Skip to main content
Log in

The Challenges of Precision Medicine in COPD

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Pheno-/endotyping chronic obstructive pulmonary disease (COPD) is really important because it provides patients with precise and personalized medicine. The central concept of precision medicine is to take individual variability into account when making management decisions. Precision medicine should ensure that patients get the right treatment at the right dose at the right time, with minimum harmful consequences and maximum efficacy. Ideally, we should search for genetic and molecular biomarker-based profiles. Given the clinical complexity of COPD, it seems likely that a panel of several biomarkers will be required to characterize pathogenetic factors and their course over time. The need for biomarkers to guide the clinical care of individuals with COPD and to enhance the possibilities of success in drug development is clear and urgent, but biomarker development is tremendously challenging and expensive, and translation of research efforts to date has been largely ineffective. Furthermore, the development of personalized treatments will require a much more detailed understanding of the clinical and biological heterogeneity of COPD. Therefore, we are still far from being able to apply precision medicine in COPD and the treatable traits and FEV1-free approaches are attempts to precision medicine in COPD that must be considered still quite unsophisticated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agusti A. The path to personalised medicine in COPD. Thorax. 2014;69(9):857–64. doi:10.1136/thoraxjnl-2014-205507.

    Article  PubMed  Google Scholar 

  2. Segreti A, Stirpe E, Rogliani P, Cazzola M. Defining phenotypes in COPD: an aid to personalized healthcare. Mol Diagn Ther. 2014;18(4):381–8. doi:10.1007/s40291-014-0100-9.

    Article  PubMed  Google Scholar 

  3. Miravitlles M, Calle M, Soler-Cataluna JJ. Clinical phenotypes of COPD: identification, definition and implications for guidelines. Arch Bronconeumol. 2012;48(3):86–98. doi:10.1016/j.arbres.2011.10.007.

    Article  PubMed  Google Scholar 

  4. Global Initiative for Chronic Obstructive Lung. Global strategy for the diagnosis, management and prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD). 2017. http://goldcopd.org/gold-2017-global-strategy-diagnosis-management-prevention-copd/.

  5. Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, et al. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med. 2010;182(5):598–604. doi:10.1164/rccm.200912-1843CC.

    Article  PubMed  Google Scholar 

  6. Cazzola M, Segreti A, Rogliani P. Comparative effectiveness of drugs for chronic obstructive pulmonary disease. Drugs Today (Barc). 2012;48(12):785–94. doi:10.1358/dot.2012.48.12.1860770.

    CAS  PubMed  Google Scholar 

  7. President’s Council of Advisors on Science and Technology. Priorities for personalized medicine. 2008. https://www.whitehouse.gov/files/documents/ostp/PCAST/pcast_report_v2.pdf.

  8. Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012;366(6):489–91. doi:10.1056/NEJMp1114866.

    Article  PubMed  Google Scholar 

  9. Hurst JR. Precision medicine in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;193(6):593–4. doi:10.1164/rccm.201601-0104ED.

    Article  CAS  PubMed  Google Scholar 

  10. Roche N. Adding biological markers to COPD categorisation schemes: a way towards more personalised care? Eur Respir J. 2016;47(6):1601–5. doi:10.1183/13993003.00401-2016.

    Article  PubMed  Google Scholar 

  11. Sapey E, Stockley RA. COPD exacerbations. 2: aetiology. Thorax. 2006;61(3):250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cazzola M, MacNee W, Martinez FJ, Rabe KF, Franciosi LG, Barnes PJ, et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J. 2008;31(2):416–69. doi:10.1183/09031936.00099306.

    Article  CAS  PubMed  Google Scholar 

  13. Bafadhel M, McKenna S, Terry S, Mistry V, Reid C, Haldar P, et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med. 2011;184(6):662–71. doi:10.1164/rccm.201104-0597OC.

    Article  PubMed  Google Scholar 

  14. Donaldson GC, Müllerova H, Locantore N, Hurst JR, Calverley PM, Vestbo J, et al. Factors associated with change in exacerbation frequency in COPD. Respir Res. 2013;14:79. doi:10.1186/1465-9921-14-79.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cazzola M, Rogliani P, Matera MG. Escalation and de-escalation of therapy in COPD: myths, realities and perspectives. Drugs. 2015;75(14):1575–85. doi:10.1007/s40265-015-0450-6.

