Treatment Against Human Endogenous Retrovirus: A Possible Personalized Medicine Approach for Multiple Sclerosis

Abstract

Human endogenous retroviruses (HERV) represent about 8 % of the human genome. Some of these genetic elements are expressed in pathological circumstances. A HERV protein, the multiple sclerosis–associated retrovirus (MSRV) envelope protein (MSRV-Env), is expressed in the blood and active brain lesions of multiple sclerosis (MS) patients. It possesses pro-inflammatory and myelinotoxic properties. The patterns of expression and pathogenic properties of MSRV-Env make it a relevant drug target for MS therapeutics—in particular for preventing neurodegeneration, a key component of progressive forms of MS. An immunoglobulin G4 monoclonal antibody (mAb), called GNbAC1, has been developed to neutralize this pathogenic target. After showing neutralizing effects in vitro and in mouse models of MS, GNbAC1 is now in phase II clinical development. MSRV-related biomarkers such as MSRV-Env and MSRV polymerase (MSRV-Pol) gene transcripts are overexpressed in the blood and cerebrospinal fluid of patients with MS. These biomarkers may have prognostic value for long-term MS evolution, and their transcription levels in blood decline during treatments with GNbAC1, which has also been reported in patients administered reference MS drugs such as natalizumab or interferon-β. GNbAC1 as a new MSRV-Env-antagonist mAb could be a specific and causal treatment for MS, with a particular application for progressive forms of the disease. For possible use in companion diagnostic tests, MSRV-associated biomarkers could open the door to a personalized therapeutic approach for MS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol. 2007;8:913–9.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Sadiq SA. Multiple sclerosis. In: Rowland LP, editor. Merrit’s neurology. Philadelphia: Lippincott, William & Wilkins; 2005. p. 941–59.

    Google Scholar 

  3. 3.

    Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain. 2003;126:770–82.

    Article  PubMed  Google Scholar 

  4. 4.

    Pugliatti M, Rosati G, Carton H, Riise T, Drulovic J, Vécsei L, Milanov I. The epidemiology of multiple sclerosis in Europe. Eur J Neurol. 2006;13:700–22.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Lassmann H, Brück W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17:210–8.

    Article  PubMed  Google Scholar 

  6. 6.

    Spain RI, Cameron MH, Bourdette D. Recent developments in multiple sclerosis therapeutics. BMC Med. 2009;7:74.

    PubMed Central  Article  PubMed  Google Scholar 

  7. 7.

    Curtin F, Hartung HP. Novel therapeutic options for multiple sclerosis. Expert Rev Clin Pharmacol. 2014;7:91–104.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Kremer D, Küry P, Dutta R. Promoting remyelination in multiple sclerosis: current drugs and future prospects. Mult Scler. 2015;21:541–9.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Voisset C, Blancher A, Perron H, Mandrand B, Mallet F, Paranhos-Baccala G. Phylogeny of a novel family of human endogenous retrovirus sequences, HERV-W, in humans and other primates. AIDS Res Hum Retroviruses. 1999;15:1529–33.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M. Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci USA. 2004;101:4894–9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  11. 11.

    Weiss RA. The discovery of endogenous retroviruses. Retrovirology. 2006;3:67.

    PubMed Central  Article  PubMed  Google Scholar 

  12. 12.

    Volkman HE, Stetson DB. The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol. 2014;15:415–22.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  13. 13.

    Feschotte C, Gilbert C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet. 2012;13:283–96.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Perron H, Jouvin-Marche E, Michel M, Ounanian-Paraz A, Camelo S, Dumon A, Jolivet-Reynaud C, Marcel F, Souillet Y, Borel E, Gebuhrer L, Santoro L, Marcel S, Seigneurin JM, Marche PN, Lafon M. Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology. 2001;287:321–32.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Rolland A, Jouvin-Marche E, Saresella M, Ferrante P, Cavaretta R, Créange A, Marche P, Perron H. Correlation between disease severity and in vitro cytokine production mediated by MSRV (multiple sclerosis associated retroviral element) envelope protein in patients with multiple sclerosis. J Neuroimmunol. 2005;160:195–203.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Perron H, Dougier-Reynaud HL, Lomparski C, Popa I, Firouzi R, Bertrand JB, Marusic S, Portoukalian J, Jouvin-Marche E, Villiers CL, Touraine JL, Marche PN. Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PLoS One. 2013;8:e80128.

