Skip to main content
Log in

The Potential Use of Peripheral Blood Mononuclear Cells as Biomarkers for Treatment Response and Outcome Prediction in Psychiatry: A Systematic Review

  • Systematic Review
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Psychiatric disorders have a major impact on the global burden of disease while therapeutic interventions remain insufficient to adequately treat a large number of patients. Regrettably, the efficacy of several psychopharmacological treatment regimens becomes apparent only after 4–6 weeks, and at this point, a significant number of patients present as non-responsive. As such, many patients go weeks/months without appropriate treatment or symptom management. Adequate biomarkers for treatment success and outcome prediction are thus urgently needed.

Objective

With this systematic review, we provide an overview of the use of peripheral blood mononuclear cells (PBMCs) and their signaling pathways in evaluating and/or predicting the effectiveness of different treatment regimens in the course of psychiatric illnesses. We highlight PBMC characteristics that (i) reflect treatment presence, (ii) allow differentiation of responders from non-responders, and (iii) prove predictive at baseline with regard to treatment outcome for a broad range of psychiatric intervention strategies.

Review Methods

A PubMed database search was performed to extract papers investigating the relation between any type of PBMC characteristic and treatment presence and/or outcome in patients suffering from severe mental illness. Criteria for eligibility were: written in English; psychiatric diagnosis based on DSM-III-R or newer; PBMC isolation via gradient centrifugation; comparison between treated and untreated patients via PBMC features; sample size ≥ n = 5 per experimental group. Papers not researching in vivo treatment effects between patients and healthy controls, non-clinical trials, and non-hypothesis-/data-driven (e.g., -omics designs) approaches were excluded.

Data Synthesis

Twenty-nine original articles were included and qualitatively summarized. Antidepressant and antipsychotic treatments were mostly reflected by intracellular inflammatory markers while intervention with mood stabilizers was evidenced through cell maturation pathways. Lastly, cell viability parameters mirrored predominantly non-pharmacological therapeutic strategies. As for response prediction, PBMC (subtype) counts and telomerase activity seemed most promising for antidepressant treatment outcome determination; full length brain-derived neurotrophic factor (BDNF)/truncated BDNF were shown to be most apt to prognosticate antipsychotic treatment.

Conclusions

We conclude that, although inherent limitations to and heterogeneity in study designs in combination with the scarce number of original studies hamper unambiguous identification, several PBMC characteristics—mostly related to inflammatory pathways and cell viability—indeed show promise towards establishment as clinically relevant treatment biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wittchen H-U, Jacobi F. Size and burden of mental disorders in Europe–a critical review and appraisal of 27 studies. Eur Neuropsychopharmacol. 2005;15(4):357–76.

    CAS  PubMed  Google Scholar 

  2. Vigo D, Thornicroft G, Atun R. Estimating the true global burden of mental illness. Lancet Psychiatry. 2016;3(2):171–8.

    PubMed  Google Scholar 

  3. Chesney E, Goodwin GM, Fazel S. Risks of all-cause and suicide mortality in mental disorders: a meta-review. World Psychiatry. 2014;13(2):153–60.

    PubMed  PubMed Central  Google Scholar 

  4. Nordentoft M, Mortensen PB, Pedersen CB. Absolute risk of suicide after first hospital contact in mental disorder. Arch Gen Psychiatry. 2011;68(10):1058–64.

    PubMed  Google Scholar 

  5. Souery D, Papakostas GI, Trivedi MH. Treatment-resistant depression. J Clin Psychiatry. 2006;67(Suppl 6):16–22.

    PubMed  Google Scholar 

  6. Elkis H, Buckley PF. Treatment-Resistant Schizophrenia. Psychiatr Clin N Am. 2016;39(2):239–65.

    Google Scholar 

  7. Gitlin M. Treatment-resistant bipolar disorder. Mol Psychiatry. 2006;11(3):227–40.

    CAS  PubMed  Google Scholar 

  8. Gilmer TP, Dolder CR, Lacro JP, Folsom DP, Lindamer L, Garcia P, et al. Adherence to treatment with antipsychotic medication and health care costs among Medicaid beneficiaries with schizophrenia. Am J Psychiatry. 2004;161(4):692–9.

