Advertisement

Advances in Detection of Kidney Transplant Injury

  • Sanjeeva Herath
  • Jonathan Erlich
  • Amy Y. M. Au
  • Zoltán H. EndreEmail author
Review Article
  • 52 Downloads

Abstract

Early detection of graft injury after kidney transplantation is key to maintaining long-term good graft function. Graft injury could be due to a multitude of factors including ischaemia reperfusion injury, cell or antibody-mediated rejection, progressive interstitial fibrosis and tubular atrophy, infections and toxicity from the immunosuppressive drugs themselves. The current gold standard for assessing renal graft dysfunction is renal biopsy. However, biopsy is usually late when triggered by a change in serum creatinine and of limited utility in diagnosis of early injury when histological changes are equivocal. Therefore, there is a need for timely, objective and non-invasive diagnostic techniques with good early predictive value to determine graft injury and provide precision in titrating immunosuppression. We review potential novel plasma and urine biomarkers that offer sensitive new strategies for early detection and provide major insights into mechanisms of graft injury. This is a rapidly expanding field, but it is likely that a combination of biomarkers will be required to provide adequate sensitivity and specificity for detecting graft injury.

Notes

Compliance with Ethical Standards

Conflict of interest

ZHE has received travel support from Ortho Diagnostics, Roche Pharmaceuticals and the Novartis Australian Renal Transplant Advisory Board. SH, JE and AYMA declare that they have no conflicts of interest.

Funding

ZHE has received research funding from the Australian National Health and Medical Research Council and the New Zealand Health Research Council. SH has received funding from the Prince of Wales clinical school scholarship, Australia.

References

  1. 1.
    Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765.  https://doi.org/10.1371/journal.pone.0158765.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wang JH, Skeans MA, Israni AK. Current status of kidney transplant outcomes: dying to survive. Adv Chronic Kidney Dis. 2016;23(5):281–6.  https://doi.org/10.1053/j.ackd.2016.07.001.CrossRefPubMedGoogle Scholar
  3. 3.
    Lechler RI, Sykes M, Thomson AW, Turka LA. Organ transplantation–how much of the promise has been realized? Nat Med. 2005;11(6):605–13.  https://doi.org/10.1038/nm1251.CrossRefPubMedGoogle Scholar
  4. 4.
    Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J Transplant. 2015;5(2):52–67.  https://doi.org/10.5500/wjt.v5.i2.52.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wu WK, Famure O, Li Y, Kim SJ. Delayed graft function and the risk of acute rejection in the modern era of kidney transplantation. Kidney Int. 2015;88(4):851–8.  https://doi.org/10.1038/ki.2015.190.CrossRefPubMedGoogle Scholar
  6. 6.
    Salvadori M, Tsalouchos A. Biomarkers in renal transplantation: an updated review. World J Transplant. 2017;7(3):161–78.  https://doi.org/10.5500/wjt.v7.i3.161.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bohra R, Klepacki J, Klawitter J, Klawitter J, Thurman JM, Christians U. Proteomics and metabolomics in renal transplantation-quo vadis? Transpl Int. 2013;26(3):225–41.  https://doi.org/10.1111/tri.12003.CrossRefPubMedGoogle Scholar
  8. 8.
    Mohammadpour N, Elyasi S, Vahdati N, Mohammadpour AH, Shamsara J. A review on therapeutic drug monitoring of immunosuppressant drugs. Iran J Basic Med Sci. 2011;14(6):485–98.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Fernando M, Peake PW, Endre ZH. Biomarkers of calcineurin inhibitor nephrotoxicity in transplantation. Biomark Med. 2014;8(10):1247–62.  https://doi.org/10.2217/bmm.14.86.CrossRefPubMedGoogle Scholar
  10. 10.
    Gwinner W, Metzger J, Husi H, Marx D. Proteomics for rejection diagnosis in renal transplant patients: where are we now? World J Transplant. 2016;6(1):28–41.  https://doi.org/10.5500/wjt.v6.i1.28.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Haas M, Loupy A, Lefaucheur C, Roufosse C, Glotz D, Seron D, et al. The Banff 2017 Kidney Meeting Report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am J Transplant. 2018;18(2):293–307.  https://doi.org/10.1111/ajt.14625.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shipkova M, Wieland E. Editorial: immune monitoring in solid organ transplantation. Clin Biochem. 2016;49(4):317–9.  https://doi.org/10.1016/j.clinbiochem.2016.01.005.CrossRefPubMedGoogle Scholar
  13. 13.
    Hollis E, Shehata M, Khalifa F, El-Ghar MA, El-Diasty T, El-Baza A. Towards non-invasive diagnostic techniques for early detection of acute renal transplant rejection: a review. Egypt J Radiol Nucl Med. 2017.  https://doi.org/10.1016/j.ejrnm.2016.11.005.CrossRefGoogle Scholar
  14. 14.
    Succar L, Pianta TJ, Davidson T, Pickering JW, Endre ZH. Subclinical chronic kidney disease modifies the diagnosis of experimental acute kidney injury. Kidney Int. 2017;92(3):680–92.  https://doi.org/10.1016/j.kint.2017.02.030.CrossRefPubMedGoogle Scholar
  15. 15.
    Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, et al. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem. 2006;52(1):5–18.  https://doi.org/10.1373/clinchem.2005.0525144.CrossRefPubMedGoogle Scholar
  16. 16.
