Skip to main content
Log in

Attenuation of Inherited and Acquired Retinal Degeneration Progression with Gene-based Techniques

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Inherited retinal dystrophies cause progressive vision loss and are major contributors to blindness worldwide. Advances in gene therapy have brought molecular approaches into the realm of clinical trials for these incurable illnesses. Select phase I, II and III trials are complete and provide some promise in terms of functional outcomes and safety, although questions do remain over the durability of their effects and the prevalence of inflammatory reactions. This article reviews gene therapy as it can be applied to inherited retinal dystrophies, provides an update of results from recent clinical trials, and discusses the future prospects of gene therapy and genome surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References:

  1. Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: an update. Am J Med Genet C Semin Med Genet. 2016;172(4):349–66.

    Article  PubMed  Google Scholar 

  2. Sengillo JD, Justus S, Cabral T, Tsang SH. Correction of monogenic and common retinal disorders with gene therapy. Genes (Basel). 2017;8(2):53.

    Article  CAS  Google Scholar 

  3. Sohocki MM, Daiger SP, Bowne SJ, Rodriquez JA, Northrup H, Heckenlively JR, et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat. 2001;17(1):42–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berson EL. Nutrition and retinal degenerations. Vitamin A, taurine, ornithine, and phytanic acid. Retina. 1982;2(4):236–55.

    Article  CAS  PubMed  Google Scholar 

  5. Cho GY, Abdulla Y, Sengillo JD, Justus S, Schaefer KA, Bassuk AG, et al. CRISPR-mediated ophthalmic genome surgery. Curr Ophthalmol Rep. 2017;5(3):199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yu-Wai-Man P. Genetic manipulation for inherited neurodegenerative diseases: myth or reality? Br J Ophthalmol. 2016;100(10):1322–31.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther. 2003;7(6):839–50.

    Article  CAS  PubMed  Google Scholar 

  8. Boye SE, Alexander JJ, Witherspoon CD, Boye SL, Peterson JJ, Clark ME, et al. Highly efficient delivery of adeno-associated viral vectors to the primate retina. Hum Gene Ther. 2016;27(8):580–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31(4):317–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salganik M, Hirsch ML, Samulski RJ. Adeno-associated virus as a mammalian DNA vector. Microbiol Spectr. 2015;3(4).

  11. Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success–a personal perspective. Hum Gene Ther. 2015;26(5):257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pillay S, Carette JE. Host determinants of adeno-associated viral vector entry. Curr Opin Virol. 2017;24:124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaj T, Epstein BE, Schaffer DV. Genome engineering using adeno-associated virus: basic and clinical research applications. Mol Ther. 2016;24(3):458–64.

    Article  CAS  PubMed  Google Scholar 

  14. Trapani I, Banfi S, Simonelli F, Surace EM, Auricchio A. Gene therapy of inherited retinal degenerations: prospects and challenges. Hum Gene Ther. 2015;26(4):193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, et al. Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9–24.

    Article  CAS  PubMed  Google Scholar 

  16. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL, et al. Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther. 2009;20(9):999–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mingozzi F, High KA. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Annu Rev Virol. 2017;4(1):511–34.

    Article  CAS  PubMed  Google Scholar 

  19. Cho GY, Justus S, Sengillo JD, Tsang SH. CRISPR in the retina: evaluation of future potential. Adv Exp Med Biol. 2017;1016:147–55.

    Article  CAS  PubMed  Google Scholar 

  20. Yang T, Justus S, Li Y, Tsang SH. BEST1: the best target for gene and cell therapies. Mol Ther. 2015;23(12):1805–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reichel FF, Dauletbekov DL, Klein R, Peters T, Ochakovski GA, Seitz IP, et al. AAV8 can induce innate and adaptive immune response in the primate eye. Mol Ther. 2017;25(12):2648–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vacca O, El Mathari B, Darche M, Sahel JA, Rendon A, Dalkara D. Using adeno-associated virus as a tool to study retinal barriers in disease. J Vis Exp. 2015;19(98).

