Skip to main content
Log in

Circulating MicroRNAs as Potential Molecular Biomarkers for Intracranial Aneurysmal Rupture

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Introduction

Diagnosis of the rupture of an intracranial aneurysm (IA) relies on sophisticated neuro-imaging studies, and molecular biomarkers to identify an IA or predict its rupture are still unavailable.

Objective

Our objective was to determine the plasma microRNA (miRNA) expression profile in patients with ruptured IA presenting as aneurysmal subarachnoid hemorrhage (aSAH) and identify potential biomarkers of aneurysmal rupture.

Methods

Plasma miRNA profiling was carried out using quantitative real-time polymerase chain reaction (qRT-PCR) in 20 patients with aSAH and 20 age- and sex-matched healthy controls. Eight differentially expressed miRNAs were validated by qPCR in a larger cohort of 88 patients with aSAH and 110 healthy controls. A receiver operating characteristic (ROC) curve was constructed to evaluate the overall performance of the miRNA-based assay. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to determine the potential pathway of miRNA-target genes.

Results

The miRNA profiles were clearly distinct in patients compared with controls. Validation studies showed that three upregulated miRNAs (miR-15a-5p, miR-34a-5p, miR-374a-5p) and five downregulated miRNAs (miR-146a-5p, miR-376c-3p, miR-18b-5p, miR-24-3p, miR-27b-3p) could distinguish patients with aSAH from healthy controls with high predicted probability (0.865 and 0.995, respectively). Further, the expression levels of the eight candidate miRNAs were significantly dysregulated only in aSAH cases and not in patients with SAH due to other causes. Plasma miR-146a-5p and miR-27b-3p were associated with clinical outcomes in patients with aSAH. Functional analysis of the eight differentially expressed miRNA showed that the target genes involved in signaling pathways were related to inflammation.

Conclusions

Our study determined the plasma miRNA signature of ruptured IAs and identified eight candidate miRNAs that could be useful biomarkers for this condition. We hypothesize that these differentially expressed miRNAs may play pivotal roles in IA pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feigin VL, Rinkel GJ, Lawes CM, Algra A, Bennett DA, van Gijn J, et al. Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke. 2005;36(12):2773–800. https://doi.org/10.1161/01.STR.0000190838.02954.e8.

    Article  PubMed  Google Scholar 

  2. Al-Khindi T, Macdonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2010;41(8):e519–e536536. https://doi.org/10.1161/strokeaha.110.581975.

    Article  PubMed  Google Scholar 

  3. Aneurysmal DS, Hemorrhage S. J Neurosurg Anesthesiol. 2015;27(3):222–40. https://doi.org/10.1097/ana.0000000000000130.

    Article  Google Scholar 

  4. Zacharia BE, Hickman ZL, Grobelny BT, DeRosa P, Kotchetkov I, Ducruet AF, et al. Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am. 2010;21(2):221–33. https://doi.org/10.1016/j.nec.2009.10.002.

    Article  PubMed  Google Scholar 

  5. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet (London, England). 2007;369(9558):306–18. https://doi.org/10.1016/s0140-6736(07)60153-6.

    Article  Google Scholar 

  6. de Torres R, Mancha F. Usefulness of TNFR1 as biomarker of intracranial aneurysm in patients with spontaneous subarachnoid hemorrhage. 2019;6(1):Fso431. https://doi.org/10.2144/fsoa-2019-0090.

  7. Jung CS, Lange B, Zimmermann M, Seifert V. CSF and serum biomarkers focusing on cerebral vasospasm and ischemia after subarachnoid hemorrhage. Stroke Res Treatment. 2013;2013:560305. https://doi.org/10.1155/2013/560305.

    Article  CAS  Google Scholar 

  8. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402. https://doi.org/10.3389/fendo.2018.00402.

    Article  CAS  Google Scholar 

  9. Fernandez-Hernando C, Moore KJ. MicroRNA modulation of cholesterol homeostasis. Arterioscler Thromb Vasc Biol. 2011;31(11):2378–82. https://doi.org/10.1161/atvbaha.111.226688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsai PC, Liao YC, Wang YS, Lin HF, Lin RT, Juo SH. Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J Vasc Res. 2013;50(4):346–54. https://doi.org/10.1159/000351767.

    Article  CAS  PubMed  Google Scholar 

  11. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are promising novel biomarkers. PLoS ONE. 2008;3(9):e3148. https://doi.org/10.1371/journal.pone.0003148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6(1):1–9. https://doi.org/10.1227/00006123-198001000-00001.

    Article  CAS  PubMed  Google Scholar 

  13. Noe DA, Weedn V, Bell WR. Direct spectrophotometry of serum hemoglobin: an Allen correction compared with a three-wavelength polychromatic analysis. Clin Chem. 1984;30(5):627–30.

    Article  CAS  Google Scholar 

  14. Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods (San Diego, Calif). 2013;59(1):S1–6. https://doi.org/10.1016/j.ymeth.2012.09.015.

