Skip to main content
Log in

Serum Levels of miR-146a in Patients with Psoriasis

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Psoriasis is an immune-mediated disease with interactions between genetic and environmental factors. An increasing number of studies are demonstrating the importance of microRNAs (miRNAs) in the pathogenesis of psoriasis. miR-146a, a dominant negative regulator of inflammation, has been consistently reported as overexpressed in the skin and peripheral blood mononuclear cells (PBMCs) of patients with psoriasis. Expression and/or function of this miRNA is highly influenced by genetic variations, some of which have already been associated with susceptibility to psoriasis.

Objective

We sought to study the importance of miR-146a in patients with moderate-to-severe psoriasis and to understand the impact of rs57095329 and rs2910164 polymorphisms in a psoriatic Portuguese population.

Methods

miR-146a circulating levels were quantified using molecular biology techniques in 99 patients with moderate-to-severe psoriasis (35 female, 64 male; age 47.4 ± 10.9 years) and 78 healthy individuals (52 female, 26 male; age 42.4 ± 10.1 years). miRNA expression was correlated with clinicopathological features as well as with genetic data such as the presence of human leukocyte antigen (HLA)-C*0602 allele and two miR-146a polymorphisms (rs2910164 and rs57095329).

Results

miR-146a serum levels were 3.7-fold higher in patients with psoriasis than in controls (p < 0.0001, area under the curve [AUC] 0.75; 95% confidence interval [CI] 0.66–0.83). Of note, miR-146a circulating levels positively correlated with Psoriasis Area and Severity Index (p < 0.05) and body surface area (p < 0.05) indexes. No variations in miR-146a levels were observed with rs2910164 and rs57095329 genotypes.

Conclusion

Circulating miR-146a levels were upregulated in patients with psoriasis, especially in those with active disease. To the best of our knowledge, this is the largest study with a homogenous psoriasis population, and our data could shed light on the pathogenesis of psoriasis, paving the way for new avenues for disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christophers E. Psoriasis—epidemiology and clinical spectrum. Clin Exp Dermatol. 2001;26(4):314–20. https://doi.org/10.1046/j.1365-2230.2001.00832.x.

    Article  CAS  PubMed  Google Scholar 

  2. Kaushik SB, Lebwohl MG. Psoriasis: which therapy for which patient: Psoriasis comorbidities and preferred systemic agents. J Am Acad Dermatol. 2019;80(1):27–40. https://doi.org/10.1016/j.jaad.2018.06.057.

    Article  PubMed  Google Scholar 

  3. Mustonen A, Mattila K, Leino M, Koulu L, Tuominen R. Psoriasis causes significant economic burden to patients. Dermatol Ther (Heidelb). 2014;4(1):115–24. https://doi.org/10.1007/s13555-014-0053-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tampa M, Sarbu MI, Mitran MI, Mitran CI, Matei C, Georgescu SR. The pathophysiological mechanisms and the quest for biomarkers in psoriasis, a stress-related skin disease. Dis Mark. 2018;2018:5823684. https://doi.org/10.1155/2018/5823684.

    Article  CAS  Google Scholar 

  5. Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol. 2017;140(3):645–53. https://doi.org/10.1016/j.jaci.2017.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Capon F. The genetic basis of psoriasis. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18122526.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Greb JE, Goldminz AM, Elder JT, Lebwohl MG, Gladman DD, Wu JJ, et al. Psoriasis. Nat Rev Dis Prim. 2016;2:16082. https://doi.org/10.1038/nrdp.2016.82.

    Article  PubMed  Google Scholar 

  8. Mahil SK, Capon F, Barker JN. Genetics of psoriasis. Dermatol Clin. 2015;33(1):1–11. https://doi.org/10.1016/j.det.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  9. Hwang ST, Nijsten T, Elder JT. Recent highlights in psoriasis research. J Investig Dermatol. 2017;137(3):550–6. https://doi.org/10.1016/j.jid.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  10. Ogawa K, Okada Y. The current landscape of psoriasis genetics in 2020. J Dermatol Sci. 2020;99(1):2–8. https://doi.org/10.1016/j.jdermsci.2020.05.008.