    PubMed  Google Scholar 

  9. Lingam R, Scott J. Treatment non-adherence in affective disorders. Acta Psychiatr Scand. 2002;105(3):164–72.

    PubMed  Google Scholar 

  10. van Calker D, Zobel I, Dykierek P, Deimel CM, Kech S, Lieb K, et al. Time course of response to antidepressants: predictive value of early improvement and effect of additional psychotherapy. J Affect Disord. 2009;114(1–3):243–53.

    PubMed  Google Scholar 

  11. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163(11):1905–17.

    PubMed  Google Scholar 

  12. Lacro JP, Dunn LB, Dolder CR, Jeste DV. Prevalence of and risk factors for medication nonadherence in patients with schizophrenia: a comprehensive review of recent literature [CME]. J Clin Psychiatry. 2002;63(10):892–909.

    PubMed  Google Scholar 

  13. Krzystanek M, Krysta K, Skałacka K. Treatment compliance in the long-term paranoid schizophrenia telemedicine study. J Technol Behav Sci. 2017;2(2):84–7.

    PubMed  PubMed Central  Google Scholar 

  14. Singh I, Rose N. Biomarkers in psychiatry. Nature. 2009;460(7252):202–7.

    CAS  PubMed  Google Scholar 

  15. Samson AC, Meisenzahl E, Scheuerecker J, Rose E, Schoepf V, Wiesmann M, et al. Brain activation predicts treatment improvement in patients with major depressive disorder. J Psychiatr Res. 2011;45(9):1214–22.

    PubMed  Google Scholar 

  16. Furey ML, Drevets WC, Hoffman EM, Frankel E, Speer AM, Zarate CA Jr. Potential of pretreatment neural activity in the visual cortex during emotional processing to predict treatment response to scopolamine in major depressive disorder. JAMA Psychiatry. 2013;70(3):280–90.

    PubMed  PubMed Central  Google Scholar 

  17. Cook IA, Hunter AM, Gilmer WS, Iosifescu DV, Zisook S, Burgoyne KS, et al. Quantitative electroencephalogram biomarkers for predicting likelihood and speed of achieving sustained remission in major depression: a report from the biomarkers for rapid identification of treatment effectiveness in major depression (BRITE-MD) trial. J Clin Psychiatry. 2013;74(1):51–6.

    CAS  PubMed  Google Scholar 

  18. Binder EB, Jeffrey Newport D, Zach EB, Smith AK, Deveau TC, Altshuler LL, et al. A serotonin transporter gene polymorphism predicts peripartum depressive symptoms in an at-risk psychiatric cohort. J Psychiatr Res. 2010;44(10):640–6.

    PubMed  Google Scholar 

  19. McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF, et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet. 2006;78(5):804–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hunter AM, Leuchter AF, Power RA, Muthén B, McGrath PJ, Lewis CM, et al. A genome-wide association study of a sustained pattern of antidepressant response. J Psychiatr Res. 2013;47(9):1157–65.

    PubMed  PubMed Central  Google Scholar 

  21. Tansey KE, Guipponi M, Perroud N, Bondolfi G, Domenici E, Evans D, et al. Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis. PLoS Med. 2012;9(10):e1001326.

    PubMed  PubMed Central  Google Scholar 

  22. Brouwer JP, Appelhof BC, van Rossum EFC, Koper JW, Fliers E, Huyser J, et al. Prediction of treatment response by HPA-axis and glucocorticoid receptor polymorphisms in major depression. Psychoneuroendocrinology. 2006;31(10):1154–63.

    CAS  PubMed  Google Scholar 

  23. Hepgul N, Cattaneo A, Zunszain PA, Pariante CM. Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC Med. 2013;5(11):28.

    Google Scholar 

  24. Mustapic M, Eitan E, Werner JK Jr, Berkowitz ST, Lazaropoulos MP, Tran J, et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci. 2017;22(11):278.

    Google Scholar 

  25. Pelsers MM, Chapelle JP, Knapen M, Vermeer C, Muijtjens AM, Hermens WT, et al. Influence of age and sex and day-to-day and within-day biological variation on plasma concentrations of fatty acid-binding protein and myoglobin in healthy subjects. Clin Chem. 1999;45(3):441–3.

    CAS  PubMed  Google Scholar 

  26. Macy EM, Hayes TE, Tracy RP. Variability in the measurement of C-reactive protein in healthy subjects: implications for reference intervals and epidemiological applications. Clin Chem. 1997;43(1):52–8.