    PubMed Central  Article  PubMed  Google Scholar 

  17. 17.

    Rolland A, Jouvin-Marche E, Viret C, Faure M, Perron H, Marche PN. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol. 2006;176:7636–44.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Saresella M, Rolland A, Marventano I, Cavarretta R, Caputo D, Marche P, Perron H, Clerici M. Multiple sclerosis–associated retroviral agent (MSRV)-stimulated cytokine production in patients with relapsing–remitting multiple sclerosis. Mult Scler. 2009;15:443–7.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Firouzi R, Rolland A, Michel M, Jouvin-Marche E, Hauw JJ, Malcus-Vocanson C, Lazarini F, Gebuhrer L, Seigneurin JM, Touraine JL, Sanhadji K, Marche PN, Perron H. Multiple sclerosis–associated retrovirus particles cause T lymphocyte-dependent death with brain hemorrhage in humanized SCID mice model. J Neurovirol. 2003;9:79–93.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Zhang J, Vandevyver C, Stinissen P, Mertens N, van den Berg-Loonen E, Raus J. Activation and clonal expansion of human myelin basic protein-reactive T cells by bacterial superantigens. J Autoimmun. 1995;8:615–32.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Arad G, Levy R, Hillman D, Kaempfer R. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Nat Med. 2000;6:414–21.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Wucherpfennig KW. Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest. 2001;108:1097–104.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  23. 23.

    Sfriso P, Ghirardello A, Botsios C, Tonon M, Zen M, Bassi N, Bassetto F, Doria A. Infections and autoimmunity: the multifaceted relationship. J Leukoc Biol. 2010;87:385–95.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Delogu LG, Deidda S, Delitala G, Manetti R. Infectious diseases and autoimmunity. J Infect Dev Ctries. 2011;5:679–87.

    PubMed  Google Scholar 

  25. 25.

    Kremer D, Schichel T, Förster M, Tzekova N, Bernard C, van der Valk P, van Horssen J, Hartung HP, Perron H, Küry P. Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Ann Neurol. 2013;74:721–32.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Reynolds R, Dawson M, Papadopoulos D, Polito A, Di Bello IC, Pham-Dinh D, Levine J. The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS. J Neurocytol. 2002;31:523–36.

    Article  PubMed  Google Scholar 

  27. 27.

    Polito A, Reynolds R. NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. J Anat. 2005;207:707–16.

    PubMed Central  Article  PubMed  Google Scholar 

  28. 28.

    Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev. 2001;81:871–927.

    CAS  PubMed  Google Scholar 

  29. 29.

    Brück W, Kuhlmann T, Stadelmann C. Remyelination in multiple sclerosis. J Neurol Sci. 2003;206:181–5.

    Article  PubMed  Google Scholar 

  30. 30.

    Aharoni R, Herschkovitz A, Eilam R, Blumberg-Hazan M, Sela M, Bruck W, Arnon R. Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2008;105:11358–63.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  31. 31.

    Keough MB, Yong VW. Remyelination therapy for multiple sclerosis. Neurotherapeutics. 2013;10:44–54.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  32. 32.

    Antony JM, van Marle G, Opii W, Butterfield DA, Mallet F, Yong VW, Wallace JL, Deacon RM, Warren K, Power C. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci. 2004;7:1088–95.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Perron H, Lazarini F, Ruprecht K, Péchoux-Longin C, Seilhean D, Sazdovitch V, Créange A, Battail-Poirot N, Sibaï G, Santoro L, Jolivet M, Darlix JL, Rieckmann P, Arzberger T, Hauw JJ, Lassmann H. Human endogenous retrovirus (HERV)-W ENV and GAG proteins: physiological expression in human brain and pathophysiological modulation in multiple sclerosis lesions. J Neurovirol. 2005;11:23–33.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Perron H, Germi R, Bernard C, Garcia-Montojo M, Deluen C, Farinelli L, Faucard R, Veas F, Stefas I, Fabriek BO, Van-Horssen J, Van-der-Valk P, Gerdil C, Mancuso R, Saresella M, Clerici M, Marcel S, Creange A, Cavaretta R, Caputo D, Arru G, Morand P, Lang AB, Sotgiu S, Ruprecht K, Rieckmann P, Villoslada P, Chofflon M, Boucraut J, Pelletier J, Hartung HP. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult Scler. 2012;18:1721–36.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  35. 35.

