Skip to main content
Log in

Proteomic Alterations in Salivary Exosomes Derived from Human Papillomavirus-Driven Oropharyngeal Cancer

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Increasing evidence supports the notion that human papillomavirus (HPV) DNA integration onto the human genome can influence and alter the molecular cargo in the exosomes derived from head and neck cancer cells. However, the molecular cargo of salivary exosomes derived from HPV-driven oropharyngeal cancer (HPV-driven OPC) remains unelucidated.

Methods and materials

Salivary exosomes morphology and molecular characterizations were examined using the nanoparticle tracking (NTA), western blot analysis, transmission electron microscopy (TEM) and mass spectrometry analysis.

Results

We report that HPV16 DNA was detected (80%) in isolated salivary exosomes of HPV-driven OPC patients. Importantly, we demonstrate elevated protein levels of six main glycolytic enzymes [i.e., aldolase (ALDOA), glyceraldehye-3-phosphate dehydrogenase (GAPDH), lactate dehydrogenase A/B (LDHA and LDHB), phosphoglycerate kinase 1 (PGK1) and pyruvate kinase M1/2 (PKM)] in isolated salivary exosomes of HPV-driven OPC patients, suggesting a novel mechanism underlying the potential role of salivary exosomes in mediating the reciprocal interplay between glucose metabolism and HPV-driven OPC.

Conclusion

Our data demonstrate the potential diagnostic value of HPV16 DNA and glycolytic enzymes in salivary exosomes in discriminating healthy controls from HPV-driven OPC patients, thereby opening new avenues in the future for clinical translation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma—an update. CA Cancer J Clin. 2015;65(5):401–21.

    Article  PubMed  Google Scholar 

  3. Dahlstrom KR, Li G, Tortolero-Luna G, Wei Q, Sturgis EM. Differences in history of sexual behavior between patients with oropharyngeal squamous cell carcinoma and patients with squamous cell carcinoma at other head and neck sites. Head Neck. 2011;33(6):847–55.

    Article  PubMed  Google Scholar 

  4. D’Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356(19):1944–56.

    Article  CAS  PubMed  Google Scholar 

  5. Ellington TD, Henley SJ, Senkomago V, O’Neil ME, Wilson RJ, Singh S, et al. Trends in incidence of cancers of the oral cavity and pharynx—United States 2007–2016. MMWR Morb Mortal Wkly Rep. 2020;69(15):433–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lechner M, Breeze CE, O’Mahony JF, Masterson L. Early detection of HPV-associated oropharyngeal cancer. Lancet. 2019;393(10186):2123.

    Article  PubMed  Google Scholar 

  7. Hong A, Lee CS, Jones D, Veillard AS, Zhang M, Zhang X, et al. Rising prevalence of human papillomavirus-related oropharyngeal cancer in Australia over the last 2 decades. Head Neck. 2016;38(5):743–50.

    Article  PubMed  Google Scholar 

  8. Sun CX, Bennett N, Tran P, Tang KD, Lim Y, Frazer I, et al. A Pilot Study into the Association between Oral Health Status and Human Papillomavirus-16 Infection. Diagnostics (Basel). 2017;7(1):11.

    Article  PubMed Central  Google Scholar 

  9. D’Souza G, McNeel TS, Fakhry C. Understanding personal risk of oropharyngeal cancer: risk-groups for oncogenic oral HPV infection and oropharyngeal cancer. Ann Oncol. 2017;28(12):3065–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gillison ML, Broutian T, Pickard RK, Tong ZY, Xiao W, Kahle L, et al. Prevalence of oral HPV infection in the United States, 2009–2010. JAMA. 2012;307(7):693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382(9895):889–99.

    Article  PubMed  Google Scholar 

  12. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007;370(9590):890–907.

    Article  CAS  PubMed  Google Scholar 

  13. Pan C, Issaeva N, Yarbrough WG. HPV-driven oropharyngeal cancer: current knowledge of molecular biology and mechanisms of carcinogenesis. Cancers Head Neck. 2018;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomark Prev. 2005;14(2):467–75.

    Article  CAS  Google Scholar 

  15. Tang KD, Vasani S, Taheri T, Walsh LJ, Hughes BGM, Kenny L, et al. An occult HPV-driven oropharyngeal squamous cell carcinoma discovered through a saliva test. Front Oncol. 2020;10:408. https://doi.org/10.3389/fonc.2020.00408

  16. Koshiol J, Lindsay L, Pimenta JM, Poole C, Jenkins D, Smith JS. Persistent human papillomavirus infection and cervical neoplasia: a systematic review and meta-analysis. Am J Epidemiol. 2008;168(2):123–37.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78(21):11451–60.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rampias T, Sasaki C, Weinberger P, Psyrri A. E6 and e7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J Natl Cancer Inst. 2009;101(6):412–23.