    CAS  PubMed  Google Scholar 

  27. Garde AH, Hansen AM, Skovgaard LT, Christensen JM. Seasonal and biological variation of blood concentrations of total cholesterol, dehydroepiandrosterone sulfate, hemoglobin A(1c), IgA, prolactin, and free testosterone in healthy women. Clin Chem. 2000;46(4):551–9.

    CAS  PubMed  Google Scholar 

  28. Johansen JS, Lottenburger T, Nielsen HJ, Jensen JEB, Svendsen MN, Kollerup G, et al. Diurnal, weekly, and long-time variation in serum concentrations of YKL-40 in healthy subjects. Cancer Epidemiol Biomarkers Prev. 2008;17(10):2603–8.

    CAS  PubMed  Google Scholar 

  29. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem. 1991;56(6):2007–17.

    CAS  PubMed  Google Scholar 

  30. Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles [Internet]. 2014. https://doi.org/10.3402/jev.v3.23743.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén S-E, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE. 2012;7(7):e41361.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Herberth M, Koethe D, Cheng TMK, Krzyszton ND, Schoeffmann S, Guest PC, et al. Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients. Mol Psychiatry. 2011;16(8):848–59.

    CAS  PubMed  Google Scholar 

  33. van Beveren NJM, Buitendijk GHS, Swagemakers S, Krab LC, Röder C, de Haan L, et al. Marked reduction of AKT1 expression and deregulation of AKT1-associated pathways in peripheral blood mononuclear cells of schizophrenia patients. PLoS ONE. 2012;7(2):e32618.

    PubMed  PubMed Central  Google Scholar 

  34. Gavin DP, Sharma RP. Chromatin from peripheral blood mononuclear cells as biomarkers for epigenetic abnormalities in schizophrenia. Cardiovasc Psychiatry Neurol. 2009;2009:409562. https://doi.org/10.1155/2009/409562.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rollins B, Martin MV, Morgan L, Vawter MP. Analysis of whole genome biomarker expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet [Internet]. 2010. https://doi.org/10.1002/ajmg.b.31062.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berkeley MB, Daussin S, Hernandez MC, Bayer BM. In vitro effects of cocaine, lidocaine and monoamine uptake inhibitors on lymphocyte proliferative responses. Immunopharmacol Immunotoxicol. 1994;16(2):165–78.

    CAS  PubMed  Google Scholar 

  37. Al-Amin MM, Uddin MMN, Reza HM. Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. Clin Psychopharmacol Neurosci. 2013;11(3):144.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;2(350):g7647.

    Google Scholar 

  39. Liu M-L, Zhang X-T, Du X-Y, Fang Z, Liu Z, Xu Y, et al. Severe disturbance of glucose metabolism in peripheral blood mononuclear cells of schizophrenia patients: a targeted metabolomic study. J Transl Med. 2015;14(13):226.

    Google Scholar 

  40. Chase KA, Cone JJ, Rosen C, Sharma RP. The value of interleukin 6 as a peripheral diagnostic marker in schizophrenia. BMC Psychiatry. 2016;20(16):152.

    Google Scholar 

  41. Vawter MP, Philibert R, Rollins B, Ruppel PL, Osborn TW. Exon array biomarkers for the differential diagnosis of schizophrenia and bipolar disorder. Mol Neuropsychiatry. 2018;3(4):197–213.

    PubMed  PubMed Central  Google Scholar 

  42. Glatt SJ, Tsuang MT, Winn M, Chandler SD, Collins M, Lopez L, et al. Blood-based gene expression signatures of infants and toddlers with autism. J Am Acad Child Adolesc Psychiatry. 2012;51(9):934-44.e2.

    PubMed  PubMed Central  Google Scholar 

  43. Sun X-Y, Lu J, Zhang L, Song H-T, Zhao L, Fan H-M, et al. Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. J Clin Neurosci. 2015;22(3):570–4.

    CAS  PubMed  Google Scholar 

  44. Chen Y, Ouyang J, Liu S, Zhang S, Chen P, Jiang T. The role of cytokines in the peripheral blood of major depressive patients. Clin Lab. 2017;63(7):1207–12.

    CAS  PubMed  Google Scholar 

  45. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.