    Perron H, Van Horssen J. HERV-W Env protein is strongly upregulated in inflammatory multiple sclerosis lesions [poster no. P355]. ECTRIMS Congress; Copenhagen; 2013.

  36. 36.

    Curtin F, Perron H, Kromminga A, Porchet H, Lang AB. Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein. MAbs. 2015;7:265–75.

    Article  PubMed  Google Scholar 

  37. 37.

    Kremer D, Förster M, Schichel T, Göttle P, Hartung HP, Perron H, Küry P. The neutralizing antibody GNbAC1 abrogates HERV-W envelope protein-mediated oligodendroglial maturation blockade. Mult Scler. 2015;21:1200–3.

    Article  PubMed  Google Scholar 

  38. 38.

    Piaton G, Williams A, Seilhean D, Lubetzki C. Remyelination in multiple sclerosis. Prog Brain Res. 2009;175:453–64.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Bonora M, De Marchi E, Patergnani S, Suski JM, Celsi F, Bononi A, Giorgi C, Marchi S, Rimessi A, Duszyński J, Pozzan T, Wieckowski MR, Pinton P. Tumor necrosis factor-α impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death Differ. 2014;21:1198–208.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  40. 40.

    Perron H, Bertrand JB, Faucard R, Bernard C, Von Horssen J, Firouzi R, Potoukalian J, Germi R, Garcia-Montojo M, Morand P, Marche P, Sanhadji K, Tourraine JL, Lang A, Curtin F. Novel humanized antibody therapy in multiple sclerosis targeting immunopathogenic protein from endogenous retroviral element while preserving hosts’ immune system [poster no. P470]. ECTRIMS Congress; Lyon; 2012.

  41. 41.

    Curtin F, Lang AB, Perron H, Laumonier M, Vidal V, Porchet HC, Hartung HP. GNbAC1, a humanized monoclonal antibody against the envelope protein of multiple sclerosis–associated endogenous retrovirus: a first-in-humans randomized clinical study. Clin Ther. 2012;34:2268–78.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Derfuss T, Curtin F, Guebelin C, Bridel C, Rasenack M, Matthey A, Pasquier RD, Schluep M, Desmeules J, Lang AB, Perron H, Faucard R, Porchet H, Hartung HP, Kappos L, Lalive PH. A phase IIa randomised clinical study of GNbAC1, a humanised monoclonal antibody against the envelope protein of multiple sclerosis–associated endogenous retrovirus in multiple sclerosis patients. Mult Scler. 2015;21:885–93.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Derfuss T, Curtin F, Guebelin C, Bridel C, Rasenack M, Matthey A, Pasquier RD, Schluep M, Desmeules J, Lang AB, Perron H, Faucard R, Porchet H, Hartung HP, Kappos L, Lalive PH. A phase IIa randomised clinical study of GNbAC1, a humanised monoclonal antibody against the envelope protein of multiple sclerosis–associated endogenous retrovirus in multiple sclerosis patients—a 12-month extension. J Neuroimmunol. 2015;285:68–70.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Zimmermann M, Sanderson N, Rasenack M, Lalive P, Curtin F, Lang A, Kappos L, Derfuss T. Immunomonitoring of a phase II study testing the monoclonal antibody GNbAC1 in multiple sclerosis patients [poster no. P1011]. ECTRIMS Congress; Copenhagen; 2013.

  45. 45.

    Garson JA, Tuke PW, Giraud P, Paranhos-Baccala G, Perron H. Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet. 1998;351:33.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Arru G, Mameli G, Astone V, Serra C, Huang YM, Link H, Fainardi E, Castellazzi M, Granieri E, Fernandez M, Villoslada P, Fois ML, Sanna A, Rosati G, Dolei A, Sotgiu S. Multiple sclerosis and HERV-W/MSRV: a multicentric study. Int J Biomed Sci. 2007;3:292–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. 47.