    Article  CAS  PubMed  Google Scholar 

  11. Alshobaili HA, Shahzad M, Al-Marshood A, Khalil A, Settin A, Barrimah I. Genetic background of psoriasis. Int J Health Sci (Qassim). 2010;4(1):23–9.

    PubMed Central  Google Scholar 

  12. Hawkes JE, Nguyen GH, Fujita M, Florell SR, Callis Duffin K, Krueger GG, et al. microRNAs in psoriasis. J Investig Dermatol. 2016;136(2):365–71. https://doi.org/10.1038/JID.2015.409.

    Article  CAS  PubMed  Google Scholar 

  13. Reolid A, Munoz-Aceituno E, Abad-Santos F, Ovejero-Benito MC, Dauden E. Epigenetics in non-tumor immune-mediated skin diseases. Mol Diagn Ther. 2021;25(2):137–61. https://doi.org/10.1007/s40291-020-00507-1.

    Article  CAS  PubMed  Google Scholar 

  14. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8. https://doi.org/10.1016/j.cell.2007.02.006.

    Article  CAS  PubMed  Google Scholar 

  15. Frischknecht L, Vecellio M, Selmi C. The role of epigenetics and immunological imbalance in the etiopathogenesis of psoriasis and psoriatic arthritis. Ther Adv Musculoskelet Dis. 2019;11:1759720X19886505. https://doi.org/10.1177/1759720X19886505.

  16. Liu Y, Liu Q. MicroRNAs as regulatory elements in psoriasis. Open Med (Wars). 2016;11(1):336–40. https://doi.org/10.1515/med-2016-0063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development. 2005;132(21):4645–52. https://doi.org/10.1242/dev.02070.

    Article  CAS  PubMed  Google Scholar 

  18. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol. 2005;3(3):e85. https://doi.org/10.1371/journal.pbio.0030085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Q, Wu DH, Han L, Deng JW, Zhou L, He R, et al. Roles of microRNAs in psoriasis: immunological functions and potential biomarkers. Exp Dermatol. 2017;26(4):359–67. https://doi.org/10.1111/exd.13249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012;30:295–312. https://doi.org/10.1146/annurev-immunol-020711-075013.

    Article  CAS  PubMed  Google Scholar 

  21. Singhvi G, Manchanda P, Krishna Rapalli V, Kumar Dubey S, Gupta G, Dua K. MicroRNAs as biological regulators in skin disorders. Biomed Pharmacother. 2018;108:996–1004. https://doi.org/10.1016/j.biopha.2018.09.090.

    Article  CAS  PubMed  Google Scholar 

  22. Xiao S, Liu X, Wang X, Lv H, Zhao J, Guo X, et al. Plasma microRNA expression profiles in psoriasis. J Immunol Res. 2020;2020:1561278. https://doi.org/10.1155/2020/1561278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiong Y, Chen H, Liu L, Lu L, Wang Z, Tian F, et al. microRNA-130a promotes human keratinocyte viability and migration and inhibits apoptosis through direct regulation of STK40-mediated NF-kappaB pathway and indirect regulation of SOX9-meditated JNK/MAPK pathway: a potential role in psoriasis. DNA Cell Biol. 2017;36(3):219–26. https://doi.org/10.1089/dna.2016.3517.

    Article  CAS  PubMed  Google Scholar 

  24. Mensa E, Recchioni R, Marcheselli F, Giuliodori K, Consales V, Molinelli E, et al. MiR-146a-5p correlates with clinical efficacy in patients with psoriasis treated with the tumour necrosis factor-alpha inhibitor adalimumab. Br J Dermatol. 2018;179(3):787–9. https://doi.org/10.1111/bjd.16659.

    Article  CAS  PubMed  Google Scholar 

  25. Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs: novel regulators in skin inflammation. Clin Exp Dermatol. 2008;33(3):312–5. https://doi.org/10.1111/j.1365-2230.2008.02804.x.

    Article  CAS  PubMed  Google Scholar 

  26. Srivastava A, Nikamo P, Lohcharoenkal W, Li D, Meisgen F, Xu Landen N, et al. MicroRNA-146a suppresses IL-17-mediated skin inflammation and is genetically associated with psoriasis. J Allergy Clin Immunol. 2017;139(2):550–61. https://doi.org/10.1016/j.jaci.2016.07.025.