    CAS  PubMed  Google Scholar 

  46. Weizman R, Laor N, Podliszewski E, Notti I, Djaldetti M, Bessler H. Cytokine production in major depressed patients before and after clomipramine treatment. Biol Psychiatry. 1994;35(1):42–7.

    CAS  PubMed  Google Scholar 

  47. Weizman R, Laor N, Barber Y, Hermesh H, Notti I, Djaldetti M, et al. Cytokine production in obsessive-compulsive disorder. Biol Psychiatry. 1996;40(9):908–12.

    CAS  PubMed  Google Scholar 

  48. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430(6996):213–8.

    CAS  PubMed  Google Scholar 

  49. Alcocer-Gómez E, de Miguel M, Casas-Barquero N, Núñez-Vasco J, Sánchez-Alcazar JA, Fernández-Rodríguez A, et al. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun. 2014;36:111–7.

    PubMed  Google Scholar 

  50. Silver H, Susser E, Danovich L, Bilker W, Youdim M, Goldin V, et al. SSRI augmentation of antipsychotic alters expression of GABA(A) receptor and related genes in PMC of schizophrenia patients. Int J Neuropsychopharmacol. 2011;14(5):573–84.

    CAS  PubMed  Google Scholar 

  51. Kawakami T, Kawakami Y, Kitaura J. Protein kinase C beta (PKC beta): normal functions and diseases. J Biochem. 2002;132(5):677–82.

    CAS  PubMed  Google Scholar 

  52. Lintas C, Sacco R, Garbett K, Mirnics K, Militerni R, Bravaccio C, et al. Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression. Mol Psychiatry. 2009;14(7):705–18.

    CAS  PubMed  Google Scholar 

  53. Calfa G, Kademian S, Ceschin D, Vega G, Rabinovich GA, Volosin M. Characterization and functional significance of glucocorticoid receptors in patients with major depression: modulation by antidepressant treatment. Psychoneuroendocrinology. 2003;28(5):687–701.

    CAS  PubMed  Google Scholar 

  54. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.

    CAS  PubMed  Google Scholar 

  55. Lindqvist D, Wolkowitz OM, Picard M, Ohlsson L, Bersani FS, Fernström J, et al. Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology. 2018;43(7):1557–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bartolotti N, Lazarov O. CREB signals as PBMC-based biomarkers of cognitive dysfunction: A novel perspective of the brain-immune axis. Brain Behav Immun. 2019;78:9–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Einoch R, Weinreb O, Mandiuk N, Youdim MBH, Bilker W, Silver H. The involvement of BDNF-CREB signaling pathways in the pharmacological mechanism of combined SSRI- antipsychotic treatment in schizophrenia. Eur Neuropsychopharmacol. 2017;27(5):470–83.

    CAS  PubMed  Google Scholar 

  58. Fabbri C, Crisafulli C, Gurwitz D, Stingl J, Calati R, Albani D, et al. Neuronal cell adhesion genes and antidepressant response in three independent samples. Pharmacogenomics J. 2015;15(6):538–48.

    CAS  PubMed  Google Scholar 

  59. Rzezniczek S, Obuchowicz M, Datka W, Siwek M, Dudek D, Kmiotek K, et al. Decreased sensitivity to paroxetine-induced inhibition of peripheral blood mononuclear cell growth in depressed and antidepressant treatment-resistant patients. Transl Psychiatry. 2016;6(5):e827.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yoo AS, Staahl BT, Chen L, Crabtree GR. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature. 2009;460(7255):642–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Qin Z, Wang P-Y, Su D-F, Liu X. miRNA-124 in Immune System and Immune Disorders. Front Immunol. 2016;4(7):406.

    Google Scholar 

  62. He S, Liu X, Jiang K, Peng D, Hong W, Fang Y, et al. Alterations of microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment patients with major depressive disorder. J Psychiatr Res. 2016;78:65–71.

    PubMed  Google Scholar 

  63. Yao R-W, Wang Y, Chen L-L. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21(5):542–51.

    CAS  PubMed  Google Scholar 

  64. Cui X, Sun X, Niu W, Kong L, He M, Zhong A, et al. Long non-coding RNA: potential diagnostic and therapeutic biomarker for major depressive disorder. Med Sci Monit. 2016;31(22):5240–8.