    Article  CAS  PubMed  Google Scholar 

  16. Lee JS, Huh JW, Chae EJ, Seo JB, Ra SW, Lee JH, et al. Response patterns to bronchodilator and quantitative computed tomography in chronic obstructive pulmonary disease. Clin Physiol Funct Imaging. 2012;32(1):12–8. doi:10.1111/j.1475-097X.2011.01046.x.

    Article  CAS  PubMed  Google Scholar 

  17. Subramanian DR, Gupta S, Burggraf D, Vom Silberberg SJ, Heimbeck I, Heiss-Neumann MS, et al. Emphysema- and airway-dominant COPD phenotypes defined by standardised quantitative computed tomography. Eur Respir J. 2016;48(1):92–103. doi:10.1183/13993003.01878-2015.

    Article  PubMed  Google Scholar 

  18. Van Tho N, Ogawa E, le Trang TH, Ryujin Y, Kanda R, Nakagawa H, et al. A mixed phenotype of airway wall thickening and emphysema is associated with dyspnea and hospitalization for chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2015;12(7):988–96. doi:10.1513/AnnalsATS.201411-501OC.

    Article  PubMed  Google Scholar 

  19. Fujimoto K, Kitaguchi Y, Kubo K, Honda T. Clinical analysis of chronic obstructive pulmonary disease phenotypes classified using high-resolution computed tomography. Respirology. 2006;11(6):731–40. doi:10.1111/j.1440-1843.2006.00930.x.

    Article  PubMed  Google Scholar 

  20. Reid L. The pathology of emphysema. Chicago: Year Book Medical Publishers; 1967.

    Google Scholar 

  21. Bastos HN, Neves I, Redondo M, Cunha R, Pereira JM, Magalhães A, et al. Influence of emphysema distribution in pulmonary function parameters of COPD patients. J Bras Pneumol. 2015;41(6):489–95. doi:10.1590/S1806-37562015000000136.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stockley RA. Alpha-1 antitrypsin deficiency: phenotypes and quality of life. Ann Am Thorac Soc. 2016;13(Suppl 4):S332–5. doi:10.1513/AnnalsATS.201507-436KV.

    Article  PubMed  Google Scholar 

  23. Stockley RA. Alpha1-antitrypsin review. Clin Chest Med. 2014;35(1):39–50. doi:10.1016/j.ccm.2013.10.001.

    Article  PubMed  Google Scholar 

  24. Hatipoğlu U, Stoller JK. α1-Antitrypsin deficiency. Clin Chest Med. 2016;37(3):487–504. doi:10.1016/j.ccm.2016.04.011.

    Article  PubMed  Google Scholar 

  25. Green CE, Vayalapra S, Hampson JA, Mukherjee D, Stockley RA, Turner AM. PiSZ alpha-1 antitrypsin deficiency (AATD): pulmonary phenotype and prognosis relative to PiZZ AATD and PiMM COPD. Thorax. 2015;70(10):939–45. doi:10.1136/thoraxjnl-2015-206906.

    Article  CAS  PubMed  Google Scholar 

  26. Baraldo S, Balestro E, Bazzan E, Tiné ME, Biondini D, Turato G, et al. Alpha-1 antitrypsin deficiency today: new insights in the immunological pathways. Respiration. 2016;91(5):380–5. doi:10.1159/000445692.

    Article  CAS  PubMed  Google Scholar 

  27. Global Initiative for Asthma and Global Initiative for Chronic Obstructive Lung Disease. 2015 Diagnosis of diseases of chronic airflow limitation: asthma, COPD and asthma-COPD overlap syndrome (ACOS). http://ginasthma.org/asthma-copd-and-asthma-copd-overlap-syndrome-acos/.

  28. Cazzola M, Rogliani P. Do we really need asthma-chronic obstructive pulmonary disease overlap syndrome? J Allergy Clin Immunol. 2016;138(4):977–83. doi:10.1016/j.jaci.2016.04.028.

