Skip to main content

Advertisement

Log in

Comparison of Five Different Assays for the Detection of BRAF Mutations in Formalin-Fixed Paraffin Embedded Tissues of Patients with Metastatic Melanoma

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 19 September 2017

Abstract

Background

Metastatic or unresectable melanoma is a serious and deadly disease. Anti-BRAF and immunotherapy improved overall survival in patients with metastatic disease. Thus, BRAF genotyping is important to choose the right therapy.

Methods

In our study, we assessed and compared BRAF mutations in 59 formalin-fixed and paraffin-embedded tumor samples of patients with metastatic melanoma with next-generation sequencing (NGS), Cobas® 4800 BRAF V600 mutation test CE-IVD commercial kit, high-resolution melting PCR (HRM), multiplex real-time allele specific amplification (multiplexed RT-ASA) and immunohistochemistry (IHC).

Results

Thirty-one samples were found bearing a BRAF mutation with NGS (52.5%), 28 with Cobas® test (47.5%), 28 with HRM (47.5%), 29 with multiplexed RT-ASA (49.2%) and 27 with IHC (45.8%). Based on NGS data, 26 (81.2%) were c.1799 T>A (p.Val600Glu), 3 (9.4%) were c. 1798-1799 GT>AA (p.Val600Lys), 1 was c.1789_1790 CT>TC (p.Leu597Ser) and 2 were complex mutations. Sensitivity was 90.3% for Cobas® test, 93.1% for multiplexed RT-ASA and 87.1% for IHC and HRM. Specificity was 100% for Cobas® test, IHC and multiplexed RT-ASA and 96.4% for HRM. The reference assay was NGS. Rare mutations were detected with NGS and HRM: c.1789_1790 CT>TC (p.Leu597Ser) mutation and the complex mutation c.1796 A>T; c.1797_1798 insACT (p.Thr599Thr; p.Thr599_Val600insThr). Our data suggest that multiplexed RT-ASA is the most sensitive assay but specific primers for each mutation are needed. HRM can detect all exon 15 mutations but has a lower sensitivity. Because of its specificity for Val600Glu mutation, IHC may be considered only as a screening tool and testing should be completed by a method able to detect other V600 mutations. BRAF Cobas® assay is Val600Glu-specific and has poor sensitivity for the other V600 mutations; thus, it looks important to use multiplex assays able to detect all V600 mutations because a false-negative result will deprive the patient of an important treatment option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Howlader NNA, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER cancer statistics review, 1975–2012. National Cancer Institute. 2015.

  2. Pollock PM, Harper UL, Hansen KS, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33:19–20.

    Article  CAS  PubMed  Google Scholar 

  3. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  4. Guo X, Xu Y, Zhao Z. In-depth genomic data analyses revealed complex transcriptional and epigenetic dysregulations of BRAFV600E in melanoma. Mol Cancer. 2015;14:60.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ugurel S, Rohmel J, Ascierto PA, et al. Survival of patients with advanced metastatic melanoma: the impact of novel therapies. Eur J Cancer. 2016;53:125–34.

    Article  PubMed  Google Scholar 

  6. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.

    Article  CAS  PubMed  Google Scholar 

  8. Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.

    Article  CAS  PubMed  Google Scholar 

  9. Larkin J, Ascierto PA, Dreno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371:1867–76.

    Article  PubMed  Google Scholar 

  10. Long GV, Wilmott JS, Capper D, et al. Immunohistochemistry is highly sensitive and specific for the detection of V600E BRAF mutation in melanoma. Am J Surg Pathol. 2013;37:61–5.

    Article  PubMed  Google Scholar 

  11. Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.

    Article  PubMed  Google Scholar 

  12. Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372:2006–17.

    Article  PubMed  Google Scholar 

  13. CiRen B, Wang X, Long Z. The evaluation of immunotherapy and chemotherapy treatment on melanoma: a network meta-analysis. Oncotarget. 2016;7(49):81493–511.

  14. Harle A, Busser B, Rouyer M, et al. Comparison of COBAS 4800 KRAS, TaqMan PCR and high resolution melting PCR assays for the detection of KRAS somatic mutations in formalin-fixed paraffin embedded colorectal carcinomas. Virchows Arch. 2013;462:329–35.

    Article  CAS  PubMed  Google Scholar 

  15. Untergasser A, Nijveen H, Rao X, et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007;35:W71–4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harle A, Filhine-Tresarrieu P, Husson M, et al. Rare RAS mutations in metastatic colorectal cancer detected during routine RAS genotyping using next generation sequencing. Target Oncol. 2016;11(3):363–70.

  17. Pichler M, Balic M, Stadelmeyer E, et al. Evaluation of high-resolution melting analysis as a diagnostic tool to detect the BRAF V600E mutation in colorectal tumors. J Mol Diagn. 2009;11:140–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Willmore-Payne C, Holden JA, Tripp S, Layfield LJ. Human malignant melanoma: detection of BRAF- and c-kit-activating mutations by high-resolution amplicon melting analysis. Hum Pathol. 2005;36:486–93.