    Article  CAS  PubMed  Google Scholar 

  19. Kim SH, Koo BS, Kang S, Park K, Kim H, Lee KR, et al. HPV integration begins in the tonsillar crypt and leads to the alteration of p16, EGFR and c-myc during tumor formation. Int J Cancer. 2007;120(7):1418–25.

    Article  CAS  PubMed  Google Scholar 

  20. Tang KD, Baeten K, Kenny L, Frazer IH, Scheper G, Punyadeera C. Unlocking the potential of saliva-based test to detect HPV-16-driven oropharyngeal cancer. Cancers. 2019;11(4):473.

    Article  CAS  PubMed Central  Google Scholar 

  21. Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L, Bristow CA, et al. Characterization of HPV and host genome interactions in primary head and neck cancers. Proc Natl Acad Sci USA. 2014;111(43):15544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harden ME, Munger K. Human papillomavirus 16 E6 and E7 oncoprotein expression alters microRNA expression in extracellular vesicles. Virology. 2017;508:63–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kannan A, Hertweck KL, Philley JV, Wells RB, Dasgupta S. Genetic mutation and exosome signature of human papilloma virus associated oropharyngeal cancer. Sci Rep. 2017;7(1):46102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ludwig S, Sharma P, Theodoraki MN, Pietrowska M, Yerneni SS, Lang S, et al. Molecular and functional profiles of exosomes from HPV(+) and HPV(-) head and neck cancer cell lines. Front Oncol. 2018;8:445.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ludwig S, Marczak L, Sharma P, Abramowicz A, Gawin M, Widlak P, et al. Proteomes of exosomes from HPV(+) or HPV(-) head and neck cancer cells: differential enrichment in immunoregulatory proteins. Oncoimmunology. 2019;8(7):1593808.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tang KD, Menezes L, Baeten K, Walsh LJ, Whitfield BCS, Batstone MD, et al. Oral HPV16 prevalence in oral potentially malignant disorders and oral cavity cancers. Biomolecules. 2020;10(2):223.

    Article  CAS  PubMed Central  Google Scholar 

  27. Tang KD, Vasani S, Menezes L, Taheri T, Walsh LJ, Hughes BGM, et al. Oral HPV16 DNA as a screening tool to detect early oropharyngeal squamous cell carcinoma. Cancer Sci. 2020;111(10):3854–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R, et al. Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem. 2015;63(3):181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang KD, Kenny L, Frazer IH, Punyadeera C. High-risk human papillomavirus detection in oropharyngeal cancers: comparison of saliva sampling methods. Head Neck. 2019;41(5):1484–9.

    Article  PubMed  Google Scholar 

  30. Tang KD, Liu J, Russell PJ, Clements JA, Ling MT. Gamma-tocotrienol induces apoptosis in prostate cancer cells by targeting the Ang-1/Tie-2 signalling pathway. Int J Mol Sci. 2019;20(5):1164.

    Article  CAS  PubMed Central  Google Scholar 

  31. Zhang X, Sadowski P, Punyadeera C. Evaluation of sample preparation methods for label-free quantitative profiling of salivary proteome. J Proteom. 2020;210:103532.

    Article  CAS  Google Scholar 

  32. Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2(8):1896–906.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Walsh T, Atherton JJ, Kostner K, Schulz B, Punyadeera C. Identification and Validation of a Salivary Protein Panel to Detect Heart Failure Early. Theranostics. 2017;7(18):4350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clough T, Thaminy S, Ragg S, Aebersold R, Vitek O. Statistical protein quantification and significance analysis in label-free LC-MS experiments with complex designs. BMC Bioinformatics. 2012;13(Suppl 16):S6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Z, Li F, Rufo J, Chen C, Yang S, Li L, et al. Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus-associated oropharyngeal cancer detection. J Mol Diagn. 2020;22(1):50–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nair S, Tang KD, Kenny L, Punyadeera C. Salivary exosomes as potential biomarkers in cancer. Oral Oncol. 2018;84:31–40.

    Article  CAS  PubMed  Google Scholar 

  37. Lin Y, Dong H, Deng W, Lin W, Li K, Xiong X, et al. Evaluation of salivary exosomal chimeric GOLM1-NAA35 RNA as a potential biomarker in esophageal carcinoma. Clin Cancer Res. 2019;25(10):3035–45.

    Article  CAS  PubMed  Google Scholar 

  38. Muller Bark J, Kulasinghe A, Amenabar JM, Punyadeera C. Exosomes in cancer. Adv Clin Chem. 2021;101:1–40.

    Article  PubMed  Google Scholar 

  39. Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C. Diagnostic potential of saliva: current state and future applications. Clin Chem. 2011;57(5):675–87.

