Skip to main content
Log in

Smart PROTACs Enable Controllable Protein Degradation for Precision Cancer Therapy

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional chemicals that degrade proteins at the post-translational level, which represent an emerging therapeutic modality to fight cancer and other diseases. Although several PROTACs have now entered clinical trials, potential off-tissue side effects have resulted from nonspecific accumulation at non-cancerous sites after systemic administration, and this remains a major challenge. To this end, in the past 3 years, activatable PROTACs whose activity can only be launched on demand have gained tremendous momentum. In this review, we provide an overview of these new smart activatable PROTACs, which exert protein degradation action only in response to internal or external stimuli. We categorize these activatable PROTACs according to their activation mechanism contributed by different stimuli, including reduction-activatable, hypoxia-activatable, and enzyme-activatable PROTACs and photo-caged or photo-switchable PROTACs. The use of stimuli-responsive chemical blocks in these activatable PROTACs allows local activation of the antitumor effects while reducing the incidence of off-site side effects for precision cancer therapy. The design principle and category of smart PROTACs are introduced along with an overview of their therapeutic prospects and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  2. Wyld L, Audisio RA, Poston GJ. The evolution of cancer surgery and future perspectives. Nat Rev Clin Oncol. 2015;12(2):115–24.

    Article  PubMed  Google Scholar 

  3. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104(6):1129–37.

    Article  PubMed  Google Scholar 

  4. Chabner BA, Roberts TG Jr. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  5. Huang M, Shen A, Ding J, Geng M. Molecularly targeted cancer therapy: some lessons from the past decade. Trends Pharmacol Sci. 2014;35(1):41–50.

    Article  PubMed  CAS  Google Scholar 

  6. Xin YuJ, Hodge JP, Oliva C, Neftelinov ST, Hubbard-Lucey VM, Tang J. Trends in clinical development for PD-1/PD-L1 inhibitors. Nat Rev Drug Discov. 2020;19(3):163–4.

    Article  CAS  Google Scholar 

  7. Sankar K, Gadgeel SM, Qin A. Molecular therapeutic targets in non-small cell lung cancer. Expert Rev Anticancer Ther. 2020;20(8):647–61.

    Article  CAS  PubMed  Google Scholar 

  8. Dale B, Cheng M, Park KS, Kaniskan HU, Xiong Y, Jin J. Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer. 2021;21(10):638–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pettersson M, Crews CM. PROteolysis TArgeting Chimeras (PROTACs): past, present and future. Drug Discov Today Technol. 2019;31:15–27.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Paiva SL, Crews CM. Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. 2019;50:111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2017;16(2):101–14.

    Article  CAS  PubMed  Google Scholar 

  12. Raina K, Crews CM. Targeted protein knockdown using small molecule degraders. Curr Opin Chem Biol. 2017;39:46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salami J, Crews CM. Waste disposal: an attractive strategy for cancer therapy. Science. 2017;355(6330):1163–7.

    Article  CAS  PubMed  Google Scholar 

  14. Shimokawa K, Shibata N, Sameshima T, Miyamoto N, Ujikawa O, Nara H, et al. Targeting the allosteric site of oncoprotein BCR-ABL as an alternative strategy for effective target protein degradation. ACS Med Chem Lett. 2017;8(10):1042–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bond MJ, Chu L, Nalawansha DA, Li K, Crews CM. Targeted degradation of oncogenic KRAS(G12C) by VHL-recruiting PROTACs. ACS Cent Sci. 2020;6(8):1367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou H, Bai L, Xu R, Zhao Y, Chen J, McEachern D, et al. Structure-based discovery of SD-36 as a potent, selective, and efficacious PROTAC degrader of STAT3 protein. J Med Chem. 2019;62(24):11280–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21(3):181–200.

    Article  PubMed  CAS  Google Scholar 

  18. Moreau K, Coen M, Zhang AX, Pachl F, Castaldi MP, Dahl G, et al. Proteolysis-targeting chimeras in drug development: a safety perspective. Br J Pharmacol. 2020;177(8):1709–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi A, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci USA. 2016;113(26):7124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jan M, Sperling AS, Ebert BL. Cancer therapies based on targeted protein degradation: lessons learned with lenalidomide. Nat Rev Clin Oncol. 2021;18(7):401–17.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54.