    Article  PubMed  Google Scholar 

  29. Barnes PJ. Therapeutic approaches to asthma-chronic obstructive pulmonary disease overlap syndromes. J Allergy Clin Immunol. 2015;136(3):531–45. doi:10.1016/j.jaci.2015.05.052.

    Article  PubMed  Google Scholar 

  30. Falk JA, Minai OA, Mosenifar Z. Inhaled and systemic corticosteroids in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2008;5(4):506–12. doi:10.1513/pats.200707-096ET.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cazzola M, Rogliani P, Novelli L, Matera MG. Inhaled corticosteroids for chronic obstructive pulmonary disease. Expert Opin Pharmacother. 2013;14(18):2489–99. doi:10.1517/14656566.2013.848856.

    Article  CAS  PubMed  Google Scholar 

  32. Finney L, Berry M, Singanayagam A, Elkin SL, Johnston SL, Mallia P. Inhaled corticosteroids and pneumonia in chronic obstructive pulmonary disease. Lancet Respir Med. 2014;2(11):919–32. doi:10.1016/S2213-2600(14)70169-9.

    Article  CAS  PubMed  Google Scholar 

  33. Thomas M, Decramer M, O’Donnell DE. No room to breathe: the importance of lung hyperinflation in COPD. Prim Care Respir J. 2013;22(1):101–11. doi:10.4104/pcrj.2013.00025.

    Article  PubMed  Google Scholar 

  34. Wedzicha JA, Decramer M, Seemungal TA. The role of bronchodilator treatment in the prevention of exacerbations of COPD. Eur Respir J. 2012;40(6):1545–54. doi:10.1183/09031936.00048912.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wedzicha JA, Banerji D, Chapman KR, Vestbo J, Roche N, Ayers RT, et al. Indacaterol-glycopyrronium versus salmeterol-fluticasone for COPD. N Engl J Med. 2016;374(23):2222–34. doi:10.1056/NEJMoa1516385.

    Article  CAS  PubMed  Google Scholar 

  36. Cazzola M, Rogliani P. LABA/LAMA combinations instead of LABA/ICS combinations may prevent or delay exacerbations of COPD in some patients. Evid Based Med. 2016;21(6):222. doi:10.1136/ebmed-2016-110525.

    Article  PubMed  Google Scholar 

  37. Cazzola M, Ora J, Puxeddu E. Dual bronchodilation and exacerbations of COPD. J Thorac Dis. 2016;8(9):2383–6. doi:10.21037/jtd.2016.08.92.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rennard SI, Calverley PM, Goehring UM, Bredenbröker D, Martinez FJ. Reduction of exacerbations by the PDE4 inhibitor roflumilast—the importance of defining different subsets of patients with COPD. Respir Res. 2011;12:18. doi:10.1186/1465-9921-12-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rogliani P, Calzetta L, Cazzola M, Matera MG. Drug safety evaluation of roflumilast for the treatment of COPD: a meta-analysis. Expert Opin Drug Saf. 2016;15(8):1133–46. doi:10.1080/14740338.2016.1199683.

    Article  CAS  PubMed  Google Scholar 

  40. Albert RK, Connett J, Bailey WC, Casaburi R, Cooper JA Jr, Criner GJ, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365(8):689–98. doi:10.1056/NEJMoa1104623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang M, Li Q, Zhang XY, Ding X, Zhu D, Zhou X. Relevance of lower airway bacterial colonization, airway inflammation, and pulmonary function in the stable stage of chronic obstructive pulmonary disease. Eur J Clin Microbiol Infect Dis. 2010;29(12):1487–93. doi:10.1007/s10096-010-1027-7.

    Article  CAS  PubMed  Google Scholar 

  42. Cazzola M, Capuano A, Rogliani P, Matera MG. Bacterial lysates as a potentially effective approach in preventing acute exacerbation of COPD. Curr Opin Pharmacol. 2012;12(3):300–8. doi:10.1016/j.coph.2012.01.019.