    Google Scholar 

  65. Grosse L, Carvalho LA, Birkenhager TK, Hoogendijk WJ, Kushner SA, Drexhage HA, et al. Circulating cytotoxic T cells and natural killer cells as potential predictors for antidepressant response in melancholic depression. Restoration of T regulatory cell populations after antidepressant therapy. Psychopharmacology. 2016;233(9):1679–88.

    CAS  PubMed  Google Scholar 

  66. Wolkowitz OM, Mellon SH, Epel ES, Lin J, Reus VI, Rosser R, et al. Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response. Mol Psychiatry. 2012;17(2):164–72.

    CAS  PubMed  Google Scholar 

  67. Song X-Q, Lv L-X, Li W-Q, Hao Y-H, Zhao J-P. The interaction of nuclear factor-kappa B and cytokines is associated with schizophrenia. Biol Psychiatry. 2009;65(6):481–8.

    CAS  PubMed  Google Scholar 

  68. Reale M, Patruno A, De Lutiis MA, Pesce M, Felaco M, Di Giannantonio M, et al. Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls. BMC Neurosci. 2011;25(12):13.

    Google Scholar 

  69. Liu S, Zhang F, Shugart YY, Yang L, Li X, Liu Z, et al. The early growth response protein 1-miR-30a-5p-neurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Transl Psychiatry. 2017;7(1):e998.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mauri MC, Rudelli R, Vanni S, Panza G, Sicaro A, Audisio D, et al. Cholecystokinin, β-endorphin and vasoactive intestinal peptide in peripheral blood mononuclear cells of drug-naive schizophrenic patients treated with haloperidol compared to healthy controls. Psychiatry Res. 1998;78(1–2):45–50.

    CAS  PubMed  Google Scholar 

  71. Wodarz N, Fritze J, Riederer P. 3H-spiperone binding to peripheral mononuclear cells in psychiatric in-patients. Prog Neuropsychopharmacol Biol Psychiatry. 1996;20(3):459–70.

    CAS  PubMed  Google Scholar 

  72. Shariati GR, Ahangari G, Hossein-nezhad A, Asadi SM, Pooyafard F, Ahmadkhaniha HR. Expression changes of serotonin receptor gene subtype 5HT3a in peripheral blood mononuclear cells from schizophrenic patients treated with haloperidol and Olanzapin, Iran. J Allergy Asthma Immunol. 2009;8(3):135–9.

    CAS  Google Scholar 

  73. Casademont J, Garrabou G, Miró O, López S, Pons A, Bernardo M, et al. Neuroleptic treatment effect on mitochondrial electron transport chain: peripheral blood mononuclear cells analysis in psychotic patients. J Clin Psychopharmacol. 2007;27(3):284–8.

    CAS  PubMed  Google Scholar 

  74. Hinze-Selch D, Becker EW, Stein GM, Berg PA, Mullington J, Holsboer F, et al. Effects of clozapine on in vitro immune parameters: a longitudinal study in clozapine-treated schizophrenic patients. Neuropsychopharmacology. 1998;19(2):114–22.

    CAS  PubMed  Google Scholar 

  75. Dell’Osso B, D’Addario C, Carlotta Palazzo M, Benatti B, Camuri G, Galimberti D, et al. Epigenetic modulation of BDNF gene: differences in DNA methylation between unipolar and bipolar patients. J Affect Disord. 2014;166:330–3.

    PubMed  Google Scholar 

  76. D’Addario C, Dell’Osso B, Palazzo MC, Benatti B, Lietti L, Cattaneo E, et al. Selective DNA methylation of BDNF promoter in bipolar disorder: differences among patients with BDI and BDII. Neuropsychopharmacology. 2012;37(7):1647–55.

    PubMed  PubMed Central  Google Scholar 

  77. D’Addario C, Dell’Osso B, Galimberti D, Palazzo MC, Benatti B, Di Francesco A, et al. Epigenetic modulation of BDNF gene in patients with major depressive disorder. Biol Psychiatry. 2013;73(2):e6-7.

    PubMed  Google Scholar 

  78. Bubeníková-Valesová V, Horácek J, Vrajová M, Höschl C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev. 2008;32(5):1014–23.

    PubMed  Google Scholar 

  79. Pinacho R, Villalmanzo N, Lalonde J, Haro JM, Meana JJ, Gill G, et al. The transcription factor SP4 is reduced in postmortem cerebellum of bipolar disorder subjects: control by depolarization and lithium. Bipolar Disord. 2011;13(5–6):474–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pinacho R, Valdizán EM, Pilar-Cuellar F, Prades R, Tarragó T, Haro JM, et al. Increased SP4 and SP1 transcription factor expression in the postmortem hippocampus of chronic schizophrenia. J Psychiatr Res. 2014;58:189–96.