    Article  CAS  PubMed  Google Scholar 

  22. Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 2018;217(7):2291–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–21.

    Article  PubMed  CAS  Google Scholar 

  24. Chen H, Liu J, Kaniskan H, Wei W, Jin J. Folate-guided protein degradation by immunomodulatory imide drug-based molecular glues and proteolysis targeting chimeras. J Med Chem. 2021;64(16):12273–85.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang C, Han XR, Yang X, Jiang B, Liu J, Xiong Y, et al. Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). Eur J Med Chem. 2018;151:304–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fischer ES, Bohm K, Lydeard JR, Yang H, Stadler MB, Cavadini S, et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature. 2014;512(7512):49–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gadd MS, Testa A, Lucas X, Chan KH, Chen W, Lamont DJ, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol. 2017;13(5):514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He S, Gao F, Ma J, Ma H, Dong G, Sheng C. Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer. Angew Chem Int Ed. 2021;60(43):23299–305.

    Article  CAS  Google Scholar 

  29. Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E, Adhikari P, et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 2: improvement of in vitro antiproliferation activity and in vivo antitumor efficacy. J Med Chem. 2021;64(5):2576–607.

    Article  CAS  PubMed  Google Scholar 

  30. Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E, Adhikari P, et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: exploration of antibody linker, payload loading, and payload molecular properties. J Med Chem. 2021;64(5):2534–75.

    Article  CAS  PubMed  Google Scholar 

  31. Pillow TH, Adhikari P, Blake RA, Chen J, Del Rosario G, Deshmukh G, et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem. 2020;15(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  32. Dragovich PS, Adhikari P, Blake RA, Blaquiere N, Chen J, Cheng YX. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERalpha). Bioorg Med Chem Lett. 2020;30(4): 126907.

    Article  CAS  PubMed  Google Scholar 

  33. Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18(6):327–44.

    Article  PubMed  Google Scholar 

  34. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11(6):393–410.

    Article  CAS  PubMed  Google Scholar 

  35. Cheng W, Li S, Wen X, Han S, Wang S, Wei H, et al. Development of hypoxia-activated PROTAC exerting a more potent effect in tumor hypoxia than in normoxia. Chem Commun. 2021;57(95):12852–5.

    Article  CAS  Google Scholar 

  36. Liang SL, Chan DW. Enzymes and related proteins as cancer biomarkers: a proteomic approach. Clin Chim Acta. 2007;381(1):93–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang C, Zeng Z, Cui D, He S, Jiang Y, Li J, et al. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nat Commun. 2021;12(1):2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang C, He S, Zeng Z, Cheng P, Pu K. Smart nano-PROTACs reprogram tumor microenvironment for activatable photo-metabolic cancer immunotherapy. Angew Chem Int Ed. 2021;2021:e202114957.

    Google Scholar 

  39. Liu J, Chen H, Liu Y, Shen Y, Meng F, Kaniskan H, et al. Cancer selective target degradation by folate-caged PROTACs. J Am Chem Soc. 2021;143(19):7380–7.

    Article  CAS  PubMed  Google Scholar 

  40. Maneiro MA, Forte N, Shchepinova MM, Kounde CS, Chudasama V, Baker JR, et al. Antibody-PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4. ACS Chem Biol. 2020;15(6):1306–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang C, Zheng Q, Luo T, Cai W, Mao L, Wang M. Enzyme-catalyzed activation of pro-PROTAC for cell-selective protein degradation. CCS Chem. 2022. https://doi.org/10.31635/ccschem.022.202101529.

    Article  Google Scholar 

  42. Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev. 2019;48(1):38–71.

    Article  CAS  PubMed  Google Scholar 

  43. Zeng S, Zhang H, Shen Z, Huang W. Photopharmacology of proteolysis-targeting chimeras: a new frontier for drug discovery. Front Chem. 2021;9(70): 639176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reynders M, Trauner D. Optical control of targeted protein degradation. Cell Chem Biol. 2021;28(7):969–86.