    Article  CAS  PubMed  Google Scholar 

  40. Tang KD, Kenny L, Perry C, Frazer I, Punyadeera C. The overexpression of salivary cytokeratins as potential diagnostic biomarkers in head and neck squamous cell carcinomas. Oncotarget. 2017;8(42):72272–80.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guenat D, Hermetet F, Pretet JL, Mougin C. Exosomes and other extracellular vesicles in HPV transmission and carcinogenesis. Viruses. 2017;9(8):211.

    Article  PubMed Central  Google Scholar 

  42. Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sultmann H, et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015;11(3):e1004712.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang HF, Wang SS, Tang YJ, Chen Y, Zheng M, Tang YL, et al. The double-edged sword-how human papillomaviruses interact with immunity in head and neck cancer. Front Immunol. 2019;10:653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmidt H, Kulasinghe A, Perry C, Nelson C, Punyadeera C. A liquid biopsy for head and neck cancers. Expert Rev Mol Diagn. 2016;16(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  46. Hanna GJ, Lau CJ, Mahmood U, Supplee JG, Mogili AR, Haddad RI, et al. Salivary HPV DNA informs locoregional disease status in advanced HPV-associated oropharyngeal cancer. Oral Oncol. 2019;95:120–6.

    Article  CAS  PubMed  Google Scholar 

  47. Toussaint-Smith E, Donner DB, Roman A. Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene. 2004;23(17):2988–95.

    Article  CAS  PubMed  Google Scholar 

  48. Bardos JI, Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta. 2005;1755(2):107–20.

    CAS  PubMed  Google Scholar 

  49. Rodolico V, Arancio W, Amato MC, Aragona F, Cappello F, Di Fede O, et al. Hypoxia inducible factor-1 alpha expression is increased in infected positive HPV16 DNA oral squamous cell carcinoma and positively associated with HPV16 E7 oncoprotein. Infect Agent Cancer. 2011;6(1):18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo Y, Meng X, Ma J, Zheng Y, Wang Q, Wang Y, et al. Human papillomavirus 16 E6 contributes HIF-1alpha induced Warburg effect by attenuating the VHL-HIF-1alpha interaction. Int J Mol Sci. 2014;15(5):7974–86.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fan R, Hou WJ, Zhao YJ, Liu SL, Qiu XS, Wang EH, et al. Overexpression of HPV16 E6/E7 mediated HIF-1alpha upregulation of GLUT1 expression in lung cancer cells. Tumour Biol. 2016;37(4):4655–63.

    Article  CAS  PubMed  Google Scholar 

  52. Crusius K, Auvinen E, Alonso A. Enhancement of EGF- and PMA-mediated MAP kinase activation in cells expressing the human papillomavirus type 16 E5 protein. Oncogene. 1997;15(12):1437–44.

    Article  CAS  PubMed  Google Scholar 

  53. Martinez-Ramirez I, Carrillo-Garcia A, Contreras-Paredes A, Ortiz-Sanchez E, Cruz-Gregorio A, Lizano M. Regulation of cellular metabolism by high-risk human papillomaviruses. Int J Mol Sci. 2018;19(7):1839.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of Saliva and Liquid Biopsy Translational Laboratory for their assistance in sample collection and processing. We also thank Dana Middleton and the staff at the Princess Alexandra Hospital for their assistance in the recruitment of study patients and collection of clinical samples. In addition, we thank the volunteers who took part in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chamindie Punyadeera.

Ethics declarations

Funding

CP is currently receiving funding from Cancer Australia (APP1145657), NHMRC Ideas Grant (APP 2002576), National Institutes of Health (NIH) (1R21EB030349-01), Garnett Passes and Rodney Williams Foundation and Royal Brisbane Women’s Hospital Foundation.

Conflict of interest

The authors declare that there is no conflict of interest

Ethics approval

This study was approved by the Medical Ethical Institutional Board of University of Queensland (HREC No: 2014000862); Queensland University of Technology (HREC No: 1400000617 and 1400000641) and by the Princess Alexandra Hospital (PAH) Ethics Review Board (HREC Number: HREC/12/QPAH/381), following the Declaration of Helsinki 1964 and its later amendments or comparable ethical standards.

Consent to participate

All participants provided written informed consent, prior to saliva sample collection.

Consent for publication

Not applicable.

Availability of data and material

All datasets generated for this study are included in the article.

Code availability

Not applicable.

Author contributions

All authors have read and agree to the published version of the manuscript. KDT, YX and CP: conceptualization. All authors: methodology, validation, formal analysis, data curation, investigation, and writing—review and editing. KDT: writing—original draft preparation. CP: funding acquisition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, K.D., Wan, Y., Zhang, X. et al. Proteomic Alterations in Salivary Exosomes Derived from Human Papillomavirus-Driven Oropharyngeal Cancer. Mol Diagn Ther 25, 505–515 (2021). https://doi.org/10.1007/s40291-021-00538-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-021-00538-2

Navigation