    Solez K, Racusen LC. The Banff classification revisited. Kidney Int. 2013;83(2):201–6.  https://doi.org/10.1038/ki.2012.395.CrossRefPubMedGoogle Scholar
  17. 17.
    Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61.  https://doi.org/10.1007/s00134-016-4670-3.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pianta TJ, Peake PW, Pickering JW, Kelleher M, Buckley NA, Endre ZH. Evaluation of biomarkers of cell cycle arrest and inflammation in prediction of dialysis or recovery after kidney transplantation. Transpl Int. 2015;28(12):1392–404.  https://doi.org/10.1111/tri.12636.CrossRefPubMedGoogle Scholar
  19. 19.
    Christians U, Klawitter J, Klawitter J. Biomarkers in transplantation—proteomics and metabolomics. Ther Drug Monit. 2016;38(Suppl 1):S70–4.  https://doi.org/10.1097/ftd.0000000000000243.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pianta TJ, Peake PW, Pickering JW, Kelleher M, Buckley NA, Endre ZH. Clusterin in kidney transplantation: novel biomarkers versus serum creatinine for early prediction of delayed graft function. Transplantation. 2015;99(1):171–9.  https://doi.org/10.1097/tp.0000000000000256.CrossRefPubMedGoogle Scholar
  21. 21.
    Pianta TJ, Succar L, Davidson T, Buckley NA, Endre ZH. Monitoring treatment of acute kidney injury with damage biomarkers. Toxicol Lett. 2017;268:63–70.  https://doi.org/10.1016/j.toxlet.2017.01.001.CrossRefPubMedGoogle Scholar
  22. 22.
    Vilar E, Varagunam M, Yaqoob MM, Raftery M, Thuraisingham R. Creatinine reduction ratio: a useful marker to identify medium and high-risk renal transplants. Transplantation. 2010;89(1):97–103.  https://doi.org/10.1097/TP.0b013e3181be3dd1.CrossRefPubMedGoogle Scholar
  23. 23.
    Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009;24(3):1039–47.  https://doi.org/10.1093/ndt/gfn667.CrossRefPubMedGoogle Scholar
  24. 24.
    Moers C, Smits JM, Maathuis MH, Treckmann J, van Gelder F, Napieralski BP, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2009;360(1):7–19.  https://doi.org/10.1056/NEJMoa0802289.CrossRefPubMedGoogle Scholar
  25. 25.
    Ronco C, Legrand M, Goldstein SL, Hur M, Tran N, Howell EC, et al. Neutrophil gelatinase-associated lipocalin: ready for routine clinical use? An international perspective. Blood Purif. 2014;37(4):271–85.  https://doi.org/10.1159/000360689.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand J Clin Lab Investig Suppl. 2008;241:89–94.  https://doi.org/10.1080/00365510802150158.CrossRefGoogle Scholar
  27. 27.
    Fonseca I, Oliveira JC, Almeida M, Cruz M, Malho A, Martins LS, et al. Neutrophil gelatinase-associated lipocalin in kidney transplantation is an early marker of graft dysfunction and is associated with 1-year renal function. J Transplant. 2013;2013:650123.  https://doi.org/10.1155/2013/650123.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hall IE, Yarlagadda SG, Coca SG, Wang Z, Doshi M, Devarajan P, et al. IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J Am Soc Nephrol. 2010;21(1):189–97.  https://doi.org/10.1681/asn.2009030264.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pezeshgi A, Azar SA, Ghasemi H, Kamali K, Esmaeilzadeh A, Hajsalimi B, et al. Role of plasma neutrophil gelatinase-associated lipocalin as an emerging biomarker of acute renal failure following kidney transplantation and its correlation with plasma creatinine. J Ren Inj Prev. 2016;5(2):98–103.  https://doi.org/10.15171/jrip.2016.21.CrossRefPubMedGoogle Scholar
  30. 30.
    Cantaluppi V, Dellepiane S, Tamagnone M, Medica D, Figliolini F, Messina M, et al. Neutrophil gelatinase associated lipocalin is an early and accurate biomarker of graft function and tissue regeneration in kidney transplantation from extended criteria donors. PLoS One. 2015;10(6):e0129279.  https://doi.org/10.1371/journal.pone.0129279.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Peake PW, Pianta TJ, Succar L, Fernando M, Pugh DJ, McNamara K, et al. A comparison of the ability of levels of urinary biomarker proteins and exosomal mRNA to predict outcomes after renal transplantation. PLoS One. 2014;9(2):e98644.  https://doi.org/10.1371/journal.pone.0098644.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Susal C, Wettstein D, Dohler B, Morath C, Ruhenstroth A, Scherer S, et al. Association of kidney graft loss with de novo produced donor-specific and non-donor-specific HLA antibodies detected by single antigen testing. Transplantation. 2015;99(9):1976–80.  https://doi.org/10.1097/tp.0000000000000672.CrossRefPubMedGoogle Scholar
  33. 33.
    Yamamoto T, Watarai Y, Takeda A, Tsujita M, Hiramitsu T, Goto N, et al. De novo anti-HLA DSA characteristics and subclinical antibody-mediated kidney allograft injury. Transplantation. 2016;100(10):2194–202.  https://doi.org/10.1097/tp.0000000000001012.CrossRefPubMedGoogle Scholar
  34. 34.
    Wiebe C, Gibson IW, Blydt-Hansen TD, Karpinski M, Ho J, Storsley LJ, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant. 2012;12(5):1157–67.  https://doi.org/10.1111/j.1600-6143.2012.04013.x.CrossRefPubMedGoogle Scholar
  35. 35.