    PubMed  Google Scholar 

  81. Pinacho R, Saia G, Fusté M, Meléndez-Pérez I, Villalta-Gil V, Haro JM, et al. Phosphorylation of transcription factor specificity protein 4 is increased in peripheral blood mononuclear cells of first-episode psychosis. PLoS ONE. 2015;10(4):e0125115.

    PubMed  PubMed Central  Google Scholar 

  82. Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun. 2001;280(3):720–5.

    CAS  PubMed  Google Scholar 

  83. Li X, Liu M, Cai Z, Wang G, Li X. Regulation of glycogen synthase kinase-3 during bipolar mania treatment. Bipolar Disord. 2010;12(7):741–52.

    PubMed  PubMed Central  Google Scholar 

  84. Clark RE, Xie H, Brunette MF. Benzodiazepine prescription practices and substance abuse in persons with severe mental illness. J Clin Psychiatry. 2004;65(2):151–5.

    PubMed  Google Scholar 

  85. Rocca P, Bellone G, Benna P, Bergamasco B, Ravizza L, Ferrero P. Peripheral-type benzodiazepine receptors and diazepam binding inhibitor-like immunoreactivity distribution in human peripheral blood mononuclear cells. Immunopharmacology. 1993;25(2):163–78.

    CAS  PubMed  Google Scholar 

  86. De Picker LJ, Morrens M, Chance SA, Boche D. Microglia and brain plasticity in acute psychosis and schizophrenia illness course: a meta-review. Front Psychiatry. 2017;16(8):238.

    Google Scholar 

  87. Ottoy J, De Picker L, Verhaeghe J, Deleye S, Wyffels L, Kosten L, et al. F-PBR111 PET imaging in healthy controls and schizophrenia: test-retest reproducibility and quantification of neuroinflammation. J Nucl Med. 2018;59(8):1267–74.

    CAS  PubMed  Google Scholar 

  88. Ferrarese C, Appollonio I, Frigo M, Perego M, Piolti R, Trabucchi M, et al. Decreased density of benzodiazepine receptors in lymphocytes of anxious patients: reversal after chronic diazepam treatment. Acta Psychiatr Scand. 1990;82(2):169–73.

    CAS  PubMed  Google Scholar 

  89. Rocca P, Beoni AM, Eva C, Ferrero P, Zanalda E, Ravizza L. Peripheral benzodiazepine receptor messenger RNA is decreased in lymphocytes of generalized anxiety disorder patients. Biol Psychiatry. 1998;43(10):767–73.

    CAS  PubMed  Google Scholar 

  90. Kéri S, Szabó C, Kelemen O. Expression of Toll-Like Receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain Behav Immun. 2014;40:235–43.

    PubMed  Google Scholar 

  91. González-Pinto A, Mosquera F, Palomino A, Alberich S, Gutiérrez A, Haidar K, et al. Increase in brain-derived neurotrophic factor in first episode psychotic patients after treatment with atypical antipsychotics. Int Clin Psychopharmacol. 2010;25(4):241–5.

    PubMed  Google Scholar 

  92. Pırıldar Ş, Gönül AS, Taneli F, Akdeniz F. Low serum levels of brain-derived neurotrophic factor in patients with schizophrenia do not elevate after antipsychotic treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(4):709–13.

    PubMed  Google Scholar 

  93. Tan YL, Zhou DF, Cao LY, Zou YZ, Zhang XY. Decreased BDNF in serum of patients with chronic schizophrenia on long-term treatment with antipsychotics. Neurosci Lett. 2005;382(1–2):27–32.

    CAS  PubMed  Google Scholar 

  94. Lee B-H, Kim Y-K. Increased plasma brain-derived neurotropic factor, not nerve growth factor-beta, in schizophrenia patients with better response to risperidone treatment. Neuropsychobiology. 2009;59(1):51–8.

    CAS  PubMed  Google Scholar 

  95. Parikh V, Evans DR, Khan MM, Mahadik SP. Nerve growth factor in never-medicated first-episode psychotic and medicated chronic schizophrenic patients: possible implications for treatment outcome. Schizophr Res. 2003;60(2–3):117–23.

