Skip to main content
Log in

Aptamers as Therapeutic Agents: Has the Initial Euphoria Subsided?

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Aptamers are synthetic DNA or RNA oligonucleotide ligands with great potential for therapeutic applications. A vast number of disease-related targets have been used to identify agonistic, antagonistic, or inhibitory aptamers, or aptamer-based targeting ligands. However, only a few aptamers have reached late-stage clinical trials so far and the commercial infrastructure is still far behind that of other therapeutic agents such as monoclonal antibodies. The desirable properties of aptamers such as selectivity, chemical flexibility, or cost-efficiency are faced by challenges, including a short half-life in vivo, immunogenicity, and entrapment in cellular organelles. Aptamer research is still in an early stage, and a deeper understanding of their structure, target interactions, and pharmacokinetics is necessary to catch up to the clinical market. In this review, we will discuss the benefits and limitations in the development of therapeutic aptamers, as well as the advances and future directions of aptamer research. The progress towards effective therapies seems to be slow, but it has not stopped and the best is yet to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science. 2000;287(5454):820–5.

    Article  CAS  Google Scholar 

  2. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22. https://doi.org/10.1038/346818a0.

    Article  CAS  PubMed  Google Scholar 

  3. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article  CAS  Google Scholar 

  4. Gilboa E, McNamara J 2nd, Pastor F. Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clin Cancer Res. 2013;19(5):1054–62. https://doi.org/10.1158/1078-0432.CCR-12-2067.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou J, Rossi JJ. Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Mol Ther Nucleic Acids. 2014;3:e169. https://doi.org/10.1038/mtna.2014.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9(7):537–50. https://doi.org/10.1038/nrd3141.

    Article  CAS  PubMed  Google Scholar 

  7. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature. 1992;355(6360):564–6. https://doi.org/10.1038/355564a0.

    Article  CAS  PubMed  Google Scholar 

  8. Kubik MF, Stephens AW, Schneider D, Marlar RA, Tasset D. High-affinity RNA ligands to human alpha-thrombin. Nucleic Acids Res. 1994;22(13):2619–26.

    Article  CAS  Google Scholar 

  9. Bompiani KM, Monroe DM, Church FC, Sullenger BA. A high affinity, antidote-controllable prothrombin and thrombin-binding RNA aptamer inhibits thrombin generation and thrombin activity. J Thromb Haemost. 2012;10(5):870–80. https://doi.org/10.1111/j.1538-7836.2012.04679.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tasset DM, Kubik MF, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol. 1997;272(5):688–98. https://doi.org/10.1006/jmbi.1997.1275.

    Article  CAS  PubMed  Google Scholar 

  11. White R, Rusconi C, Scardino E, Wolberg A, Lawson J, Hoffman M, et al. Generation of species cross-reactive aptamers using “toggle” SELEX. Mol Ther. 2001;4(6):567–73. https://doi.org/10.1006/mthe.2001.0495.

    Article  CAS  PubMed  Google Scholar 

  12. Pagratis NC, Bell C, Chang YF, Jennings S, Fitzwater T, Jellinek D, et al. Potent 2’-amino-, and 2’-fluoro-2’-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol. 1997;15(1):68–73. https://doi.org/10.1038/nbt0197-68.

    Article  CAS  PubMed  Google Scholar 

  13. Binkley J, Allen P, Brown DM, Green L, Tuerk C, Gold L. RNA ligands to human nerve growth factor. Nucleic Acids Res. 1995;23(16):3198–205.

    Article  CAS  Google Scholar 

  14. Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–32. https://doi.org/10.1038/nrd1955.

    Article  CAS  PubMed  Google Scholar 

  15. Padilla R, Sousa R. Efficient synthesis of nucleic acids heavily modified with non-canonical ribose 2’-groups using a mutantT7 RNA polymerase (RNAP). Nucleic Acids Res. 1999;27(6):1561–3.

    Article  CAS  Google Scholar 

  16. Lee Y, Urban JH, Xu L, Sullenger BA, Lee J. 2’Fluoro modification differentially modulates the ability of RNAs to activate pattern recognition receptors. Nucleic Acid Ther. 2016;26(3):173–82. https://doi.org/10.1089/nat.2015.0575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biesecker G, Dihel L, Enney K, Bendele RA. Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology. 1999;42(1–3):219–30.