    Ginevri F, Nocera A, Comoli P, Innocente A, Cioni M, Parodi A, et al. Posttransplant de novo donor-specific HLA antibodies identify pediatric kidney recipients at risk for late antibody-mediated rejection. Am J Transplant. 2012;12(12):3355–62.  https://doi.org/10.1111/j.1600-6143.2012.04251.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Wiebe C, Gibson IW, Blydt-Hansen TD, Pochinco D, Birk PE, Ho J, et al. Rates and determinants of progression to graft failure in kidney allograft recipients with de novo donor-specific antibody. Am J Transplant. 2015;15(11):2921–30.  https://doi.org/10.1111/ajt.13347.CrossRefPubMedGoogle Scholar
  37. 37.
    Charnaya O, Tuchman S, Moudgil A. Results of early treatment for de novo donor-specific antibodies in pediatric kidney transplant recipients in a cross-sectional and longitudinal cohort. Pediatr Transplant. 2018.  https://doi.org/10.1111/petr.13108.CrossRefPubMedGoogle Scholar
  38. 38.
    Billing H, Rieger S, Susal C, Waldherr R, Opelz G, Wuhl E, et al. IVIG and rituximab for treatment of chronic antibody-mediated rejection: a prospective study in paediatric renal transplantation with a 2-year follow-up. Transpl Int. 2012;25(11):1165–73.  https://doi.org/10.1111/j.1432-2277.2012.01544.x.CrossRefPubMedGoogle Scholar
  39. 39.
    Orandi BJ, Chow EH, Hsu A, Gupta N, Van Arendonk KJ, Garonzik-Wang JM, et al. Quantifying renal allograft loss following early antibody-mediated rejection. Am J Transplant. 2015;15(2):489–98.  https://doi.org/10.1111/ajt.12982.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cooper JE, Gralla J, Klem P, Chan L, Wiseman AC. High dose intravenous immunoglobulin therapy for donor-specific antibodies in kidney transplant recipients with acute and chronic graft dysfunction. Transplantation. 2014;97(12):1253–9.  https://doi.org/10.1097/01.Tp.0000443226.74584.03.CrossRefPubMedGoogle Scholar
  41. 41.
    Aubert O, Loupy A, Hidalgo L, van Huyen JPD, Higgins S, Viglietti D, et al. Antibody-mediated rejection due to preexisting versus de novo donor-specific antibodies in kidney allograft recipients. J Am Soc Nephrol. 2017;28(6):1912–23.  https://doi.org/10.1681/asn.2016070797.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Menon MC, Murphy B, Heeger PS. Moving biomarkers toward clinical implementation in kidney transplantation. J Am Soc Nephrol. 2017;28(3):735–47.  https://doi.org/10.1681/asn.2016080858.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mueller TF, Reeve J, Jhangri GS, Mengel M, Jacaj Z, Cairo L, et al. The transcriptome of the implant biopsy identifies donor kidneys at increased risk of delayed graft function. Am J Transplant. 2008;8(1):78–85.  https://doi.org/10.1111/j.1600-6143.2007.02032.x.CrossRefPubMedGoogle Scholar
  44. 44.
    Kreepala C, Famulski KS, Chang J, Halloran PF. Comparing molecular assessment of implantation biopsies with histologic and demographic risk assessment. Am J Transplant. 2013;13(2):415–26.  https://doi.org/10.1111/ajt.12043.CrossRefPubMedGoogle Scholar
  45. 45.
    Khatri P, Roedder S, Kimura N, De Vusser K, Morgan AA, Gong Y, et al. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. J Exp Med. 2013;210(11):2205–21.  https://doi.org/10.1084/jem.20122709.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sigdel TK, Bestard O, Tran TQ, Hsieh SC, Roedder S, Damm I, et al. A computational gene expression score for predicting immune injury in renal allografts. PLoS One. 2015;10(9):e0138133.  https://doi.org/10.1371/journal.pone.0138133.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Reeve J, Sellares J, Mengel M, Sis B, Skene A, Hidalgo L, et al. Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies. Am J Transplant. 2013;13(3):645–55.  https://doi.org/10.1111/ajt.12079.CrossRefPubMedGoogle Scholar
  48. 48.
    Limmathurotsakul D, Turner EL, Wuthiekanun V, Thaipadungpanit J, Suputtamongkol Y, Chierakul W, et al. Fool’s gold: why imperfect reference tests are undermining the evaluation of novel diagnostics: a reevaluation of 5 diagnostic tests for leptospirosis. Clin Infect Dis. 2012;55(3):322–31.  https://doi.org/10.1093/cid/cis403.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Halloran PF, Pereira AB, Chang J, Matas A, Picton M, De Freitas D, et al. Microarray diagnosis of antibody-mediated rejection in kidney transplant biopsies: an international prospective study (INTERCOM). Am J Transplant. 2013;13(11):2865–74.  https://doi.org/10.1111/ajt.12465.CrossRefPubMedGoogle Scholar
  50. 50.
    Loupy A, Lefaucheur C, Vernerey D, Chang J, Hidalgo LG, Beuscart T, et al. Molecular microscope strategy to improve risk stratification in early antibody-mediated kidney allograft rejection. J Am Soc Nephrol. 2014;25(10):2267–77.  https://doi.org/10.1681/asn.2013111149.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Traitanon O, Poggio ED, Fairchild RL. Molecular monitoring of alloimmune-mediated injury in kidney transplant patients. Curr Opin Nephrol Hypertens. 2014;23(6):625–30.  https://doi.org/10.1097/mnh.0000000000000064.CrossRefPubMedGoogle Scholar
  52. 52.