  23. Cabral T, DiCarlo JE, Justus S, Sengillo JD, Xu Y, Tsang SH. CRISPR applications in ophthalmologic genome surgery. Curr Opin Ophthalmol. 2017.

  24. Cabral T, Sengillo JD, Duong JK, Justus S, Boudreault K, Schuerch K, et al. Retrospective analysis of structural disease progression in retinitis pigmentosa utilizing multimodal imaging. Sci Rep. 2017;7(1):10347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DiCarlo JE, Sengillo JD, Justus S, Cabral T, Tsang SH, Mahajan VB. CRISPR-Cas genome surgery in ophthalmology. Transl Vis Sci Technol. 2017;6(3):13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bennett J, Tanabe T, Sun D, Zeng Y, Kjeldbye H, Gouras P, et al. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nat Med. 1996;2(6):649–54.

    Article  CAS  PubMed  Google Scholar 

  27. Auricchio A, Smith AJ, Ali RR. The future looks brighter after 25 years of retinal gene therapy. Hum Gene Ther. 2017;28(11):982–7.

    Article  CAS  PubMed  Google Scholar 

  28. Peng Y, Tang L, Zhou Y. Subretinal injection: a review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res. 2017;58(4):217–26.

    Article  CAS  PubMed  Google Scholar 

  29. Moore NA, Bracha P, Hussain RM, Morral N, Ciulla TA. Gene therapy for age-related macular degeneration. Expert Opin Biol Ther. 2017;17(10):1235–44.

    Article  CAS  PubMed  Google Scholar 

  30. Cho GY, Schaefer KA, Bassuk AG, Tsang SH, Mahajan VB. CRISPR genome surgery in the retina in light of off-targeting. Retina. 2018.

  31. Cepko CL, Vandenberghe LH. Retinal gene therapy coming of age. Hum Gene Ther. 2013;24(3):242–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bennett J, Wellman J, Marshall KA, McCague S, Ashtari M, DiStefano-Pappas J, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388(10045):661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Conlon TJ, Deng WT, Erger K, Cossette T, Pang JJ, Ryals R, et al. Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum Gene Ther Clin Dev. 2013;24(1):23–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ghazi NG, Abboud EB, Nowilaty SR, Alkuraya H, Alhommadi A, Cai H, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet. 2016;135(3):327–43.

    Article  CAS  PubMed  Google Scholar 

  36. Feuer WJ, Schiffman JC, Davis JL, Porciatti V, Gonzalez P, Koilkonda RD, et al. Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123(3):558–70.

    Article  PubMed  Google Scholar 

  37. Bainbridge JW, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372(20):1887–97.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Takahashi VKL, Takiuti JT, Jauregui R, Tsang SH. Gene therapy in inherited retinal degenerative diseases, a review. Ophthalmic Genet. 2018;24:1–9.

    Google Scholar 

  39. Daiger SP. RetNet: summaries of genes and loci causing retinal diseases. January 24, 2017 [cited 2017 February 2, 2017]. https://sph.uth.edu/RetNet/sum-dis.htm.

  40. Jauregui R, Cho GY, Takahashi VKL, Takiuti JT, Bassuk AG, Mahajan VB, et al. Caring for hereditary childhood retinal blindness. Asia Pac J Ophthalmol (Phila). 2018.

  41. Weleber RG, Francis PJ, Trzupek KM, Beattie C. Leber congenital amaurosis. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews ((R)). Seattle (WA). 1993.

  42. Redmond TM. Focus on molecules: RPE65, the visual cycle retinol isomerase. Exp Eye Res. 2009;88(5):846–7.

    Article  CAS  PubMed  Google Scholar 

  43. Koenekoop RK. An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol. 2004;49(4):379–98.

    Article  PubMed  Google Scholar 

  44. Bennett J, Ashtari M, Wellman J, Marshall KA, Cyckowski LL, Chung DC, et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med. 2012;4(120):120ra15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther. 2010;18(3):643–50.

    Article  CAS  PubMed  Google Scholar 

  46. Le Meur G, Lebranchu P, Billaud F, Adjali O, Schmitt S, Bezieau S, et al. Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther. 2018;26(1):256–68.