    Article  CAS  Google Scholar 

  18. Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D, et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature. 2002;419(6902):90–4. https://doi.org/10.1038/nature00963.

    Article  CAS  PubMed  Google Scholar 

  19. Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E. Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res. 2003;63(21):7483–9.

    CAS  PubMed  Google Scholar 

  20. Fülle L, Steiner N, Funke M, Gondorf F, Pfeiffer F, Siegl J, et al. RNA aptamers recognizing murine CCL17 Inhibit t cell chemotaxis and reduce contact hypersensitivity in vivo. Mol Ther. 2018;26(1):95–104. https://doi.org/10.1016/j.ymthe.2017.10.005.

    Article  CAS  PubMed  Google Scholar 

  21. Maier KE, Levy M. From selection hits to clinical leads: progress in aptamer discovery. Mol Ther Methods Clin Dev. 2016;5:16014. https://doi.org/10.1038/mtm.2016.14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Domenyuk V, Gatalica Z, Santhanam R, Wei X, Stark A, Kennedy P, et al. Poly-ligand profiling differentiates trastuzumab-treated breast cancer patients according to their outcomes. Nat Commun. 2018;9(1):1219. https://doi.org/10.1038/s41467-018-03631-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mi J, Liu Y, Rabbani ZN, Yang Z, Urban JH, Sullenger BA, et al. In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol. 2010;6(1):22–4. https://doi.org/10.1038/nchembio.277.

    Article  CAS  PubMed  Google Scholar 

  24. Pereira RL, Nascimento IC, Santos AP, Ogusuku IEY, Lameu C, Mayer G, et al. Aptamers: novelty tools for cancer biology. Oncotarget. 2018;9(42):26934–53. https://doi.org/10.18632/oncotarget.25260.

    Article  PubMed  PubMed Central  Google Scholar 

  25. McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, et al. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Investig. 2008;118(1):376–86. https://doi.org/10.1172/JCI33365.

    Article  CAS  PubMed  Google Scholar 

  26. Prodeus A, Abdul-Wahid A, Fischer NW, Huang EH, Cydzik M, Gariepy J. Targeting the PD-1/PD-L1 immune evasion axis with DNA aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. Mol Ther Nucleic Acids. 2015;4:e237. https://doi.org/10.1038/mtna.2015.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lai WY, Huang BT, Wang JW, Lin PY, Yang PC. A novel PD-L1-targeting antagonistic DNA aptamer with antitumor effects. Mol Ther Nucleic Acids. 2016;5(12):e397. https://doi.org/10.1038/mtna.2016.102.

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Lam CH, Li X, West DL, Yang X. Selection of PD1/PD-L1 X-aptamers. Biochimie. 2018;145:125–30. https://doi.org/10.1016/j.biochi.2017.09.006.

    Article  CAS  PubMed  Google Scholar 

  29. Huang BT, Lai WY, Chang YC, Wang JW, Yeh SD, Lin EP, et al. A CTLA-4 antagonizing DNA aptamer with antitumor effect. Mol Ther Nucleic Acids. 2017;8:520–8. https://doi.org/10.1016/j.omtn.2017.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lupold SE, Hicke BJ, Lin Y, Coffey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 2002;62(14):4029–33.

    CAS  PubMed  Google Scholar 

  31. Cerchia L, Esposito CL, Camorani S, Rienzo A, Stasio L, Insabato L, et al. Targeting Axl with an high-affinity inhibitory aptamer. Mol Ther. 2012;20(12):2291–303. https://doi.org/10.1038/mt.2012.163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lupold SE. Aptamers and apple pies: a mini-review of PSMA aptamers and lessons from Donald S. Coffey. Am J Clin Exp Urol. 2018;6(2):78–86.