    Mas VR, Dumur CI, Scian MJ, Gehrau RC, Maluf DG. MicroRNAs as biomarkers in solid organ transplantation. Am J Transplant. 2013;13(1):11–9.  https://doi.org/10.1111/j.1600-6143.2012.04313.x.CrossRefPubMedGoogle Scholar
  53. 53.
    Danger R, Paul C, Giral M, Lavault A, Foucher Y, Degauque N, et al. Expression of miR-142-5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibody-mediated rejection. PLoS One. 2013;8(4):e60702.  https://doi.org/10.1371/journal.pone.0060702.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wilflingseder J, Reindl-Schwaighofer R, Sunzenauer J, Kainz A, Heinzel A, Mayer B, et al. MicroRNAs in kidney transplantation. Nephrol Dial Transplant. 2015;30(6):910–7.  https://doi.org/10.1093/ndt/gfu280.CrossRefPubMedGoogle Scholar
  55. 55.
    Bloom RD, Bromberg JS, Poggio ED, Bunnapradist S, Langone AJ, Sood P, et al. Cell-free DNA and active rejection in kidney allografts. J Am Soc Nephrol. 2017;28(7):2221–32.  https://doi.org/10.1681/asn.2016091034.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Adamek M, Opelz G, Klein K, Morath C, Tran TH. A fast and simple method for detecting and quantifying donor-derived cell-free DNA in sera of solid organ transplant recipients as a biomarker for graft function. Clin Chem Lab Med. 2016;54(7):1147–55.  https://doi.org/10.1515/cclm-2015-0622.CrossRefPubMedGoogle Scholar
  57. 57.
    Garcia Moreira V, Prieto Garcia B, Baltar Martin JM, Ortega Suarez F, Alvarez FV. Cell-free DNA as a noninvasive acute rejection marker in renal transplantation. Clin Chem. 2009;55(11):1958–66.  https://doi.org/10.1373/clinchem.2009.129072.CrossRefPubMedGoogle Scholar
  58. 58.
    Sigdel TK, Sarwal MM. Cell-free DNA as a measure of transplant injury. Clin Transpl. 2012;201–5.Google Scholar
  59. 59.
    Celec P, Vlkova B, Laukova L, Babickova J, Boor P. Cell-free DNA: the role in pathophysiology and as a biomarker in kidney diseases. Expert Rev Mol Med. 2018;20:e1.  https://doi.org/10.1017/erm.2017.12.CrossRefPubMedGoogle Scholar
  60. 60.
    Beck J, Bierau S, Balzer S, Andag R, Kanzow P, Schmitz J, et al. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin Chem. 2013;59(12):1732–41.  https://doi.org/10.1373/clinchem.2013.210328.CrossRefPubMedGoogle Scholar
  61. 61.
    Schütz E, Fischer A, Beck J, Harden M, Koch M, Wuensch T, et al. Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: a prospective, observational, multicenter cohort study. PLoS Med. 2017;14(4):e1002286.  https://doi.org/10.1371/journal.pmed.1002286.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Knight SR, Thorne A, Lo Faro ML. Donor-specific cell-free DNA as a biomarker in solid organ transplantation. A systematic review. Transplantation. 2019;103(2):273–83.  https://doi.org/10.1097/tp.0000000000002482.CrossRefPubMedGoogle Scholar
  63. 63.
    Lee H, Park Y-M, We Y-M, Han DJ, Seo J-W, Moon H, et al. Evaluation of digital PCR as a technique for monitoring acute rejection in kidney transplantation. Genom Inform. 2017;15(1):2–10.  https://doi.org/10.5808/GI.2017.15.1.2.CrossRefGoogle Scholar
  64. 64.
    Grskovic M, Hiller DJ, Eubank LA, Sninsky JJ, Christopherson C, Collins JP, et al. Validation of a clinical-grade assay to measure donor-derived cell-free DNA in solid organ transplant recipients. J Mol Diagn. 2016;18(6):890–902.  https://doi.org/10.1016/j.jmoldx.2016.07.003.CrossRefPubMedGoogle Scholar
  65. 65.
    Gielis EM, Beirnaert C, Dendooven A, Meysman P, Laukens K, De Schrijver J, et al. Plasma donor-derived cell-free DNA kinetics after kidney transplantation using a single tube multiplex PCR assay. PLoS One. 2018;13(12):e0208207.  https://doi.org/10.1371/journal.pone.0208207.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Stoltz D, Brubaker A, Grskovic M, Woodward R, Gallo A. Donor-derived cell-free DNA predicts biopsy-proven acute cellular rejection in pediatric kidney transplant recipients [abstract no. 483]. 2017 American Transplant Congress; 29 Apr–3 May. Chicago; 2017.Google Scholar
  67. 67.
    Sigdel TK, Vitalone MJ, Tran TQ, Dai H, Hsieh S-C, Salvatierra O, et al. A rapid noninvasive assay for the detection of renal transplant injury. Transplantation. 2013;96(1):97–101.  https://doi.org/10.1097/TP.0b013e318295ee5a.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sigdel T, Tran T, Hsieh S-C, Sarwal M. Urinary cell-free dna is a sensitive marker of early renal transplant injury [abstract no. B272]. 2015 American Transplant Congress; 2–6 May; Philadelphia; 2015.Google Scholar
  69. 69.