    Article  CAS  PubMed  Google Scholar 

  27. Xia P, Fang X, Zhang ZH, Huang Q, Yan KX, Kang KF, et al. Dysregulation of miRNA146a versus IRAK1 induces IL-17 persistence in the psoriatic skin lesions. Immunol Lett. 2012;148(2):151–62. https://doi.org/10.1016/j.imlet.2012.09.004.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang W, Yi X, Guo S, Shi Q, Wei C, Li X, et al. A single-nucleotide polymorphism of miR-146a and psoriasis: an association and functional study. J Cell Mol Med. 2014;18(11):2225–34. https://doi.org/10.1111/jcmm.12359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gong HB, Zhang SL, Wu XJ, Pu XM, Kang XJ. Association of rs2910164 polymorphism in MiR-146a gene with psoriasis susceptibility: a meta-analysis. Medicine (Baltimore). 2019;98(6):e14401. https://doi.org/10.1097/MD.0000000000014401.

    Article  CAS  Google Scholar 

  30. Park R, Lee WJ, Ji JD. Association between the three functional miR-146a single-nucleotide polymorphisms, rs2910164, rs57095329, and rs2431697, and autoimmune disease susceptibility: a meta-analysis. Autoimmunity. 2016;49(7):451–8. https://doi.org/10.3109/08916934.2016.1171854.

    Article  CAS  PubMed  Google Scholar 

  31. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2008;105(20):7269–74. https://doi.org/10.1073/pnas.0802682105.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Luo X, Yang W, Ye DQ, Cui H, Zhang Y, Hirankarn N, et al. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet. 2011;7(6):e1002128. https://doi.org/10.1371/journal.pgen.1002128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang G, Tam LS, Li EK, Kwan BC, Chow KM, Luk CC, et al. Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J Rheumatol. 2010;37(12):2516–22. https://doi.org/10.3899/jrheum.100308.

    Article  CAS  PubMed  Google Scholar 

  34. Bunce M, O’Neill CM, Barnardo MC, Krausa P, Browning MJ, Morris PJ, et al. Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens. 1995;46(5):355–67. https://doi.org/10.1111/j.1399-0039.1995.tb03127.x.

    Article  CAS  PubMed  Google Scholar 

  35. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  36. Chen XM, Zhao Y, Wu XD, Wang MJ, Yu H, Lu JJ, et al. Novel findings from determination of common expressed plasma exosomal microRNAs in patients with psoriatic arthritis, psoriasis vulgaris, rheumatoid arthritis, and gouty arthritis. Discov Med. 2019;28(151):47–68.

    PubMed  Google Scholar 

  37. Lovendorf MB, Zibert JR, Gyldenlove M, Ropke MA, Skov L. MicroRNA-223 and miR-143 are important systemic biomarkers for disease activity in psoriasis. J Dermatol Sci. 2014;75(2):133–9. https://doi.org/10.1016/j.jdermsci.2014.05.005.

    Article  CAS  PubMed  Google Scholar 

  38. Chiricozzi A, Nograles KE, Johnson-Huang LM, Fuentes-Duculan J, Cardinale I, Bonifacio KM, et al. IL-17 induces an expanded range of downstream genes in reconstituted human epidermis model. PLoS ONE. 2014;9(2):e90284. https://doi.org/10.1371/journal.pone.0090284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harden JL, Krueger JG, Bowcock AM. The immunogenetics of psoriasis: a comprehensive review. J Autoimmun. 2015;64:66–73. https://doi.org/10.1016/j.jaut.2015.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin DA, Towne JE, Kricorian G, Klekotka P, Gudjonsson JE, Krueger JG, et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J Invest Dermatol. 2013;133(1):17–26. https://doi.org/10.1038/jid.2012.194.