    PubMed  PubMed Central  Google Scholar 

  33. Esposito CL, Cerchia L, Catuogno S, De Vita G, Dassie JP, Santamaria G, et al. Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol Ther. 2014;22(6):1151–63. https://doi.org/10.1038/mt.2014.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iaboni M, Russo V, Fontanella R, Roscigno G, Fiore D, Donnarumma E, et al. Aptamer-miRNA-212 conjugate sensitizes NSCLC cells to TRAIL. Mol Ther Nucleic Acids. 2016;5:e289. https://doi.org/10.1038/mtna.2016.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Russo V, Paciocco A, Affinito A, Roscigno G, Fiore D, Palma F, et al. Aptamer-miR-34c conjugate affects cell proliferation of non-small-cell lung cancer cells. Mol Ther Nucleic Acids. 2018;13:334–46. https://doi.org/10.1016/j.omtn.2018.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Esposito CL, Nuzzo S, Kumar SA, Rienzo A, Lawrence CL, Pallini R, et al. A combined microRNA-based targeted therapeutic approach to eradicate glioblastoma stem-like cells. J Control Release. 2016;238:43–57. https://doi.org/10.1016/j.jconrel.2016.07.032.

    Article  CAS  PubMed  Google Scholar 

  37. Green LS, Jellinek D, Jenison R, Ostman A, Heldin CH, Janjic N. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry. 1996;35(45):14413–24. https://doi.org/10.1021/bi961544+.

    Article  CAS  PubMed  Google Scholar 

  38. Dunn EN, Hariprasad SM, Sheth VS. An overview of the Fovista and Rinucumab trials and the fate of anti-PDGF medications. Ophthalmic Surg Lasers Imaging Retina. 2017;48(2):100–4. https://doi.org/10.3928/23258160-20170130-02.

    Article  PubMed  Google Scholar 

  39. Cohen MG, Purdy DA, Rossi JS, Grinfeld LR, Myles SK, Aberle LH, et al. First clinical application of an actively reversible direct factor IXa inhibitor as an anticoagulation strategy in patients undergoing percutaneous coronary intervention. Circulation. 2010;122(6):614–22. https://doi.org/10.1161/CIRCULATIONAHA.109.927756.

    Article  CAS  PubMed  Google Scholar 

  40. Ganson NJ, Povsic TJ, Sullenger BA, Alexander JH, Zelenkofske SL, Sailstad JM, et al. Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J Allergy Clin Immunol. 2016;137(5):1610 e7–1613 e7. https://doi.org/10.1016/j.jaci.2015.10.034.

    Article  CAS  Google Scholar 

  41. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333(2):328–35. https://doi.org/10.1016/j.bbrc.2005.05.132.

    Article  CAS  PubMed  Google Scholar 

  42. Lowe J, Araujo J, Yang J, Reich M, Oldendorp A, Shiu V, et al. Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo. Exp Eye Res. 2007;85(4):425–30. https://doi.org/10.1016/j.exer.2007.05.008.

    Article  CAS  PubMed  Google Scholar 

  43. Semeraro F, Morescalchi F, Duse S, Parmeggiani F, Gambicorti E, Costagliola C. Aflibercept in wet AMD: specific role and optimal use. Drug Des Devel Ther. 2013;7:711–22. https://doi.org/10.2147/DDDT.S40215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D’Amore PA. Vascular endothelial cell growth factor-a: not just for endothelial cells anymore. Am J Pathol. 2007;171(1):14–8. https://doi.org/10.2353/ajpath.2007.070385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Drolet DW, Green LS, Gold L, Janjic N. Fit for the eye: aptamers in ocular disorders. Nucleic Acid Ther. 2016;26(3):127–46. https://doi.org/10.1089/nat.2015.0573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;7(1):9–14. https://doi.org/10.4161/19420862.2015.989042.

    Article  CAS  PubMed  Google Scholar 

  47. Hernandez FJ, Kalra N, Wengel J, Vester B. Aptamers as a model for functional evaluation of LNA and 2’-amino LNA. Bioorg Med Chem Lett. 2009;19(23):6585–7. https://doi.org/10.1016/j.bmcl.2009.10.039.

    Article  CAS  PubMed  Google Scholar 

  48. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, et al. Synthetic genetic polymers capable of heredity and evolution. Science. 2012;336(6079):341–4. https://doi.org/10.1126/science.1217622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Green LS, Jellinek D, Bell C, Beebe LA, Feistner BD, Gill SC, et al. Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol. 1995;2(10):683–95.