    Article  CAS  PubMed  Google Scholar 

  43. Braido F, Melioli G, Cazzola M, Fabbri L, Blasi F, Moretta L, et al. Sub-lingual administration of a polyvalent mechanical bacterial lysate (PMBL) in patients with moderate, severe, or very severe chronic obstructive pulmonary disease (COPD) according to the GOLD spirometric classification: a multicentre, double-blind, randomised, controlled, phase IV study (AIACE study: Advanced Immunological Approach in COPD Exacerbation). Pulm Pharmacol Ther. 2015;33:75–80. doi:10.1016/j.pupt.2015.03.006.

    Article  CAS  PubMed  Google Scholar 

  44. Huang YJ, Lynch SV. The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications. Expert Rev Respir Med. 2011;5(6):809–21. doi:10.1586/ers.11.76.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dy R, Sethi S. The lung microbiome and exacerbations of COPD. Curr Opin Pulm Med. 2016;22(3):196–202. doi:10.1097/MCP.0000000000000268.

    Article  CAS  PubMed  Google Scholar 

  46. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–66. doi:10.1038/nm.3444.

    Article  CAS  PubMed  Google Scholar 

  47. Fyhrquist N, Ruokolainen L, Suomalainen A, Lehtimäki S, Veckman V, Vendelin J, et al. Acinetobacter species in the skin microbiota protects against allergic sensitization and inflammation. J Allergy Clin Immunol. 2014;134(6):1301–9. doi:10.1016/j.jaci.2014.07.059.

    Article  CAS  PubMed  Google Scholar 

  48. Beeh KM, Beier J. The short, the long and the ‘‘ultra-long’’: why duration of bronchodilator action matters in chronic obstructive pulmonary disease. Adv Ther. 2010;27(3):150–9. doi:10.1007/s12325-010-0017-6.

    Article  PubMed  Google Scholar 

  49. National Institute for Health and Clinical Excellence. National Clinical Guideline Centre. Chronic obstructive pulmonary disease: management of chronic obstructive pulmonary disease in adults in primary and secondary care. http://guidance.nice.org.uk/CG101/Guidance/pdf/English.

  50. Ikeda T, Anisuzzaman AS, Yoshiki H, Sasaki M, Koshiji T, Uwada J, et al. Regional quantification of muscarinic acetylcholine receptors and β-adrenoceptors in human airways. Br J Pharmacol. 2012;166(6):1804–14. doi:10.1111/j.1476-5381.2012.01881.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barnes PJ. Distribution of receptor targets in the lung. Proc Am Thorac Soc. 2004;1(4):345–51. doi:10.1513/pats.200409-045MS.

    Article  CAS  PubMed  Google Scholar 

  52. Cazzola M, Calzetta L, Page CP, Rogliani P, Facciolo F, Gavaldà A, et al. Pharmacological characterization of the interaction between aclidinium bromide and formoterol fumarate on human isolated bronchi. Eur J Pharmacol. 2014;745:135–43. doi:10.1016/j.ejphar.2014.10.025.

    Article  CAS  PubMed  Google Scholar 

  53. Cazzola M, Calzetta L, Puxeddu E, Ora J, Facciolo F, Rogliani P, et al. Pharmacological characterisation of the interaction between glycopyrronium bromide and indacaterol fumarate in human isolated bronchi, small airways and bronchial epithelial cells. Respir Res. 2016;17(1):70. doi:10.1186/s12931-016-0386-8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cazzola M, Calzetta L, Page C, Jardim J, Chuchalin AG, Rogliani P, et al. Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: a meta-analysis. Eur Respir Rev. 2015;24(137):451–61. doi:10.1183/16000617.00002215.

    Article  PubMed  Google Scholar 

  55. Tse HN, Raiteri L, Wong KY, Yee KS, Ng LY, Wai KY, et al. High-dose N-acetylcysteine in stable COPD: the 1-year, double-blind, randomized, placebo-controlled HIACE study. Chest. 2013;144(1):106–18. doi:10.1378/chest.12-2357.