    Beck J, Kanzow P, Schmitz J, Kollmar O, Oellerich M, Schütz E. Absolute quantification of graft derived cell-free DNA (GcfDNA) early after liver transplantation (LTx) using droplet digital PCR. Clin Chem. 2014;60(Suppl):S194–5.Google Scholar
  70. 70.
    Whitlam JB, Ling L, Skene A, Kanellis J, Ierino FL, Slater HR, et al. Diagnostic application of kidney allograft-derived absolute cell-free DNA levels during transplant dysfunction. Am J Transplant. 2018.  https://doi.org/10.1111/ajt.15142 (Epub 2018 Oct 12).CrossRefPubMedGoogle Scholar
  71. 71.
    Bromberg JS, Brennan DC, Poggio E, Bunnapradist S, Langone A, Sood P, et al. Biological variation of donor-derived cell-free dna in renal transplant recipients: clinical implications. J Appl Lab Med. 2017;2(3):309–21.  https://doi.org/10.1373/jalm.2016.022731.CrossRefGoogle Scholar
  72. 72.
    Sigdel TK, Archila FA, Constantin T, Prins SA, Liberto J, Damm I, et al. Optimizing detection of kidney transplant injury by assessment of donor-derived cell-free DNA via massively multiplex PCR. J Clin Med. 2018.  https://doi.org/10.3390/jcm8010019.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Goh SK, Muralidharan V, Christophi C, Do H, Dobrovic A. Probe-free digital PCR quantitative methodology to measure donor-specific cell-free DNA after solid-organ transplantation. Clin Chem. 2017;63(3):742–50.  https://doi.org/10.1373/clinchem.2016.264838.CrossRefPubMedGoogle Scholar
  74. 74.
    Wishart DS. Metabolomics: a complementary tool in renal transplantation. Contrib Nephrol. 2008;160:76–87.  https://doi.org/10.1159/000125935.CrossRefPubMedGoogle Scholar
  75. 75.
    Naesens M, Sarwal MM. Molecular diagnostics in transplantation. Nat Rev Nephrol. 2010;6:614–28.  https://doi.org/10.1038/nrneph.2010.113.CrossRefPubMedGoogle Scholar
  76. 76.
    Nasr M, Sigdel T, Sarwal M. Advances in diagnostics for transplant rejection. Expert Rev Mol Diagn. 2016;16(10):1121–32.  https://doi.org/10.1080/14737159.2016.1239530.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Blydt-Hansen TD, Sharma A, Gibson IW, Wishart DS, Mandal R, Ho J, et al. Urinary metabolomics for noninvasive detection of antibody-mediated rejection in children after kidney transplantation. Transplantation. 2017;101(10):2553–61.  https://doi.org/10.1097/tp.0000000000001662.CrossRefPubMedGoogle Scholar
  78. 78.
    Mincham CM, Gibson IW, Sharma A, Wiebe C, Mandal R, Rush D, et al. Evolution of renal function and urinary biomarker indicators of inflammation on serial kidney biopsies in pediatric kidney transplant recipients with and without rejection. Pediatr Transplant. 2018;22(5):e13202.  https://doi.org/10.1111/petr.13202.CrossRefPubMedGoogle Scholar
  79. 79.
    Foxall PJ, Mellotte GJ, Bending MR, Lindon JC, Nicholson JK. NMR spectroscopy as a novel approach to the monitoring of renal transplant function. Kidney Int. 1993;43(1):234–45.CrossRefPubMedGoogle Scholar
  80. 80.
    Klawitter J, Haschke M, Kahle C, Dingmann C, Klawitter J, Leibfritz D, et al. Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose. Br J Clin Pharmacol. 2010;70(2):241–51.  https://doi.org/10.1111/j.1365-2125.2010.03689.x.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Klepacki J, Klawitter J, Klawitter J, Thurman JM, Christians U. A high-performance liquid chromatography-tandem mass spectrometry-based targeted metabolomics kidney dysfunction marker panel in human urine. Clin Chim Acta. 2015;446:43–53.  https://doi.org/10.1016/j.cca.2015.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Endre ZH, Pickering JW, Storer MK, Hu WP, Moorhead KT, Allardyce R, et al. Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol Meas. 2011;32(1):115–30.  https://doi.org/10.1088/0967-3334/32/1/008.CrossRefPubMedGoogle Scholar
  83. 83.
    Stubbs JR, House JA, Ocque AJ, Zhang S, Johnson C, Kimber C, et al. Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J Am Soc Nephrol. 2016;27(1):305–13.  https://doi.org/10.1681/asn.2014111063.CrossRefPubMedGoogle Scholar
  84. 84.
    Bonneau E, Tetreault N, Robitaille R, Boucher A, De Guire V. Metabolomics: perspectives on potential biomarkers in organ transplantation and immunosuppressant toxicity. Clin Biochem. 2016;49(4–5):377–84.  https://doi.org/10.1016/j.clinbiochem.2016.01.006.CrossRefPubMedGoogle Scholar
  85. 85.
    Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.  https://doi.org/10.1056/NEJMoa1109400.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kim KB, Yang JY, Kwack SJ, Park KL, Kim HS, Ryu DH, et al. Toxicometabolomics of urinary biomarkers for human gastric cancer in a mouse model. J Toxicol Environ Health A. 2010;73(21–22):1420–30.  https://doi.org/10.1080/15287394.2010.511545.CrossRefPubMedGoogle Scholar
  87. 87.