    Article  CAS  Google Scholar 

  15. D'Haene B, Mestdagh P, Hellemans J, Vandesompele J. miRNA expression profiling: from reference genes to global mean normalization. Methods Mol Biol (Clifton, NJ). 2012;822:261–72. https://doi.org/10.1007/978-1-61779-427-8_18.

    Article  CAS  Google Scholar 

  16. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk–database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform. 2011;44(5):839–47. https://doi.org/10.1016/j.jbi.2011.05.002.

    Article  CAS  PubMed  Google Scholar 

  17. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697. https://doi.org/10.1038/nmeth.3485.

  18. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40(web server issue):W498–504. https://doi.org/10.1093/nar/gks494.

  19. Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD. Cytoscape web: an interactive web-based network browser. Bioinformatics (Oxford, England). 2010;26(18):2347–8. https://doi.org/10.1093/bioinformatics/btq430.

    Article  CAS  Google Scholar 

  20. Molyneux AJ, Kerr RS, Birks J, Ramzi N, Yarnold J, Sneade M, et al. Risk of recurrent subarachnoid haemorrhage, death, or dependence and standardised mortality ratios after clipping or coiling of an intracranial aneurysm in the International Subarachnoid Aneurysm Trial (ISAT): long-term follow-up. Lancet Neurol. 2009;8(5):427–33. https://doi.org/10.1016/s1474-4422(09)70080-8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110(3):483–95. https://doi.org/10.1161/circresaha.111.247452.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang YF, Xu HM, Yu F, Wang M, Li MY, Xu T, et al. Crosstalk between microRNAs and peroxisome proliferator-activated receptors and their emerging regulatory roles in cardiovascular pathophysiology. PPAR Res. 2018;2018:8530371. https://doi.org/10.1155/2018/8530371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang WH, Wang YH, Zheng LL, Li XW, Hao F, Guo D. MicroRNA-29a: a potential biomarker in the development of intracranial aneurysm. J Neurol Sci. 2016;364:84–9. https://doi.org/10.1016/j.jns.2016.03.010.

    Article  CAS  PubMed  Google Scholar 

  24. Meeuwsen JAL, van Thfn G, van Rheenen W, Rinkel GJE, Veldink JH, Ruigrok YM. Circulating microRNAs in patients with intracranial aneurysms. PLoS ONE. 2017;12(5):e0176558. https://doi.org/10.1371/journal.pone.0176558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jin H, Li C, Ge H, Jiang Y, Li Y. Circulating microRNA: a novel potential biomarker for early diagnosis of intracranial aneurysm rupture a case control study. J Transl Med. 2013;11:296. https://doi.org/10.1186/1479-5876-11-296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su XW, Chan AHY, Lu G, Lin M, Sze J, Zhou JY et al. Circulating microRNA 132–3p and 324–3p profiles in patients after acute aneurysmal subarachnoid hemorrhage. PLoS One. 2015;10(12):e0144724-e. https://doi.org/10.1371/journal.pone.0144724.t001.

  27. Li P, Zhang Q, Wu X, Yang X, Zhang Y, Li Y, et al. Circulating microRNAs serve as novel biological markers for intracranial aneurysms. J Am Heart Assoc. 2014;3(5):e000972. https://doi.org/10.1161/jaha.114.000972.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bache S, Rasmussen R, Rossing M, Laigaard FP, Nielsen FC, Moller K. MicroRNA changes in cerebrospinal fluid after subarachnoid hemorrhage. Stroke. 2017;48(9):2391–8. https://doi.org/10.1161/strokeaha.117.017804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lai N-S, Zhang J-Q, Qin F-Y, Sheng B, Fang X-G, Li Z-B. Serum microRNAs are non-invasive biomarkers for the presence and progression of subarachnoid haemorrhage. Biosci Rep. 2017;37(1):BSR20160480. https://doi.org/10.1042/BSR20160480.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Christopher.

Ethics declarations

Funding

The equipment (Applied Biosystems™ 7500 Real-Time PCR Systems) and consumables used for the study were  provided by the Vision Group on Science and Technology (VGST), Government of Karnataka, India (VGST/CESEM (2014-15)/GRD-311/2015-16). Ms. Supriya is a recipient of a CSIR-SRF fellowship. No other sources of funding were used to conduct this study or prepare this manuscript.

Disclosures

Manjunath Supriya, Rita Christopher, Bhagavatula Indira Devi, Dhananjaya Ishwar Bhat, and Dhaval Shukla have no conflicts of interest that are directly relevant to the content of this article.

Ethical approval and informed consent

This study was approved by the Ethical Committee of National Institute of Mental Health and Neuro Sciences (No. NIMH/DO/ethics sub-committee 11th meeting/2015). Written informed consent was obtained from all subjects or their legal guardians or to participate in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 111 kb)

Supplementary file2 (PDF 378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supriya, M., Christopher, R., Indira Devi, B. et al. Circulating MicroRNAs as Potential Molecular Biomarkers for Intracranial Aneurysmal Rupture. Mol Diagn Ther 24, 351–364 (2020). https://doi.org/10.1007/s40291-020-00465-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-020-00465-8

Navigation