    Article  CAS  PubMed  Google Scholar 

  56. Henao MP, Craig TJ. Recent advances in understanding and treating COPD related to α1-antitrypsin deficiency. Expert Rev Respir Med. 2016;10(12):1281–94. doi:10.1080/17476348.2016.1249851.

    Article  CAS  PubMed  Google Scholar 

  57. Sandhaus RA, Turino G, Stocks J, Strange C, Trapnell BC, Silverman EK, et al. alpha1-Antitrypsin augmentation therapy for PI*MZ heterozygotes: a cautionary note. Chest. 2008;134(4):831–4. doi:10.1378/chest.08-0868.

    Article  PubMed  Google Scholar 

  58. Parr DG, Dirksen A, Piitulainen E, Deng C, Wencker M, Stockley RA. Exploring the optimum approach to the use of CT densitometry in a randomised placebo-controlled study of augmentation therapy in alpha 1-antitrypsin deficiency. Respir Res. 2009;10:75.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lieberman J. Augmentation therapy reduces frequency of lung infections in antitrypsin deficiency: a new hypothesis with supporting data. Chest. 2000;118(5):1480–5.

    Article  CAS  PubMed  Google Scholar 

  60. Dirksen A, Piitulainen E, Parr DG, Deng C, Wencker M, Shaker SB, et al. Exploring the role of CT densitometry: a randomised study of augmentation therapy in alpha1-antitrypsin deficiency. Eur Respir J. 2009;33(6):1345–53. doi:10.1183/09031936.00159408.

    Article  CAS  PubMed  Google Scholar 

  61. Criner GJ, Cordova F, Sternberg AL, Martinez FJ. The National Emphysema Treatment Trial (NETT) part II: lessons learned about lung volume reduction surgery. Am J Respir Crit Care Med. 2011;184(8):881–93. doi:10.1164/rccm.201103-0455CI.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fishman A, Martinez F, Naunheim K, Piantadosi S, Wise R, Ries A, et al. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med. 2003;348(21):2059–73. doi:10.1056/NEJMoa030287.

    Article  PubMed  Google Scholar 

  63. Naunheim KS, Wood DE, Krasna MJ, DeCamp MM Jr, Ginsburg ME, McKenna RJ Jr, et al. Predictors of operative mortality and cardiopulmonary morbidity in the National Emphysema Treatment Trial. J Thorac Cardiovasc Surg. 2006;131(1):43–53. doi:10.1016/j.jtcvs.2005.09.006.

    Article  PubMed  Google Scholar 

  64. Valipour A, Burghuber OC. An update on the efficacy of endobronchial valve therapy in the management of hyperinflation in patients with chronic obstructive pulmonary disease. Ther Adv Respir Dis. 2015;9(6):294–301. doi:10.1177/1753465815599693.

    Article  CAS  PubMed  Google Scholar 

  65. Davey C, Zoumot Z, Jordan S, McNulty WH, Carr DH, Hind MD, et al. Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BeLieVeR-HIFi study): a randomised controlled trial. Lancet. 2015;386(9998):1066–73. doi:10.1016/S0140-6736(15)60001-0.

    Article  PubMed  Google Scholar 

  66. Klooster K, ten Hacken NH, Hartman JE, Kerstjens HA, van Rikxoort EM, Slebos DJ. Endobronchial valves for emphysema without interlobar collateral ventilation. N Engl J Med. 2015;373(24):2325–35. doi:10.1056/NEJMoa1507807.

    Article  CAS  PubMed  Google Scholar 

  67. Herzog D, Thomsen C, Poellinger A, Doellinger F, Schreiter N, Froeling V, et al. Outcomes of endobronchial valve treatment based on the precise criteria of an endobronchial catheter for detection of collateral ventilation under spontaneous breathing. Respiration. 2016;91(1):69–78. doi:10.1159/000442886.

    Article  PubMed  Google Scholar 

  68. Crisafulli E, Venturelli E, Biscione G, Vagheggini G, Iattoni A, Lucic S, et al. Exercise performance after standard rehabilitation in COPD patients with lung hyperinflation. Intern Emerg Med. 2014;9(1):23–31. doi:10.1007/s11739-011-0727-z.