    Dolei A, Serra C, Mameli G, Pugliatti M, Sechi G, Cirotto MC, Rosati G, Sotgiu S. Multiple sclerosis–associated retrovirus (MSRV) in Sardinian MS patients. Neurology. 2002;58:471–3.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Mameli G, Poddighe L, Astone V, Delogu G, Arru G, Sotgiu S, Serra C, Dolei A. Novel reliable real-time PCR for differential detection of MSRVenv and syncytin-1 in RNA and DNA from patients with multiple sclerosis. J Virol Methods. 2009;161:98–106.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Garcia-Montojo M, Dominguez-Mozo M, Arias-Leal A, Garcia-Martinez Á, De las Heras V, Casanova I, Faucard R, Gehin N, Madeira A, Arroyo R, Curtin F, Alvarez-Lafuente R, Perron H. The DNA copy number of human endogenous retrovirus-W (MSRV-type) is increased in multiple sclerosis patients and is influenced by gender and disease severity. PLoS One. 2013;8(1):e53623.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  50. 50.

    Sotgiu S, Serra C, Mameli G, Pugliatti M, Rosati G, Arru G, Dolei A. Multiple sclerosis–associated retrovirus and MS prognosis: an observational study. Neurology. 2002;59:1071–3.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Sotgiu S, Arru G, Mameli G, Serra C, Pugliatti M, Rosati G, Dolei A. Multiple sclerosis–associated retrovirus in early multiple sclerosis: a six-year follow-up of a Sardinian cohort. Mult Scler. 2006;12:698–703.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Sotgiu S, Mameli G, Serra C, Zarbo IR, Arru G, Dolei A. Multiple sclerosis–associated retrovirus and progressive disability of multiple sclerosis. Mult Scler. 2010;16:1248–51.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, Achiti I, Confavreux C, Coustans M, le Page E, Edan G, McDonnell GV, Hawkins S, Trojano M, Liguori M, Cocco E, Marrosu MG, Tesser F, Leone MA, Weber A, Zipp F, Miterski B, Epplen JT, Oturai A, Sørensen PS, Celius EG, Lara NT, Montalban X, Villoslada P, Silva AM, Marta M, Leite I, Dubois B, Rubio J, Butzkueven H, Kilpatrick T, Mycko MP, Selmaj KW, Rio ME, Sá M, Salemi G, Savettieri G, Hillert J, Compston DA. Multiple sclerosis severity score: using disability and disease duration to rate disease severity. Neurology. 2005;64:1144–51.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Mameli G, Serra C, Astone V, Castellazzi M, Poddighe L, Fainardi E, Neri W, Granieri E, Dolei A. Inhibition of multiple-sclerosis-associated retrovirus as biomarker of interferon therapy. J Neurovirol. 2008;14:73–7.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Arru G, Leoni S, Pugliatti M, Mei A, Serra C, Delogu LG, Manetti R, Dolei A, Sotgiu S, Mameli G. Natalizumab inhibits the expression of human endogenous retroviruses of the W family in multiple sclerosis patients: a longitudinal cohort study. Mult Scler. 2014;20:174–82.

    Article  PubMed  Google Scholar 

  56. 56.

    Committee for Medicinal Products for Human Use (CHMP). Reflection paper on methodological issues associated with pharmacogenomic biomarkers in relation to clinical development and patient selection. European Medicine Agency. 2011. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/07/WC50010948672.pdf. Accessed 15 Jul 2015.

  57. 57.

    US Food and Drug Administration. In vitro companion diagnostic devices: guidance for industry. US Food and Drug Administration. 2014. http://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm262327.pdf. Accessed 15 Jul 2015.

  58. 58.

    Committee for Medicinal Products for Human Use (CHMP). Guideline on clinical investigation of medicinal products for the treatment of multiple sclerosis. Euopean Medicines Agency. 2015. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/03/WC500185161.pdf. Accessed 15 Jul 2015.

  59. 59.

    Wingerchuk DM, Carter JL. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin Proc. 2014;89:225–40.