    PubMed  Google Scholar 

  96. Martinez-Cengotitabengoa M, MacDowell KS, Alberich S, Diaz FJ, Garcia-Bueno B, Rodriguez-Jimenez R, et al. BDNF and NGF signalling in early phases of psychosis: relationship with inflammation and response to antipsychotics after 1 year. Schizophr Bull. 2016;42(1):142–51.

    CAS  PubMed  Google Scholar 

  97. O’Donnell M, Catts V, Ward P, Liebert B, Lloyd A, Wakefield D, et al. Increased production of interleukin-2 (IL-2) but not soluble interleukin-2 receptors (sIL-2R) in unmedicated patients with schizophrenia and schizophreniform disorder. Psychiatry Res. 1996;65(3):171–8.

    PubMed  Google Scholar 

  98. Gao M, Jin W, Qian Y, Ji L, Feng G, Sun J. Effect of N-methyl-D-aspartate receptor antagonist on T helper cell differentiation induced by phorbol-myristate-acetate and ionomycin. Cytokine. 2011;56(2):458–65.

    CAS  PubMed  Google Scholar 

  99. Sourlingas TG, Issidorides MR, Alevizos B, Kontaxakis VP, Chrysanthou-Piterou M, Livaniou E, et al. Lymphocytes from bipolar and schizophrenic patients share common biochemical markers related to histone synthesis and histone cell membrane localization characteristic of an activated state. Psychiatry Res. 2003;118(1):55–67.

    CAS  PubMed  Google Scholar 

  100. Cazzullo CL, Saresella M, Roda K, Calvo MG, Bertrando P, Doria S, et al. Increased levels of CD8+ and CD4+ 45RA+ lymphocytes in schizophrenic patients. Schizophr Res. 1998;31(1):49–55.

    CAS  PubMed  Google Scholar 

  101. Sinyor M, Schaffer A, Levitt A. The sequenced treatment alternatives to relieve depression (STAR* D) trial: a review. Can J Psychiatry. 2010;55(3):126–35.

    PubMed  Google Scholar 

  102. Parikh SV, LeBlanc SR, Ovanessian MM. Advancing bipolar disorder: key lessons from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Can J Psychiatry. 2010;55(3):136–43.

    PubMed  Google Scholar 

  103. Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry. 2011;168(12):1303–10.

    PubMed  Google Scholar 

  104. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70(7):663–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hodes GE, Kana V, Menard C, Merad M, Russo SJ. Neuroimmune mechanisms of depression [Internet]. Nat Neurosci. 2015;18:1386–93. https://doi.org/10.1038/nn.4113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chan MK, Guest PC, Levin Y, Umrania Y, Schwarz E, Bahn S, et al. Converging evidence of blood-based biomarkers for schizophrenia: an update. Int Rev Neurobiol. 2011;101:95–144.

    CAS  PubMed  Google Scholar 

  107. Holland RL. What makes a good biomarker? Adv Precis Med. 2016;1(1):66–77.

    Google Scholar 

  108. Lai C-Y, Scarr E, Udawela M, Everall I, Chen WJ, Dean B. Biomarkers in schizophrenia: A focus on blood based diagnostics and theranostics. World J Psychiatry. 2016;6(1):102–17.

    PubMed  PubMed Central  Google Scholar 

  109. García-Bueno B, Bioque M, Mac-Dowell KS, Barcones MF, Martínez-Cengotitabengoa M, Pina-Camacho L, et al. Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophr Bull. 2014;40(2):376–87.

    PubMed  Google Scholar 

  110. Kahn R, Schmidt T, Golestani K. Mismatch between circulating cytokines and spontaneous cytokine production by leukocytes in hyperinflammatory COVID‐19. J Leukoc Biol [Internet]. 2020. https://doi.org/10.1002/JLB.5COVBCR0720-310RR.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Drexhage RC, Knijff EM, Padmos RC, van der Heul-Nieuwenhuijzen L, Beumer W, Versnel MA, et al. The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother. 2010;10(1):59–76.

    CAS  PubMed  Google Scholar 

  112. Yarlagadda A, Alfson E, Clayton AH. The blood brain barrier and the role of cytokines in neuropsychiatry. Psychiatry. 2009;6(11):18–22.