    Article  CAS  PubMed  Google Scholar 

  41. Saba R, Sorensen DL, Booth SA. MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol. 2014;5:578. https://doi.org/10.3389/fimmu.2014.00578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meisgen F, Xu Landen N, Wang A, Rethi B, Bouez C, Zuccolo M, et al. MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. J Investig Dermatol. 2014;134(7):1931–40. https://doi.org/10.1038/jid.2014.89.

    Article  CAS  PubMed  Google Scholar 

  43. Niimoto T, Nakasa T, Ishikawa M, Okuhara A, Izumi B, Deie M, et al. MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet Disord. 2010;11:209. https://doi.org/10.1186/1471-2474-11-209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang L, Boldin MP, Yu Y, Liu CS, Ea CK, Ramakrishnan P, et al. miR-146a controls the resolution of T cell responses in mice. J Exp Med. 2012;209(9):1655–70. https://doi.org/10.1084/jem.20112218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fan X, Yang S, Sun LD, Liang YH, Gao M, Zhang KY, et al. Comparison of clinical features of HLA-Cw*0602-positive and -negative psoriasis patients in a Han Chinese population. Acta Derm Venereol. 2007;87(4):335–40. https://doi.org/10.2340/00015555-0253.

    Article  PubMed  Google Scholar 

  46. Gudjonsson JE, Karason A, Runarsdottir EH, Antonsdottir AA, Hauksson VB, Jonsson HH, et al. Distinct clinical differences between HLA-Cw*0602 positive and negative psoriasis patients—an analysis of 1019 HLA-C- and HLA-B-typed patients. J Investig Dermatol. 2006;126(4):740–5. https://doi.org/10.1038/sj.jid.5700118.

    Article  CAS  PubMed  Google Scholar 

  47. Hermann H, Runnel T, Aab A, Baurecht H, Rodriguez E, Magilnick N, et al. miR-146b probably assists miRNA-146a in the suppression of keratinocyte proliferation and inflammatory responses in psoriasis. J Investig Dermatol. 2017;137(9):1945–54. https://doi.org/10.1016/j.jid.2017.05.012.

    Article  CAS  PubMed  Google Scholar 

  48. Maharaj AB, Naidoo P, Ghazi T, Abdul NS, Dhani S, Docrat TF, et al. MiR-146a G/C rs2910164 variation in South African Indian and Caucasian patients with psoriatic arthritis. BMC Med Genet. 2018;19(1):48. https://doi.org/10.1186/s12881-018-0565-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chatzikyriakidou A, Voulgari PV, Georgiou I, Drosos AA. The role of microRNA-146a (miR-146a) and its target IL-1R-associated kinase (IRAK1) in psoriatic arthritis susceptibility. Scand J Immunol. 2010;71(5):382–5. https://doi.org/10.1111/j.1365-3083.2010.02381.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the patients followed at HSA-CHUP. We also acknowledge the nurses from the Dermatology outpatient clinic and Mrs Dina Lopes for collaboration in sample collection and Ms. Maria Rebelo for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Torres.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflict of interest

Bárbara Leal, Cláudia Carvalho, Ana Marta Ferreira, Miguel Nogueira, Sandra Brás, Berta M. Silva, Manuela Selores, Paulo P. Costa, and Tiago Torres have no conflicts of interest that are directly relevant to the content of this article.

Availability of Data and Material

Not applicable.

Ethics approval

The study was approved by the hospital Institutional Ethical Committee.

Consent

Written informed consent was obtained from every participant in the study in accordance with Helsinki Declaration.

Author contributions

The study was conceived and designed by Bárbara Leal, Cláudia Carvalho, and Tiago Torres. Material preparation and data collection and analysis were performed by Bárbara Leal, Cláudia Carvalho, Ana Marta, Miguel Nogueira, and Sandra Brás. The first draft of the manuscript was written by Bárbara Leal and Cláudia Carvalho. Miguel Nogueira, Berta M. Silva, Manuela Selores, Paulo Pinho e Costa, and Tiago Torres critically revised the manuscript, and the final version was read and approved by all authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, B., Carvalho, C., Ferreira, A.M. et al. Serum Levels of miR-146a in Patients with Psoriasis. Mol Diagn Ther 25, 475–485 (2021). https://doi.org/10.1007/s40291-021-00531-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-021-00531-9

Navigation