    Article  CAS  PubMed  Google Scholar 

  19. Jarry A, Masson D, Cassagnau E, et al. Real-time allele-specific amplification for sensitive detection of the BRAF mutation V600E. Mol Cell Probes. 2004;18:349–52.

    Article  CAS  PubMed  Google Scholar 

  20. Ilie M, Long E, Hofman V, et al. Diagnostic value of immunohistochemistry for the detection of the BRAFV600E mutation in primary lung adenocarcinoma Caucasian patients. Ann Oncol. 2013;24(3):742–8.

    Article  CAS  PubMed  Google Scholar 

  21. Halait H, Demartin K, Shah S, et al. Analytical performance of a real-time PCR-based assay for V600 mutations in the BRAF gene, used as the companion diagnostic test for the novel BRAF inhibitor vemurafenib in metastatic melanoma. Diagn Mol Pathol. 2012;21:1–8.

    Article  CAS  PubMed  Google Scholar 

  22. Løes IM, Immervoll H, Angelsen JH, et al. Performance comparison of three BRAF V600E detection methods in malignant melanoma and colorectal cancer specimens. Tumour Biol. 2015;36:1003–13.

    Article  PubMed  Google Scholar 

  23. Han JY, Kim SH, Lee YS, et al. Comparison of targeted next-generation sequencing with conventional sequencing for predicting the responsiveness to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy in never-smokers with lung adenocarcinoma. Lung Cancer. 2014;85:161–7.

    Article  PubMed  Google Scholar 

  24. McCourt CM, McArt DG, Mills K, et al. Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis. PLoS One. 2013;8:e69604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martín-Núñez GM, Gómez-Zumaquero JM, Soriguer F, Morcillo S. High resolution melting curve analysis of DNA samples isolated by different DNA extraction methods. Clin Chim Acta. 2012;413:331–3.

    Article  PubMed  Google Scholar 

  26. Fisher KE, Cohen C, Siddiqui MT, et al. Accurate detection of BRAF p. V600E mutations in challenging melanoma specimens requires stringent immunohistochemistry scoring criteria or sensitive molecular assays. Hum Pathol. 2014;45:2281–93.

    Article  CAS  PubMed  Google Scholar 

  27. Ihle MA, Fassunke J, Konig K, et al. Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional Sanger sequencing for the detection of p. V600E and non-p.V600E BRAF mutations. BMC Cancer. 2014;14:13.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Heinzerling L, Kuhnapfel S, Meckbach D, et al. Rare BRAF mutations in melanoma patients: implications for molecular testing in clinical practice. Br J Cancer. 2013;108:2164–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379:1893–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McArthur GA, Chapman PB, Robert C, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15:323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mourah S, Denis MG, Narducci FE, et al. Detection of BRAF V600 mutations in melanoma: evaluation of concordance between the Cobas® 4800 BRAF V600 mutation test and the methods used in French National Cancer Institute (INCa) platforms in a real-life setting. PLoS One. 2015 Mar 19;10(3):e0120232.

  33. Ahn S, Lee J, Sung JY, et al. Comparison of three BRAF mutation tests in formalin-fixed paraffin embedded clinical samples. Korean J Pathol. 2013;47:348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lopez-Rios F, Angulo B, Gomez B, et al. Comparison of testing methods for the detection of BRAF V600E mutations in malignant melanoma: pre-approval validation study of the companion diagnostic test for vemurafenib. PLoS One. 2013;8:e53733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Colomba E, Helias-Rodzewicz Z, Von Deimling A, et al. Detection of BRAF p. V600E mutations in melanomas: comparison of four methods argues for sequential use of immunohistochemistry and pyrosequencing. J Mol Diagn. 2013;15:94–100.

    Article  CAS  PubMed  Google Scholar 

  36. Busser B, Leccia MT, Gras-Combe G, et al. Identification of a novel complex BRAF mutation associated with major clinical response to vemurafenib in a patient with metastatic melanoma. JAMA Dermatol. 2013;149:1403–6.

    Article  CAS  PubMed  Google Scholar 

  37. Trudel S, Odolczyk N, Dremaux J, et al. The clinical response to vemurafenib in a patient with a rare BRAFV600DK601del mutation-positive melanoma. BMC Cancer. 2014;14:727.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Klein O, Clements A, Menzies AM, et al. BRAF inhibitor activity in V600R metastatic melanoma. Eur J Cancer. 2013;49:1073–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Harlé.

Ethics declarations

Conflict of interest

The authors (CF, JS, CD, P F-T, AL, J-L M & AH) declare no potential conflict of interest.

Funding

No funding has been received for this study.

Ethical approval and informed consent

The authors assure that accepted principles of ethical and professional conduct have been followed for this study. All patients gave their consent for BRAF genotyping and study has been approved by Institut de Cancérologie de Lorraine scientific board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franczak, C., Salleron, J., Dubois, C. et al. Comparison of Five Different Assays for the Detection of BRAF Mutations in Formalin-Fixed Paraffin Embedded Tissues of Patients with Metastatic Melanoma. Mol Diagn Ther 21, 209–216 (2017). https://doi.org/10.1007/s40291-017-0258-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-017-0258-z

Keywords

Navigation