    Article  PubMed  Google Scholar 

  60. 60.

    Perron H, Lang A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol. 2010;39:51–61.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Rommer PS, Zettl UK, Kieseier B, Hartung HP, Menge T, Frohman E, Greenberg BM, Hemmer B, Stüve O. Requirement for safety monitoring for approved multiple sclerosis therapies: an overview. Clin Exp Immunol. 2014;175:397–407.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  62. 62.

    Harris VK, Sadiq SA. Biomarkers of therapeutic response in multiple sclerosis: current status. Mol Diagn Ther. 2014;18:605–17.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  63. 63.

    Gotovac K, Hajnšek S, Pašić MB, Pivac N, Borovečki F. Personalized medicine in neurodegenerative diseases: how far away? Mol Diagn Ther. 2014;18:17–24.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Perron H, Hamdani N, Faucard R, Lajnef M, Jamain S, Daban-Huard C, Sarrazin S, LeGuen E, Houenou J, Delavest M, Moins-Teisserenc H, Bengoufa D, Yolken R, Madeira A, Garcia-Montojo M, Gehin N, Burgelin I, Ollagnier G, Bernard C, Dumaine A, Henrion A, Gombert A, Le Dudal K, Charron D, Krishnamoorthy R, Tamouza R, Leboyer M. Molecular characteristics of human endogenous retrovirus type-W in schizophrenia and bipolar disorder. Transl Psychiatry. 2012;2:e201.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  65. 65.

    Faucard R, Madeira A, Panaite PA, Lesage C, Gehin N, Burgelin I, Curtin F, Lang AB, Steck A, Perron H, Kuntzer T, Créange A. Multiple sclerosis associated retrovirus (MSRV) envelope expression in peripheral blood mononuclear cells is associated with CIDP [poster]. Saint-Malo: Peripheral Nerve Society Meeting; 2013.

  66. 66.

    Perl A, Nagy G, Koncz A, Gergely P, Fernandez D, Doherty E, Telarico T, Bonilla E, Phillips PE. Molecular mimicry and immunomodulation by the HRES-1 endogenous retrovirus in SLE. Autoimmunity. 2008;41:287–97.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Nelson PN, Roden D, Nevill A, Freimanis GL, Trela M, Ejtehadi HD, Bowman S, Axford J, Veitch AM, Tugnet N, Rylance PB. Rheumatoid arthritis is associated with IgG antibodies to human endogenous retrovirus gag matrix: a potential pathogenic mechanism of disease? J Rheumatol. 2014;41:1952–60.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Tugnet N, Rylance P, Roden D, Trela M, Nelson P. Human endogenous retroviruses (HERVs) and autoimmune rheumatic disease: is there a link? Open Rheumatol J. 2013;7:13–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. 69.

    Douville R, Liu J, Rothstein J, Nath A. Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol. 2011;69:141–51.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  70. 70.

    Sander DM, Szabo S, Gallaher WR, Deas JE, Thompson JJ, Cao Y, Luo-Zhang H, Liu LG, Colmegna I, Koehler J, Espinoza LR, Alexander SS, Hart DJ, Tom DM, Fermin CD, Jaspan JJ, Kulakosky PC, Tenenbaum SA, Wilson RB, Garry RF. Involvement of human intracisternal A-type retroviral particles in autoimmunity. Microsc Res Tech. 2005;68:222–34.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to François Curtin.

Ethics declarations

Conflict of interest disclosure

All authors (F. Curtin, H. Perron, R. Faucard, H. Porchet, and A. Lang) are employees and/or shareholders of GeNeuro SA, Switzerland, and received funding from GeNeuro SA for their work as employees.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Curtin, F., Perron, H., Faucard, R. et al. Treatment Against Human Endogenous Retrovirus: A Possible Personalized Medicine Approach for Multiple Sclerosis. Mol Diagn Ther 19, 255–265 (2015). https://doi.org/10.1007/s40291-015-0166-z

Download citation

Keywords

  • Multiple Sclerosis
  • Multiple Sclerosis Patient
  • Natalizumab
  • Expand Disability Status Scale Score
  • Chronic Inflammatory Demyelinating Polyradiculoneuropathy