    Article  CAS  Google Scholar 

  50. Dass CR, Saravolac EG, Li Y, Sun LQ. Cellular uptake, distribution, and stability of 10–23 deoxyribozymes. Antisense Nucleic Acid Drug Dev. 2002;12(5):289–99. https://doi.org/10.1089/108729002761381276.

    Article  CAS  PubMed  Google Scholar 

  51. Lauridsen LH, Rothnagel JA, Veedu RN. Enzymatic recognition of 2’-modified ribonucleoside 5’-triphosphates: towards the evolution of versatile aptamers. Chembiochem. 2012;13(1):19–25. https://doi.org/10.1002/cbic.201100648.

    Article  CAS  PubMed  Google Scholar 

  52. Loakes D, Holliger P. Polymerase engineering: towards the encoded synthesis of unnatural biopolymers. Chem Commun (Camb). 2009;31:4619–31. https://doi.org/10.1039/b903307f.

    Article  CAS  Google Scholar 

  53. Meyer AJ, Garry DJ, Hall B, Byrom MM, McDonald HG, Yang X, et al. Transcription yield of fully 2’-modified RNA can be increased by the addition of thermostabilizing mutations to T7 RNA polymerase mutants. Nucleic Acids Res. 2015;43(15):7480–8. https://doi.org/10.1093/nar/gkv734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vater A, Klussmann S. Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer((R)) therapeutics. Drug Discov Today. 2015;20(1):147–55. https://doi.org/10.1016/j.drudis.2014.09.004.

    Article  CAS  PubMed  Google Scholar 

  55. Nolte A, Klussmann S, Bald R, Erdmann VA, Furste JP. Mirror-design of l-oligonucleotide ligands binding to l-arginine. Nat Biotechnol. 1996;14(9):1116–9. https://doi.org/10.1038/nbt0996-1116.

    Article  CAS  PubMed  Google Scholar 

  56. Klussmann S, Nolte A, Bald R, Erdmann VA, Furste JP. Mirror-image RNA that binds d-adenosine. Nat Biotechnol. 1996;14(9):1112–5. https://doi.org/10.1038/nbt0996-1112.

    Article  CAS  PubMed  Google Scholar 

  57. Hoellenriegel J, Zboralski D, Maasch C, Rosin NY, Wierda WG, Keating MJ, et al. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood. 2014;123(7):1032–9. https://doi.org/10.1182/blood-2013-03-493924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ninichuk V, Clauss S, Kulkarni O, Schmid H, Segerer S, Radomska E, et al. Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3’PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am J Pathol. 2008;172(3):628–37. https://doi.org/10.2353/ajpath.2008.070601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schwoebel F, van Eijk LT, Zboralski D, Sell S, Buchner K, Maasch C, et al. The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys. Blood. 2013;121(12):2311–5. https://doi.org/10.1182/blood-2012-09-456756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Healy JM, Lewis SD, Kurz M, Boomer RM, Thompson KM, Wilson C, et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res. 2004;21(12):2234–46.

    Article  CAS  Google Scholar 

  61. Lee CH, Lee SH, Kim JH, Noh YH, Noh GJ, Lee SW. Pharmacokinetics of a cholesterol-conjugated aptamer against the hepatitis C virus (HCV) NS5B protein. Mol Ther Nucleic Acids. 2015;4:e254. https://doi.org/10.1038/mtna.2015.30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang P, Sun F, Liu S, Jiang S. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J Control Release. 2016;244(Pt B):184–93. https://doi.org/10.1016/j.jconrel.2016.06.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bruno JG. Potential inherent stimulation of the innate immune system by nucleic acid aptamers and possible corrective approaches. Pharmaceuticals (Basel). 2018. https://doi.org/10.3390/ph11030062.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Civit L, Taghdisi SM, Jonczyk A, Hassel SK, Grober C, Blank M, et al. Systematic evaluation of cell-SELEX enriched aptamers binding to breast cancer cells. Biochimie. 2018;145:53–62. https://doi.org/10.1016/j.biochi.2017.10.007.