    Calderisi M, Vivi A, Mlynarz P, Tassin M, Banasik M, Dawiskiba T, et al. Using metabolomics to monitor kidney transplantation patients by means of clustering to spot anomalous patient behavior. Transplant Proc. 2013;45(4):1511–5.  https://doi.org/10.1016/j.transproceed.2013.02.049.CrossRefPubMedGoogle Scholar
  88. 88.
    Karpievitch YV, Polpitiya AD, Anderson GA, Smith RD, Dabney AR. Liquid chromatography mass spectrometry-based proteomics: biological and technological aspects. Ann Appl Stat. 2010;4(4):1797–823.  https://doi.org/10.1214/10-AOAS341.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Anglicheau D, Naesens M, Essig M, Gwinner W, Marquet P. Establishing biomarkers in transplant medicine: a critical review of current approaches. Transplantation. 2016;100:2024–38.  https://doi.org/10.1097/TP.0000000000001321.CrossRefPubMedGoogle Scholar
  90. 90.
    Nesvizhskii AI, Vitek O, Aebersold R. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods. 2007;4(10):787–97.  https://doi.org/10.1038/nmeth1088.CrossRefPubMedGoogle Scholar
  91. 91.
    Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev. 2004;23(1):34–44.  https://doi.org/10.1002/mas.10066.CrossRefPubMedGoogle Scholar
  92. 92.
    Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69(23):4751–60.CrossRefPubMedGoogle Scholar
  93. 93.
    Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198.  https://doi.org/10.1038/nature01511.CrossRefGoogle Scholar
  94. 94.
    Sigdel TK, Kaushal A, Gritsenko M, Norbeck AD, Qian WJ, Xiao W, et al. Shotgun proteomics identifies proteins specific for acute renal transplant rejection. Proteom Clin Appl. 2010;4(1):32–47.  https://doi.org/10.1002/prca.200900124.CrossRefGoogle Scholar
  95. 95.
    Xie F, Liu T, Qian W-J, Petyuk VA, Smith RD. Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem. 2011;286(29):25443–9.  https://doi.org/10.1074/jbc.R110.199703.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Sigdel TK, Gao Y, He J, Wang A, Nicora CD, Fillmore TL, et al. Mining the human urine proteome for monitoring renal transplant injury. Kidney Int. 2016;89(6):1244–52.  https://doi.org/10.1016/j.kint.2015.12.049.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Ling XB, Sigdel TK, Lau K, Ying L, Lau I, Schilling J, et al. Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection. J Am Soc Nephrol. 2010;21(4):646–53.  https://doi.org/10.1681/ASN.2009080876.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Han X, Aslanian A, Yates JR. Mass spectrometry for proteomics. Curr Opin Chem Biol. 2008;12(5):483–90.  https://doi.org/10.1016/j.cbpa.2008.07.024.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process. 1987;78:53–68.  https://doi.org/10.1016/0168-1176(87)87041-6.CrossRefGoogle Scholar
  100. 100.
    Freue GV, Sasaki M, Meredith A, Gunther OP, Bergman A, Takhar M, et al. Proteomic signatures in plasma during early acute renal allograft rejection. Mol Cell Proteom. 2010;9(9):1954–67.  https://doi.org/10.1074/mcp.M110.000554.CrossRefGoogle Scholar
  101. 101.
    Wegdam W, Moerland PD, Meijer D, de Jong SM, Hoefsloot HCJ, Kenter GG, et al. A critical assessment of SELDI-TOF-MS for biomarker discovery in serum and tissue of patients with an ovarian mass. Proteome Sci. 2012;10:45.  https://doi.org/10.1186/1477-5956-10-45.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics. 2004;20(5):777–85.  https://doi.org/10.1093/bioinformatics/btg484.CrossRefPubMedGoogle Scholar
  103. 103.
    Metzger J, Chatzikyrkou C, Broecker V, Schiffer E, Jaensch L, Iphoefer A, et al. Diagnosis of subclinical and clinical acute T-cell-mediated rejection in renal transplant patients by urinary proteome analysis. Proteom Clin Appl. 2011;5(5–6):322–33.  https://doi.org/10.1002/prca.201000153.CrossRefGoogle Scholar
  104. 104.
    Huang H, Xu X, Yao C, Cai M, Qian Y, Wang X, et al. Serum levels of CXCR3 ligands predict T cell-mediated acute rejection after kidney transplantation. Mol Med Rep. 2014;9(1):45–50.  https://doi.org/10.3892/mmr.2013.1753.CrossRefPubMedGoogle Scholar
  105. 105.
    Hricik DE, Nickerson P, Formica RN, Poggio ED, Rush D, Newell KA, et al. Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am J Transplant. 2013;13(10):2634–44.  https://doi.org/10.1111/ajt.12426.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Hirt-Minkowski P, Amico P, Ho J, Gao A, Bestland J, Hopfer H, et al. Detection of clinical and subclinical tubulo-interstitial inflammation by the urinary CXCL10 chemokine in a real-life setting. Am J Transplant. 2012;12(7):1811–23.  https://doi.org/10.1111/j.1600-6143.2012.03999.x.CrossRefPubMedGoogle Scholar
  107. 107.
    Raza A, Firasat S, Khaliq S, Aziz T, Mubarak M, Naqvi SA, et al. The association of urinary interferon-gamma inducible protein-10 (IP10/CXCL10) levels with kidney allograft rejection. Inflamm Res. 2017;66(5):425–32.  https://doi.org/10.1007/s00011-017-1025-7.CrossRefPubMedGoogle Scholar
  108. 108.