    PubMed  Google Scholar 

  113. Prado CHD, Rizzo LB, Wieck A, Lopes RP, Teixeira AL, Grassi-Oliveira R, et al. Reduced regulatory T cells are associated with higher levels of Th1/TH17 cytokines and activated MAPK in type 1 bipolar disorder. Psychoneuroendocrinology. 2013;38(5):667–76.

    PubMed  Google Scholar 

  114. Chan LL-Y, Laverty DJ, Smith T, Nejad P, Hei H, Gandhi R, et al. Accurate measurement of peripheral blood mononuclear cell concentration using image cytometry to eliminate RBC-induced counting error. J Immunol Methods. 2013;388(1–2):25–32.

    CAS  PubMed  Google Scholar 

  115. Youssef MM, Underwood MD, Huang Y-Y, Hsiung S-C, Liu Y, Simpson NR, et al. Association of BDNF Val66Met polymorphism and brain BDNF levels with major depression and suicide. Int J Neuropsychopharmacol. 2018;21(6):528–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ryan KM, Dunne R, McLoughlin DM. BDNF plasma levels and genotype in depression and the response to electroconvulsive therapy. Brain Stimul. 2018;11(5):1123–31.

    PubMed  Google Scholar 

  117. Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;10(9):1089–93.

    CAS  PubMed  Google Scholar 

  118. Peng S, Li W, Lv L, Zhang Z, Zhan X. BDNF as a biomarker in diagnosis and evaluation of treatment for schizophrenia and depression. Discov Med. 2018;26(143):127–36.

    PubMed  Google Scholar 

  119. Xu M-Q, St Clair D, Ott J, Feng G-Y, He L. Brain-derived neurotrophic factor gene C-270T and Val66Met functional polymorphisms and risk of schizophrenia: a moderate-scale population-based study and meta-analysis. Schizophr Res. 2007;91(1–3):6–13.

    PubMed  Google Scholar 

  120. Ahmed AO, Mantini AM, Fridberg DJ, Buckley PF. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: a meta-analysis. Psychiatry Res. 2015;226(1):1–13.

    PubMed  Google Scholar 

  121. Fernandes BS, Steiner J, Berk M, Molendijk ML, Gonzalez-Pinto A, Turck CW, et al. Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. Mol Psychiatry. 2015;20(9):1108–19.

    CAS  PubMed  Google Scholar 

  122. Zhou L, Somasundaram R, Nederhof RF, Dijkstra G, Faber KN, Peppelenbosch MP, et al. Impact of human granulocyte and monocyte isolation procedures on functional studies. Clin Vaccine Immunol. 2012;19(7):1065–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J Immunol. 2001;167(9):5067–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chase KA, Feiner B, Ramaker MJ, Hu E, Rosen C, Sharma RP. Examining the effects of the histone methyltransferase inhibitor BIX-01294 on histone modifications and gene expression in both a clinical population and mouse models. PLoS ONE. 2019;14(6):e0216463.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Angst J, Azorin J-M, Bowden CL, Perugi G, Vieta E, Gamma A, et al. Prevalence and characteristics of undiagnosed bipolar disorders in patients with a major depressive episode: the BRIDGE study. Arch Gen Psychiatry. 2011;68(8):791–8.

    PubMed  Google Scholar 

  126. Hirschfeld RMA, Lewis L, Vornik LA. Perceptions and impact of bipolar disorder: how far have we really come? Results of the national depressive and manic-depressive association 2000 survey of individuals with bipolar disorder. J Clin Psychiatry. 2003;64(2):161–74.

    PubMed  Google Scholar 

  127. Robison HM, Escalante P, Valera E, Erskine CL, Auvil L, Sasieta HC, et al. Precision immunoprofiling to reveal diagnostic signatures for latent tuberculosis infection and reactivation risk stratification. Integr Biol. 2019;11(1):16–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jobbe Goossens.

Ethics declarations

Funding

No funding was received to conduct or prepare the manuscript, nor to pay for the open access fee.

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

Not applicable.

Consent

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goossens, J., Morrens, M. & Coppens, V. The Potential Use of Peripheral Blood Mononuclear Cells as Biomarkers for Treatment Response and Outcome Prediction in Psychiatry: A Systematic Review. Mol Diagn Ther 25, 283–299 (2021). https://doi.org/10.1007/s40291-021-00516-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-021-00516-8

Navigation