    Article  CAS  PubMed  Google Scholar 

  47. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weleber RG, Pennesi ME, Wilson DJ, Kaushal S, Erker LR, Jensen L, et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123(7):1606–20.

    Article  PubMed  Google Scholar 

  49. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374(9701):1597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin MK, Tsai YT, Tsang SH. Emerging treatments for retinitis pigmentosa: genes and stem cells, as well as new electronic and medical therapies, are gaining ground. Retin Physician. 2015;12:52–70.

    PubMed  PubMed Central  Google Scholar 

  52. Cideciyan AV, Jacobson SG, Beltran WA, Sumaroka A, Swider M, Iwabe S, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci USA. 2013;110(6):E517–25.

    Article  PubMed  Google Scholar 

  53. MacDonald IM, Hume S, Chan S, Seabra MC. Choroideremia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al. (eds). GeneReviews((R)). Seattle (WA). 1993.

  54. Zinkernagel MS, MacLaren RE. Recent advances and future prospects in choroideremia. Clin Ophthalmol. 2015;9:2195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dimopoulos IS, Hoang SC, Radziwon A, Binczyk NM, Seabra MC, MacLaren RE, et al. Two-year results after AAV2-mediated gene therapy for choroideremia: the Alberta experience. Am J Ophthalmol. 2018;27(193):130–42.

    Article  Google Scholar 

  56. Yu-Wai-Man P, Chinnery PF. Leber hereditary optic neuropathy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al. editors. GeneReviews ((R)). Seattle (WA). 1993.

  57. Vestergaard N, Rosenberg T, Torp-Pedersen C, Vorum H, Andersen CU, Aasbjerg K. Increased mortality and comorbidity associated with Leber’s hereditary optic neuropathy: a nationwide cohort study. Invest Ophthalmol Vis Sci. 2017;58(11):4586–92.

    Article  CAS  PubMed  Google Scholar 

  58. Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet. 2009;46(3):145–58.

    Article  CAS  PubMed  Google Scholar 

  59. Meyerson C, Van Stavern G, McClelland C. Leber hereditary optic neuropathy: current perspectives. Clin Ophthalmol. 2015;9:1165–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cwerman-Thibault H, Augustin S, Lechauve C, Ayache J, Ellouze S, Sahel JA, et al. Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. Mol Ther Methods Clin Dev. 2015;2:15003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carelli V, Barboni P, Zacchini A, Mancini R, Monari L, Cevoli S, et al. Leber’s hereditary optic neuropathy (LHON) with 14484/ND6 mutation in a North African patient. J Neurol Sci. 1998;160(2):183–8.

    Article  CAS  PubMed  Google Scholar 

  62. Barnils N, Mesa E, Munoz S, Ferrer-Artola A, Arruga J. Response to idebenone and multivitamin therapy in Leber’s hereditary optic neuropathy. Archivos de la Sociedad Espanola de Oftalmologia. 2007;82(6):377–80.

    CAS  PubMed  Google Scholar 

  63. Angebault C, Gueguen N, Desquiret-Dumas V, Chevrollier A, Guillet V, Verny C, et al. Idebenone increases mitochondrial complex I activity in fibroblasts from LHON patients while producing contradictory effects on respiration. BMC Res Notes. 2011;4:557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wan X, Pei H, Zhao M-J, Yang S, Hu W-K, He H, et al. Efficacy and safety of rAAV2-ND4 treatment for Leber’s hereditary optic neuropathy. Sci Rep. 2016;6:21587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Congdon N, O’Colmain B, Klaver CC, Klein R, Munoz B, Friedman DS, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122(4):477–85.

    Article  PubMed  Google Scholar 

  66. Campochiaro PA, Lauer AK, Sohn EH, Mir TA, Naylor S, Anderton MC, et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum Gene Ther. 2017;28(1):99–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rakoczy EP, Lai CM, Magno AL, Wikstrom ME, French MA, Pierce CM, et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet. 2015;386(10011):2395–403.