    Article  CAS  PubMed  Google Scholar 

  45. Liu J, Peng Y, Wei W. Light-controllable PROTACs for temporospatial control of protein degradation. Front Cell Dev Biol. 2021;9(1777): 678077.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu P, Manna D. Optochemical control of protein degradation. ChemBioChem. 2020;21(16):2250–2.

    Article  CAS  PubMed  Google Scholar 

  47. Kounde CS, Tate EW. Photoactive bifunctional degraders: precision tools to regulate protein stability. J Med Chem. 2020;63(24):5483–93.

    Article  CAS  Google Scholar 

  48. Yu H, Li J, Wu D, Qiu Z, Zhang Y. Chemistry and biological applications of photo-labile organic molecules. Chem Soc Rev. 2010;39(2):464–73.

    Article  PubMed  Google Scholar 

  49. Xue G, Wang K, Zhou D, Zhong H, Pan Z. Light-induced protein degradation with photocaged PROTACs. J Am Chem Soc. 2019;141(46):18370–4.

    Article  CAS  PubMed  Google Scholar 

  50. Naro Y, Darrah K, Deiters A. Optical control of small molecule-induced protein degradation. J Am Chem Soc. 2020;142(5):2193–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kounde CS, Shchepinova MM, Saunders CN, Muelbaier M, Rackham MD, Harling JD, et al. A caged E3 ligase ligand for PROTAC-mediated protein degradation with light. Chem Commun. 2020;56(41):5532–5.

    Article  CAS  Google Scholar 

  52. Liu J, Chen H, Ma L, He Z, Wang D, Liu Y, et al. Light-induced control of protein destruction by opto-PROTAC. Sci Adv. 2020;6(8):eaay5154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Z, Ma S, Yang X, Zhang L, Liang D, Dong G, et al. Development of photocontrolled BRD4 PROTACs for tongue squamous cell carcinoma (TSCC). Eur J Med Chem. 2021;222: 113608.

    Article  CAS  PubMed  Google Scholar 

  54. Harris JD, Moran MJ, Aprahamian I. New molecular switch architectures. Proc Natl Acad Sci USA. 2018;115(38):9414–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pfaff P, Samarasinghe KTG, Crews CM, Carreira EM. Reversible spatiotemporal control of induced protein degradation by bistable photoPROTACs. ACS Cent Sci. 2019;5(10):1682–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reynders M, Matsuura BS, Bérouti M, Simoneschi D, Marzio A, Pagano M, et al. PHOTACs enable optical control of protein degradation. Sci Adv. 2020;6(8):eaay5064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jin YH, Lu MC, Wang Y, Shan WX, Wang XY, You QD, et al. Azo-PROTAC: novel light-controlled small-molecule tool for protein knockdown. J Med Chem. 2020;63(9):4644–54.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang C, Pu K. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem Soc Rev. 2020;49(13):4234–53.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang P, Gao D, An K, Shen Q, Wang C, Zhang Y, et al. A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nat Chem. 2020;12(4):381–90.

    Article  CAS  PubMed  Google Scholar 

  60. Xu X, Lu H, Lee R. Near infrared light triggered photo/immuno-therapy toward cancers. Front Bioeng Biotechnol. 2020;8:488.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Geng J, Zhang Y, Gao Q, Neumann K, Dong H, Porter H, et al. Switching on prodrugs using radiotherapy. Nat Chem. 2021;13(8):805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huo S, Zhao P, Shi Z, Zou M, Yang X, Warszawik E, et al. Mechanochemical bond scission for the activation of drugs. Nat Chem. 2021;13(2):131–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rengen Fan.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflicts of Interest/Competing Interests

The authors have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors have approved and agreed to publish this manuscript.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

L. Chen, X. Wan, and X. Shan wrote the manuscript and prepared the figures with equal contributions. W. Zha proofread the manuscript. R. Fan raised the concept, conducted the literature review, and wrote and revised the manuscript and figures. All authors approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wan, X., Shan, X. et al. Smart PROTACs Enable Controllable Protein Degradation for Precision Cancer Therapy. Mol Diagn Ther 26, 283–291 (2022). https://doi.org/10.1007/s40291-022-00586-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-022-00586-2

Navigation