    Ho J, Sharma A, Mandal R, Wishart DS, Wiebe C, Storsley L, et al. Detecting renal allograft inflammation using quantitative urine metabolomics and CXCL10. Transplant Direct. 2016;2(6):e78.  https://doi.org/10.1097/txd.0000000000000589.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Crespo E, Cravedi P, Martorell J, Luque S, Melilli E, Cruzado JM, et al. Posttransplant peripheral blood donor-specific interferon-gamma enzyme-linked immune spot assay differentiates risk of subclinical rejection and de novo donor-specific alloantibodies in kidney transplant recipients. Kidney Int. 2017;92(1):201–13.  https://doi.org/10.1016/j.kint.2016.12.024.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    De Serres SA, Mfarrej BG, Grafals M, Riella LV, Magee CN, Yeung MY, et al. Derivation and validation of a cytokine-based assay to screen for acute rejection in renal transplant recipients. Clin J Am Soc Nephrol. 2012;7(6):1018–25.  https://doi.org/10.2215/cjn.11051011.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Fabrega E, Lopez-Hoyos M, San Segundo D, Casafont F, Angel Mieses M, Sampedro B, et al. Serum levels of interleukin-9 during acute rejection in liver transplantation. Transplant Proc. 2012;44(6):1533–5.  https://doi.org/10.1016/j.transproceed.2012.05.013.CrossRefPubMedGoogle Scholar
  112. 112.
    Fabrega E, Lopez-Hoyos M, San Segundo D, Casafont F, Pons-Romero F. Changes in the serum levels of interleukin-17/interleukin-23 during acute rejection in liver transplantation. Liver Transplant. 2009;15(6):629–33.  https://doi.org/10.1002/lt.21724.CrossRefGoogle Scholar
  113. 113.
    Sharma VK, Bologa RM, Li B, Xu GP, Lagman M, Hiscock W, et al. Molecular executors of cell death–differential intrarenal expression of Fas ligand, Fas, granzyme B, and perforin during acute and/or chronic rejection of human renal allografts. Transplantation. 1996;62(12):1860–6.CrossRefPubMedGoogle Scholar
  114. 114.
    Heng B, Ding H, Ren H, Shi L, Chen J, Wu X, et al. Diagnostic performance of Fas ligand mRNA expression for acute rejection after kidney transplantation: a systematic review and meta-analysis. PLoS One. 2016;11(11):e0165628-e.  https://doi.org/10.1371/journal.pone.0165628.CrossRefGoogle Scholar
  115. 115.
    Lettau M, Paulsen M, Schmidt H, Janssen O. Insights into the molecular regulation of FasL (CD178) biology. Eur J Cell Biol. 2011;90(6–7):456–66.  https://doi.org/10.1016/j.ejcb.2010.10.006.CrossRefPubMedGoogle Scholar
  116. 116.
    Vasconcellos LM, Schachter AD, Zheng XX, Vasconcellos LH, Shapiro M, Harmon WE, et al. Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts. Transplantation. 1998;66(5):562–6.CrossRefPubMedGoogle Scholar
  117. 117.
    Roedder S, Sigdel T, Salomonis N, Hsieh S, Dai H, Bestard O, et al. The kSORT assay to detect renal transplant patients at high risk for acute rejection: results of the multicenter AART study. PLoS Med. 2014;11(11):e1001759.  https://doi.org/10.1371/journal.pmed.1001759.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Li L, Khatri P, Sigdel TK, Tran T, Ying L, Vitalone MJ, et al. A peripheral blood diagnostic test for acute rejection in renal transplantation. Am J Transplant. 2012;12(10):2710–8.  https://doi.org/10.1111/j.1600-6143.2012.04253.x.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Crespo E, Roedder S, Sigdel T, Hsieh SC, Luque S, Cruzado JM, et al. Molecular and functional noninvasive immune monitoring in the ESCAPE study for prediction of subclinical renal allograft rejection. Transplantation. 2017;101(6):1400–9.  https://doi.org/10.1097/tp.0000000000001287.CrossRefPubMedGoogle Scholar
  120. 120.
    Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B, et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med. 2001;344(13):947–54.  https://doi.org/10.1056/NEJM200103293441301.CrossRefPubMedGoogle Scholar
  121. 121.
    Suthanthiran M, Schwartz JE, Ding R, Abecassis M, Dadhania D, Samstein B, et al. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. N Engl J Med. 2013;369(1):20–31.  https://doi.org/10.1056/NEJMoa1215555.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One. 2014;9(3):e93460-e.  https://doi.org/10.1371/journal.pone.0093460.CrossRefGoogle Scholar
  123. 123.
    Galichon P, Amrouche L, Hertig A, Brocheriou I, Rabant M, Xu-Dubois YC, et al. Urinary mRNA for the diagnosis of renal allograft rejection: the issue of normalization. Am J Transplant. 2016;16(10):3033–40.  https://doi.org/10.1111/ajt.13891.CrossRefPubMedGoogle Scholar
  124. 124.
    Seo JW, Moon H, Kim SY, Moon JY, Jeong KH, Lee YH, et al. Both absolute and relative quantification of urinary mRNA are useful for non-invasive diagnosis of acute kidney allograft rejection. PLoS One. 2017;12(6):e0180045.  https://doi.org/10.1371/journal.pone.0180045.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med. 2005;353(22):2342–51.  https://doi.org/10.1056/NEJMoa051907.CrossRefPubMedGoogle Scholar
  126. 126.