    Article  PubMed  Google Scholar 

  69. Ambrosino N, Venturelli E, de Blasio F, Paggiaro P, Pasqua F, Vitacca M, et al. A prospective multicentric study of pulmonary rehabilitation in patients with chronic obstructive pulmonary disease and different clinical phenotypes. Respiration. 2015;89(2):141–7. doi:10.1159/000371471.

    Article  PubMed  Google Scholar 

  70. Matera MG, Page C, Rogliani P, Calzetta L, Cazzola M. Therapeutic monoclonal antibodies for the treatment of chronic obstructive pulmonary disease. Drugs. 2016;76(13):1257–70. doi:10.1007/s40265-016-0625-9.

    Article  CAS  PubMed  Google Scholar 

  71. Brightling CE, Bleecker ER, Panettieri RA Jr, Bafadhel M, She D, Ward CK, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir Med. 2014;2(11):891–901. doi:10.1016/S2213-2600(14)70187-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brusselle G, Bracke K. Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014;11(Suppl 5):S322–8. doi:10.1513/AnnalsATS.201403-118AW.

    Article  PubMed  Google Scholar 

  73. Travers J, Marsh S, Williams M, Weatherall M, Caldwell B, Shirtcliffe P, et al. External validity of randomised controlled trials in asthma: to whom do the results of the trials apply? Thorax. 2007;62(3):219–23. doi:10.1136/thx.2006.066837.

    Article  PubMed  Google Scholar 

  74. Russell DW, Wells JM, Blalock JE. Disease phenotyping in chronic obstructive pulmonary disease: the neutrophilic endotype. Curr Opin Pulm Med. 2016;22(2):91–9. doi:10.1097/MCP.0000000000000238.

    Article  PubMed  Google Scholar 

  75. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372(9643):1107–19. doi:10.1016/S0140-6736(08)61452-X.

    Article  PubMed  Google Scholar 

  76. Singh D, Roche N, Halpin D, Agusti A, Wedzicha JA, Martinez FJ. Current controversies in the pharmacological treatment of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;194(5):541–9. doi:10.1164/rccm.201606-1179PP.

    Article  PubMed  Google Scholar 

  77. Novelli G, Borgiani P, Ciccacci C, Di Daniele N, Sirugo G, Papaluca Amati M. Pharmacogenomics: role in medicines approval and clinical use. Public Health Genomics. 2010;13(5):284–91. doi:10.1159/000245271.

    Article  CAS  PubMed  Google Scholar 

  78. Cazzola M, Novelli G. Biomarkers in COPD. Pulm Pharmacol Ther. 2010;23(6):493–500. doi:10.1016/j.pupt.2010.05.001.

    Article  CAS  PubMed  Google Scholar 

  79. Priyadharshini VS, Teran LM. Personalized medicine in respiratory disease: role of proteomics. Adv Protein Chem Struct Biol. 2016;102:115–46. doi:10.1016/bs.apcsb.2015.11.008.

    Article  CAS  PubMed  Google Scholar 

  80. Fens N, de Nijs SB, Peters S, Dekker T, Knobel HH, Vink TJ, et al. Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur Respir J. 2011;38(6):1301–9. doi:10.1183/09031936.00032911.

    Article  CAS  PubMed  Google Scholar 

  81. Basanta M, Ibrahim B, Dockry R, Douce D, Morris M, Singh D, et al. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study. Respir Res. 2012;13:72. doi:10.1186/1465-9921-13-72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Papaioannou AI, Loukides S, Minas M, Kontogianni K, Bakakos P, Gourgoulianis KI, et al. Exhaled breath condensate pH as a biomarker of COPD severity in ex-smokers. Respir Res. 2011;12:67. doi:10.1186/1465-9921-12-67.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Warwick G, Thomas PS, Yates DH. Non-invasive biomarkers in exacerbations of obstructive lung disease. Respirology. 2013;18(5):874–84. doi:10.1111/resp.12089.