    Article  CAS  PubMed  Google Scholar 

  65. Avci-Adali M, Steinle H, Michel T, Schlensak C, Wendel HP. Potential capacity of aptamers to trigger immune activation in human blood. PLoS One. 2013;8(7):e68810. https://doi.org/10.1371/journal.pone.0068810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. D’Amico DJ, Masonson HN, Patel M, Adamis AP, Cunningham ET Jr, Guyer DR, et al. Pegaptanib sodium for neovascular age-related macular degeneration: two-year safety results of the two prospective, multicenter, controlled clinical trials. Ophthalmology. 2006;113(6):992 e6–1001 e6. https://doi.org/10.1016/j.ophtha.2006.02.027.

    Article  Google Scholar 

  67. Farman CA, Kornbrust DJ. Oligodeoxynucleotide studies in primates: antisense and immune stimulatory indications. Toxicol Pathol. 2003;31(Suppl):119–22. https://doi.org/10.1080/01926230390174995.

    Article  CAS  PubMed  Google Scholar 

  68. Goebl N, Berridge B, Wroblewski VJ, Brown-Augsburger PL. Development of a sensitive and specific in situ hybridization technique for the cellular localization of antisense oligodeoxynucleotide drugs in tissue sections. Toxicol Pathol. 2007;35(4):541–8. https://doi.org/10.1080/01926230701338958.

    Article  CAS  PubMed  Google Scholar 

  69. Henry SP, Zuckerman JE, Rojko J, Hall WC, Harman RJ, Kitchen D, et al. Toxicological properties of several novel oligonucleotide analogs in mice. Anticancer Drug Des. 1997;12(1):1–14.

    CAS  PubMed  Google Scholar 

  70. Paul A, Avci-Adali M, Neumann B, Guo K, Straub A, Dietz K, et al. Aptamers influence the hemostatic system by activating the intrinsic coagulation pathway in an in vitro Chandler-Loop model. Clin Appl Thromb Hemost. 2010;16(2):161–9. https://doi.org/10.1177/1076029608329580.

    Article  CAS  PubMed  Google Scholar 

  71. Gansler J, Jaax M, Leiting S, Appel B, Greinacher A, Fischer S, et al. Structural requirements for the procoagulant activity of nucleic acids. PLoS One. 2012;7(11):e50399. https://doi.org/10.1371/journal.pone.0050399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Perschbacher K, Smestad JA, Peters JP, Standiford MM, Denic A, Wootla B, et al. Quantitative PCR analysis of DNA aptamer pharmacokinetics in mice. Nucleic Acid Ther. 2015;25(1):11–9. https://doi.org/10.1089/nat.2014.0515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thiel WH, Thiel KW, Flenker KS, Bair T, Dupuy AJ, McNamara JO 2nd, et al. Cell-internalization SELEX: method for identifying cell-internalizing RNA aptamers for delivering siRNAs to target cells. Methods Mol Biol. 2015;1218:187–99. https://doi.org/10.1007/978-1-4939-1538-5_11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yan A, Levy M. Cell internalization SELEX: in vitro selection for molecules that internalize into cells. Methods Mol Biol. 2014;1103:241–65. https://doi.org/10.1007/978-1-62703-730-3_18.

    Article  CAS  PubMed  Google Scholar 

  75. Tawiah KD, Porciani D, Burke DH. Toward the selection of cell targeting aptamers with extended biological functionalities to facilitate endosomal escape of cargoes. Biomedicines. 2017. https://doi.org/10.3390/biomedicines5030051.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mayer G, Pofahl M, Schöler KMU, Haßel S. Cell-specific aptamers for nano-medical applications. In: Kjems J, Ferapontova E, Gothelf K, editors. Nucleic acid nanotechnology. Berlin: Springer; 2014.

    Google Scholar 

  77. Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35(3):222–9. https://doi.org/10.1038/nbt.3802.

    Article  CAS  PubMed  Google Scholar 

  78. Liu HY, Gao X. A universal protein tag for delivery of SiRNA-aptamer chimeras. Sci Rep. 2013;3:3129. https://doi.org/10.1038/srep03129.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nossal GJ, Lederberg J. Antibody production by single cells. Nature. 1958;181(4620):1419–20.