    Article  CAS  PubMed  Google Scholar 

  68. Constable IJ, Lai CM, Magno AL, French MA, Barone SB, Schwartz SD, et al. Gene therapy in neovascular age-related macular degeneration: three-year follow-up of a phase 1 randomized dose escalation trial. Am J Ophthalmol. 2017;177:150–8.

    Article  CAS  PubMed  Google Scholar 

  69. Constable IJ, Pierce CM, Lai CM, Magno AL, Degli-Esposti MA, French MA, et al. Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration. EBioMedicine. 2016;14:168–75.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Heier JS, Kherani S, Desai S, Dugel P, Kaushal S, Cheng SH, et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial. The Lancet. 2017;390(10089):50–61.

    Article  CAS  Google Scholar 

  71. Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34(9):933–41.

    Article  CAS  PubMed  Google Scholar 

  72. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.

    Article  CAS  PubMed  Google Scholar 

  73. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schaefer KA, Wu WH, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB. Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat Methods. 2017;14(6):547–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol Ther Nucleic Acids. 2015;17(4):e264.

    Article  CAS  Google Scholar 

  76. Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet. 2016;17(5):300–12.

    Article  CAS  PubMed  Google Scholar 

  77. Rees HA, Komor AC, Yeh WH, Caetano-Lopes J, Warman M, Edge ASB, et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun. 2017;06(8):15790.

    Article  CAS  Google Scholar 

  78. Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ, Baik SH, et al. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci Adv. 2017;3(7):e1701620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv. 2017;35(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  80. Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip Rev Syst Biol Med. 2018;10(1):e1408.

    Article  CAS  Google Scholar 

  81. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsai SQ, Joung JK. What’s changed with genome editing? Cell Stem Cell. 2014;15(1):3–4.

    Article  CAS  PubMed  Google Scholar 

  83. Jamal M, Khan FA, Da L, Habib Z, Dai J, Cao G. Keeping CRISPR/Cas on-target. Curr Issues Mol Biol. 2016;20:1–12.

    PubMed  Google Scholar 

  84. Peng R, Lin G, Li J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 2016;283(7):1218–31.

    Article  CAS  PubMed  Google Scholar 

  85. Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods. 2015;12(11):1051–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 2015;25(8):1147–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Flowers GP, Timberlake AT, McLean KC, Monaghan JR, Crews CM. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development. 2014;141(10):2165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hess GT, Fresard L, Han K, Lee CH, Li A, Cimprich KA, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. 2016;13(12):1036–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018.

  91. Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res. 2017.

  92. Nihongaki Y, Kawano F, Nakajima T, Sato M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol. 2015;33(7):755–60.

    Article  CAS  PubMed  Google Scholar 

  93. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014;11(4):399–402.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory are supported by the National Institutes of Health (P30EY019007, R01EY018213, R01EY024698, R01EY026682, R21AG050437), National Cancer Institute Core (5P30CA013696), Foundation Fighting Blindness [TA-NMT-0116-0692-COLU], the Research to Prevent Blindness (RPB) Physician-Scientist Award, and unrestricted funds from RPB, New York, NY, USA. SHT is a member of the RD-CURE Consortium and is supported by Kobi and Nancy Karp, the Crowley Family Fund, the Rosenbaum Family Foundation, the Tistou and Charlotte Kerstan Foundation, the Schneeweiss Stem Cell Fund, New York State [C029572], and the Gebroe Family Foundation.

Author information

Authors and Affiliations

Authors

Contributions

GYC and KB performed the literature searches and composed the manuscript. KSP and JDS assisted in manuscript composition. SHT oversaw all aspects of the manuscript preparation and holds final responsibility for content and the decision to publish.

Corresponding author

Correspondence to Stephen H. Tsang.

Ethics declarations

Conflict of interest

The authors Galaxy Y. Cho, Kyle Bolo, Karen Sophia Park, Jesse D. Sengillo, Stephen H. Tsang have no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, G.Y., Bolo, K., Park, K.S. et al. Attenuation of Inherited and Acquired Retinal Degeneration Progression with Gene-based Techniques. Mol Diagn Ther 23, 113–120 (2019). https://doi.org/10.1007/s40291-018-0377-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-018-0377-1

Navigation