    Article  PubMed  Google Scholar 

  84. Sun W, Kechris K, Jacobson S, Drummond MB, Hawkins GA, Yang J, et al. Common genetic polymorphisms influence blood biomarker measurements in COPD. PLoS Genet. 2016;12(8):e1006011. doi:10.1371/journal.pgen.1006011.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wesolowska-Andersen A, Seibold MA. Is the road to precision medicine in chronic lung disease paved with degraded chitin? Am J Respir Crit Care Med. 2016;193(2):107–8. doi:10.1164/rccm.201510-1925ED.

    Article  PubMed  Google Scholar 

  86. Faner R, Tal-Singer R, Riley JH, Celli B, Vestbo J, MacNee W, et al. Lessons from ECLIPSE: a review of COPD biomarkers. Thorax. 2014;69(7):666–72. doi:10.1136/thoraxjnl-2013-204778.

    Article  PubMed  Google Scholar 

  87. Coxson HO, Dirksen A, Edwards LD, Yates JC, Agusti A, Bakke P, et al. The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study. Lancet Respir Med. 2013;1(2):129–36. doi:10.1016/S2213-2600(13)70006-7.

    Article  PubMed  Google Scholar 

  88. Dilektasli AG, Demirdogen Cetinoglu E, Uzaslan E, Budak F, Coskun F, et al. Serum CCL-18 level is a risk factor for COPD exacerbations requiring hospitalization. Int J Chron Obstruct Pulmon Dis. 2017;12:199–208. doi:10.2147/COPD.S118424.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Park HY, Churg A, Wright JL, Li Y, Tam S, Man SF, et al. Club cell protein 16 and disease progression in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188(12):1413–9. doi:10.1164/rccm.201305-0892OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stolz D, Kostikas K, Blasi F, Boersma W, Milenkovic B, Lacoma A, et al. Adrenomedullin refines mortality prediction by the BODE index in COPD: the “BODE-A” index. Eur Respir J. 2014;43(2):397–408. doi:10.1183/09031936.00058713.

    Article  CAS  PubMed  Google Scholar 

  91. Bihlet AR, Karsdal MA, Sand JM, Leeming DJ, Roberts M, White W, et al. Biomarkers of extracellular matrix turnover are associated with emphysema and eosinophilic-bronchitis in COPD. Respir Res. 2017;18(1):22. doi:10.1186/s12931-017-0509-x.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hollander Z, DeMarco ML, Sadatsafavi M, McManus BM, Ng RT, Sin DD. Biomarker development in COPD: moving from p-values to products to impact patient care. Chest. 2016. doi:10.1016/j.chest.2016.09.012.

  93. Agusti A, Bel E, Thomas M, Vogelmeier C, Brusselle G, Holgate S, et al. Treatable traits: toward precision medicine of chronic airway diseases. Eur Respir J. 2016;47(2):410–9. doi:10.1183/13993003.01359-2015.

    Article  PubMed  Google Scholar 

  94. Sin DD, Hollander Z, DeMarco ML, McManus BM, Ng RT. Biomarker development for chronic obstructive pulmonary disease. From discovery to clinical implementation. Am J Respir Crit Care Med. 2015;192(10):1162–70. doi:10.1164/rccm.201505-0871PP.

    Article  CAS  PubMed  Google Scholar 

  95. Rennard SI. The promise of observational studies (ECLIPSE, SPIROMICS, and COPDGene) in achieving the goal of personalized treatment of chronic obstructive pulmonary disease. Semin Respir Crit Care Med. 2015;36(4):478–90. doi:10.1055/s-0035-1555609.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Cazzola.

Ethics declarations

Conflict of interest

Mario Cazzola, Luigino Calzetta Paola Rogliani and Maria Gabriella Matera have no relevant affiliations or financial involvement with any organization or entity with a financial interest in, or financial conflict with, the subject matter or materials discussed in the manuscript, including employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Funding

This manuscript was not funded/sponsored, and no writing assistance was utilized in its production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazzola, M., Calzetta, L., Rogliani, P. et al. The Challenges of Precision Medicine in COPD. Mol Diagn Ther 21, 345–355 (2017). https://doi.org/10.1007/s40291-017-0266-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-017-0266-z

Keywords

Navigation