    Article  CAS  Google Scholar 

  80. Ribatti D. Edelman’s view on the discovery of antibodies. Immunol Lett. 2015;164(2):72–5. https://doi.org/10.1016/j.imlet.2015.02.005.

    Article  CAS  PubMed  Google Scholar 

  81. Hey A. History and practice: antibodies in infectious diseases. Microbiol Spectr. 2015;3(2):AID-0026-2014. https://doi.org/10.1128/microbiolspec.aid-0026-2014.

    Article  PubMed  Google Scholar 

  82. Llewelyn MB, Hawkins RE, Russell SJ. Discovery of antibodies. BMJ. 1992;305(6864):1269–72.

    Article  CAS  Google Scholar 

  83. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    Article  CAS  Google Scholar 

  84. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–81.

    Article  CAS  Google Scholar 

  85. Buss NA, Henderson SJ, McFarlane M, Shenton JM, de Haan L. Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol. 2012;12(5):615–22. https://doi.org/10.1016/j.coph.2012.08.001.

    Article  CAS  PubMed  Google Scholar 

  86. Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 1990;344(6265):467–8. https://doi.org/10.1038/344467a0.

    Article  CAS  PubMed  Google Scholar 

  87. Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol. 2009;86(3):151–64. https://doi.org/10.1016/j.yexmp.2009.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mongelard F, Bouvet P. AS-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia. Curr Opin Mol Ther. 2010;12(1):107–14.

    CAS  PubMed  Google Scholar 

  89. Reyes-Reyes EM, Teng Y, Bates PJ. A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res. 2010;70(21):8617–29. https://doi.org/10.1158/0008-5472.CAN-10-0920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baker M. Reproducibility crisis: blame it on the antibodies. Nature. 2015;521(7552):274–6. https://doi.org/10.1038/521274a.

    Article  CAS  PubMed  Google Scholar 

  91. Bradbury A, Pluckthun A. Reproducibility: standardize antibodies used in research. Nature. 2015;518(7537):27–9. https://doi.org/10.1038/518027a.

    Article  CAS  PubMed  Google Scholar 

  92. Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol Ther. 2017;25(5):1069–75. https://doi.org/10.1016/j.ymthe.2017.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Smith CIE, Zain R. Therapeutic oligonucleotides: state of the art. Annu Rev Pharmacol Toxicol. 2019;59:605–30. https://doi.org/10.1146/annurev-pharmtox-010818-021050.

    Article  CAS  PubMed  Google Scholar 

  94. Diener JL, Daniel Lagasse HA, Duerschmied D, Merhi Y, Tanguay JF, Hutabarat R, et al. Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J Thromb Haemost. 2009;7(7):1155–62. https://doi.org/10.1111/j.1538-7836.2009.03459.x.

    Article  CAS  PubMed  Google Scholar 

  95. Troisi R, Napolitano V, Spiridonova V, Russo Krauss I, Sica F. Several structural motifs cooperate in determining the highly effective anti-thrombin activity of NU172 aptamer. Nucleic Acids Res. 2018;46(22):12177–85. https://doi.org/10.1093/nar/gky990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Waters EK, Genga RM, Schwartz MC, Nelson JA, Schaub RG, Olson KA, et al. Aptamer ARC19499 mediates a procoagulant hemostatic effect by inhibiting tissue factor pathway inhibitor. Blood. 2011;117(20):5514–22. https://doi.org/10.1182/blood-2010-10-311936.

    Article  CAS  PubMed  Google Scholar 

  97. Kulkarni O, Pawar RD, Purschke W, Eulberg D, Selve N, Buchner K, et al. Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. J Am Soc Nephrol. 2007;18(8):2350–8. https://doi.org/10.1681/ASN.2006121348.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. K. Haßel or G. Mayer.

Ethics declarations

Funding

No external funding was used in the preparation of this review.

Conflict of interest

Silvana K. Haßel and Günter Mayer have no conflicts of interest that are directly relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haßel, S.K., Mayer, G. Aptamers as Therapeutic Agents: Has the Initial Euphoria Subsided?. Mol Diagn Ther 23, 301–309 (2019). https://doi.org/10.1007/s40291-019-00400-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-019-00400-6

Navigation