al. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids. 2017;49(12):2091–8. https://doi.org/10.1007/s00726-017-2494-2.

    Article  CAS  PubMed  Google Scholar 

  53. Tang WHW, Wang Z, Cho L, Brennan DM, Hazen SL. Diminished global arginine bioavailability and increased arginine catabolism as metabolic profile of increased cardiovascular risk. J Am Coll Cardiol. 2009;53(22):2061–7. https://doi.org/10.1016/j.jacc.2009.02.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bradley LA, Weigent DA, Sotolongo A, Alorcon GS, Arnold RE, Cianfrini LR. Blood serum levels of nitric oxide are elevated in women with fibromyalgia: possible contributions to central and peripheral sensitization. Arthritis Rheumatol. 2000;43:173.

    Google Scholar 

  55. Shukla V, Das SK, Mahdi AA, Agarwal S, Khandpur S. Nitric oxide, lipid peroxidation products, and antioxidants in primary fibromyalgia and correlation with disease severity. J Med Biochem. 2019. https://doi.org/10.2478/jomb-2019-0033.

    Article  Google Scholar 

  56. Rus A, Molina F, Gassó M, Camacho MV, Peinado MA, del Moral ML. Nitric oxide, inflammation, lipid profile, and cortisol in normal- and overweight women with fibromyalgia. Biol Res Nurs. 2016;18(2):138–46. https://doi.org/10.1177/1099800415591035.

    Article  CAS  PubMed  Google Scholar 

  57. Sendur OF, Turan Y, Tastaban E, Yenisey C, Serter M. Serum antioxidants and nitric oxide levels in fibromyalgia: a controlled study. Rheumatol Int. 2009;29(6):629–33. https://doi.org/10.1007/s00296-008-0738-x.

    Article  CAS  PubMed  Google Scholar 

  58. Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: the dual effect of nitric oxide in the nociceptive system. Nitric Oxide. 2011;25(3):243–54. https://doi.org/10.1016/j.niox.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  59. Gratt BM, Anbar M. A pilot study of nitric oxide blood levels in patients with chronic orofacial pain. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(4):441–8. https://doi.org/10.1016/j.tripleo.2004.02.081.

    Article  PubMed  Google Scholar 

  60. Theoharides TC, Valent P, Akin C. Mast cells, mastocytosis, and related disorders. N Engl J Med. 2015;373(2):163–72. https://doi.org/10.1056/NEJMra1409760.

    Article  CAS  PubMed  Google Scholar 

  61. Estaras M, Ameur FZ, Estévez M, Díaz-Velasco S, Gonzalez A. The lysine derivative aminoadipic acid, a biomarker of protein oxidation and diabetes-risk, induces production of reactive oxygen species and impairs trypsin secretion in mouse pancreatic acinar cells. Food Chem Toxicol. 2020;145: 111594. https://doi.org/10.1016/j.fct.2020.111594.

    Article  CAS  PubMed  Google Scholar 

  62. Cordero MD, de Miguel M, Carmona-López I, Bonal P, Campa F, Moreno-Fernández AM. Oxidative stress and mitochondrial dysfunction in fibromyalgia. Neuro Endocrinol Lett. 2010;31(2):169–73.

    CAS  PubMed  Google Scholar 

  63. La Rubia M, Rus A, Molina F, del Moral ML. Is fibromyalgia-related oxidative stress implicated in the decline of physical and mental health status? Clin Exp Rheumatol. 2013;31(6 Suppl 79):S121-127.

    PubMed  Google Scholar 

  64. Hutson SM, Sweatt AJ, Lanoue KF. Branched-chain [corrected] amino acid metabolism: implications for establishing safe intakes. J Nutr. 2005;135(6 Suppl):1557S-S1564. https://doi.org/10.1093/jn/135.6.1557S.

    Article  CAS  PubMed  Google Scholar 

  65. Fernstrom JD. Branched-chain amino acids and brain function. J Nutr. 2005;135(6 Suppl):1539S-S1546. https://doi.org/10.1093/jn/135.6.1539S.

    Article  CAS  PubMed  Google Scholar 

  66. Gannon NP, Schnuck JK, Vaughan RA. BCAA metabolism and insulin sensitivity—dysregulated by metabolic status? Mol Nutr Food Res. 2018;62(6): e1700756. https://doi.org/10.1002/mnfr.201700756.

    Article  CAS  PubMed  Google Scholar 

  67. Zetterman T, Markkula R, Kalso E. Glucose tolerance in fibromyalgia. Medicine (Baltimore). 2021;100(46): e27803. https://doi.org/10.1097/MD.0000000000027803.

    Article  CAS  PubMed  Google Scholar 

  68. Antener I, Tonney G, Verwilghen AM, Mauron J. Biochemical study of malnutrition. Part IV. Determination of amino acids in the serum, erythrocytes, urine and stool ultrafiltrates. Int J Vitam Nutr Res. 1981;51(1):64–78.

    CAS  PubMed  Google Scholar 

  69. Cabo-Meseguer A, Cerdá-Olmedo G, Trillo-Mata JL. Fibromyalgia: prevalence, epidemiologic profiles and economic costs. Med Clin (Barc). 2017;149(10):441–8. https://doi.org/10.1016/j.medcli.2017.06.008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank AGRAFIM (Association of Fibromyalgia of Granada, Spain) and AFIXA (Association of Fibromyalgia of Jaén, Spain) for participating in this study. This article is part of the Ph.D. thesis developed by José Alberto López-Sánchez, who is included in the Official Ph.D. Program of Biomedicine from the University of Granada, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Correa-Rodríguez.

Ethics declarations

Funding

This work has been supported by FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades (Spain)/Grant number: A-CTS-120-UGR20.

Conflict of interest

All authors declare that they have no conflict of interest.

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval

This case–control study was carried out in accordance with the Declaration of Helsinki of the World Medical Association (WMA). The study was approved by the Ethics Committee of the University of Granada (Spain) (approval number: 1797-N-17).

Consent to participate

All participants provided written informed consent and did not receive financial incentive.

Consent for publication

Not applicable.

Code availability

Not applicable.

Author contributions

Alma Rus contributed to analysis and interpretation of results, drafted the manuscript, critically revised the manuscript, and gave final approval. José Alberto López-Sánchez contributed to analysis of results, critically revised the manuscript, and gave final approval. José Manuel Martínez-Martos and María Jesús Ramírez-Expósito performed the laboratory experiments, critically revised the manuscript, and gave final approval. Francisco Molina contributed to conception and data acquisition, critically revised the manuscript, and gave final approval. María Correa-Rodríguez and María Encarnación Aguilar-Ferrándiz contributed to conception and design, data acquisition, critically revised the manuscript, and gave final approval.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 99 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rus, A., López-Sánchez, J.A., Martínez-Martos, J.M. et al. Predictive Ability of Serum Amino Acid Levels to Differentiate Fibromyalgia Patients from Healthy Subjects. Mol Diagn Ther 28, 113–128 (2024). https://doi.org/10.1007/s40291-023-00677-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-023-00677-8

Navigation