    Afaneh C, Muthukumar T, Lubetzky M, Ding R, Snopkowski C, Sharma VK, et al. Urinary cell levels of mRNA for OX40, OX40L, PD-1, PD-L1, or PD-L2 and acute rejection of human renal allografts. Transplantation. 2010;90(12):1381–7.  https://doi.org/10.1097/TP.0b013e3181ffbadd.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Medeiros M, Sharma VK, Ding R, Yamaji K, Li B, Muthukumar T, et al. Optimization of RNA yield, purity and mRNA copy number by treatment of urine cell pellets with RNAlater. J Immunol Methods. 2003;279(1–2):135–42.CrossRefPubMedGoogle Scholar
  128. 128.
    Waikar SS, Betensky RA, Emerson SC, Bonventre JV. Imperfect gold standards for kidney injury biomarker evaluation. J Am Soc Nephrol. 2012;23(1):13–21.  https://doi.org/10.1681/asn.2010111124.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Pickering JW, Endre ZH. Linking injury to outcome in acute kidney injury: a matter of sensitivity. PLoS One. 2013;8(4):e62691.  https://doi.org/10.1371/journal.pone.0062691.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Lorenzen JM, Volkmann I, Fiedler J, Schmidt M, Scheffner I, Haller H, et al. Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant. 2011;11(10):2221–7.  https://doi.org/10.1111/j.1600-6143.2011.03679.x.CrossRefPubMedGoogle Scholar
  131. 131.
    De Vlaminck I, Valantine HA, Snyder TM, Strehl C, Cohen G, Luikart H, et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci Transl Med. 2014;6(241):241ra77.  https://doi.org/10.1126/scitranslmed.3007803.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    De Vlaminck I, Martin L, Kertesz M, Patel K, Kowarsky M, Strehl C, et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proc Natl Acad Sci USA. 2015;112(43):13336–41.  https://doi.org/10.1073/pnas.1517494112.CrossRefGoogle Scholar
  133. 133.
    Johnston O, Cassidy H, O’Connell S, O’Riordan A, Gallagher W, Maguire PB, et al. Identification of beta2-microglobulin as a urinary biomarker for chronic allograft nephropathy using proteomic methods. Proteom Clin Appl. 2011;5(7–8):422–31.  https://doi.org/10.1002/prca.201000160.CrossRefGoogle Scholar
  134. 134.
    Kurian SM, Heilman R, Mondala TS, Nakorchevsky A, Hewel JA, Campbell D, et al. Biomarkers for early and late stage chronic allograft nephropathy by proteogenomic profiling of peripheral blood. PLoS One. 2009;4(7):e6212.  https://doi.org/10.1371/journal.pone.0006212.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Banon-Maneus E, Diekmann F, Carrascal M, Quintana LF, Moya-Rull D, Bescos M, et al. Two-dimensional difference gel electrophoresis urinary proteomic profile in the search of nonimmune chronic allograft dysfunction biomarkers. Transplantation. 2010;89(5):548–58.  https://doi.org/10.1097/TP.0b013e3181c690e3.CrossRefPubMedGoogle Scholar
  136. 136.
    Maluf DG, Dumur CI, Suh JL, Scian MJ, King AL, Cathro H, et al. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int. 2014;85(2):439–49.  https://doi.org/10.1038/ki.2013.338.CrossRefPubMedGoogle Scholar
  137. 137.
    Soltaninejad E, Nicknam MH, Nafar M, Sharbafi MH, Keshavarz Shahbaz S, Barabadi M, et al. Altered expression of microRNAs following chronic allograft dysfunction with interstitial fibrosis and tubular atrophy. Iran J Allergy Asthma Immunol. 2015;14(6):615–23.PubMedGoogle Scholar
  138. 138.
    Iwasaki K, Yamamoto T, Inanaga Y, Hiramitsu T, Miwa Y, Murotani K, et al. MiR-142-5p and miR-486-5p as biomarkers for early detection of chronic antibody-mediated rejection in kidney transplantation. Biomarkers. 2017;22(1):45–54.  https://doi.org/10.1080/1354750x.2016.1204000.CrossRefPubMedGoogle Scholar
  139. 139.
    Mas V, Maluf D, Archer K, Yanek K, Mas L, King A, et al. Establishing the molecular pathways involved in chronic allograft nephropathy for testing new noninvasive diagnostic markers. Transplantation. 2007;83(4):448–57.  https://doi.org/10.1097/01.tp.0000251373.17997.9a.CrossRefPubMedGoogle Scholar
  140. 140.
    Hope CM, Troelnikov A, Hanf W, Jesudason S, Coates PT, Heeger PS, et al. Peripheral natural killer cell and allo-stimulated T-cell function in kidney transplant recipients associate with cancer risk and immunosuppression-related complications. Kidney Int. 2015;88(6):1374–82.  https://doi.org/10.1038/ki.2015.237.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sanjeeva Herath
    • 1
  • Jonathan Erlich
    • 1
  • Amy Y. M. Au
    • 1
    • 2
  • Zoltán H. Endre
    • 1
    • 2
    Email author
  1. 1.Prince of Wales Clinical SchoolUniversity of New South WalesRandwickAustralia
  2. 2.Department of NephrologyPrince of Wales HospitalSydneyAustralia

Personalised recommendations