Skip to main content
Log in

DNA Base-Excision Repair Genes OGG1 and NTH1 in Brazilian Lung Cancer Patients

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Introduction

Lung cancer is the leading global cause of cancer-related mortality and is associated with poor prognosis. To improve survival rates of lung cancer patients, better understanding of tumorigenic mechanisms is necessary, which may lead to development of new therapeutic strategies. The hOGG1 and NTH1 genes act in the DNA BER repair pathway and their involvement in lung cancer pathogenesis has been analyzed in several populations.

Methods

We analyzed targeted regions of the hOGG1 and NTH1 genes in 96 Brazilian patients with non-small-cell lung cancer (NSCLC) and 89 cancer-free, ethnically matched controls.

Results

The NTH1 c.98G>T polymorphism rs2302172 (p = 0.02 and p = 0.02 for allele and genotype frequency between cases and controls, respectively) and the 140-17C> T variant (rs2233518) (p = 0.02 and p = 0.02 for allele and genotype frequency between cases and controls, respectively) were detected in four lung cancer cases (4 %) while the NTH1 Q131K (C391A) polymorphism was found in seven lung cancer cases (7 %) (p = 0.001 and p = 0.008, for allele and genotype frequency between cases and controls, respectively). None of these sequence variants were detected in controls. The Ser326Cys (C1245G, rs1052133) polymorphism in the OGG1 gene was detected in 42 % of analyzed NSCLC patients and in 34 % of the controls (p = 0.11 and p = 0.25 for allele and genotype frequency between cases and controls, respectively).

Conclusions

Our study provides preliminary evidence that polymorphisms in OGG1 do not contribute to development of NSCLC in Brazilian patients and that NTH1 polymorphisms may be associated with NSCLC pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. Hecht SS, Szabo E. Fifty years of tobacco carcinogenesis research: from mechanisms to early detection and prevention of lung cancer. Cancer Prev Res. 2014;7:1–8.

    Article  CAS  Google Scholar 

  3. Duan WX, Hua RX, Yi W, Shen LJ, Jin ZX, Zhao YH, et al. The association between OGG1 Ser326Cys polymorphism and lung cancer susceptibility: a meta-analysis of 27 studies. Plos One. 2012;7:35970.

    Article  Google Scholar 

  4. Hecht SS. Lung carcinogenesis by tobacco smoke. Int J Cancer. 2012;131:24–32.

    Article  Google Scholar 

  5. Krishnan VG, Ebert PJ, Ting JC, Lim E, Wong SS, Teo AS, et al. Whole-genome sequencing of Asian lung cancers. Second-hand smoke unlikely to be responsible for higher incidence of lung cancer among Asian never-smokers. Cancer Res. 2014;74:71–81.

    Article  Google Scholar 

  6. Peng Y, Li Z, Zhang S, Xiong Y, Cun Y, Qian C, et al. Association of DNA base excision repair genes (OGG1, APE1 and XRCC1) polymorphisms with outcome to platinum-based chemotherapy in advanced non small-cell lung cancer patients. Int J Cancer. 2014;135:2687–96.

    Article  CAS  PubMed  Google Scholar 

  7. Jacobs AC, Calkins MJ, Jadhav A, Dorjsuren D, Maloney D, Simeonov A, et al. Inhibition of DNA glycosylases via small molecule purine analogs. PLoS One. 2013;8:e81667.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12:801–17.

    Article  Google Scholar 

  9. Kim KY, Han W, Noh DY, Kang D, Kwack K. Impact of genetic polymorphisms in base excision repair genes on the risk of breast cancer in a Korean population. Gene. 2013;532:192–6.

    Article  CAS  PubMed  Google Scholar 

  10. Sevilya Z, Leitner-Dagan Y, Pinchev M, Kremer R, Elinger D, Rennert HS, et al. Low integrated DNA repair score and lung cancer risk. Cancer Prev Res. 2014;7:398–406.

    Article  CAS  Google Scholar 

  11. Wallace SS. Base excision repair: a critical player in many games. DNA Repair. 2014;19:14–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer Lett. 2012;327:73–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wang LE, Gorlova OY, Ying J, Qiao Y, Weng SF, Lee AT, et al. Genome-wide association study reveals novel genetic determinants of DNA repair capacity in lung cancer. Cancer Res. 2013;73:256–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Robertson AB, Klungland A, Rognes T, Leiros I. Base excision repair: the long and short of it. Cell Mol Life Sci. 2009;66:981–93.

    Article  CAS  PubMed  Google Scholar 

  15. Leitner-Dagan Y, Sevilya Z, Pinchev M, Kramer R, Elinger D, Roisman LC, et al. N-Methylpurine DNA glycosylase and OGG1 DNA repair activities: opposite associations with lung cancer risk. J Natl Cancer Inst. 2012;104:1765–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Qian B, Zhang H, Zhang L, Zhou X, Yu H, Chen K. Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer. 2011;73:138–46.

    Article  PubMed  Google Scholar 

  17. Kazma R, Babron MC, Gaborieau V, Génin E, Brennan P, Hung RJ, et al. Lung cancer and DNA repair genes: multilevel association analysis from the International Lung Cancer Consortium. Carcinogenesis. 2012;33:1059–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yamane A, Kohno T, Ito K, Sunaga N, Aoki K, Yoshimura K, et al. Differential ability of polymorphic OGG1 proteins to suppress mutagenesis induced by 8-hydroxyguanine in human cell in vivo. Carcinogenesis. 2004;25:1689–94.

    Article  CAS  PubMed  Google Scholar 

  19. Janik J, Swoboda M, Janowska B, Cieśla JM, Gackowski D, Kowalewski J, et al. 8-Oxoguanine incision activity is impaired in lung tissues of NSCLC patients with the polymorphism of OGG1 and XRCC1 genes. Mutat Res. 2011;709–710:21–31.

    Article  PubMed  Google Scholar 

  20. Le Marchand L, Donlon T, Lum-Jones A, Seifried A, Wilkens LR. Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11:409–12.

    PubMed  Google Scholar 

  21. Radak Z, Goto S, Nakamoto H, Udud K, Papai Z, Horvath I. Lung cancer in smoking patients inversely alters the activity of hOGG1 and hNTH1. Cancer Lett. 2005;219:191–5.

    Article  CAS  PubMed  Google Scholar 

  22. Bravard A, Vacher M, Moritz E, Vaslin L, Hall J, Epe B, et al. Oxidation status of human OGG1-S326C polymorphic variant determines cellular DNA repair capacity. Cancer Res. 2009;69:3642–9.

    Article  CAS  PubMed  Google Scholar 

  23. Chang JS, Wrensch MR, Hansen HM, Sison JD, Aldrich MC, Quesenberry CP Jr, et al. Base excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African-Americans. Carcinogenesis. 2009;30:78–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Galick HA, Kathe S, Liu M, Robey-Bond S, Kidane D, Wallace SS, et al. Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation. Proc Natl Acad Sci USA. 2013;110:14314–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lahiri DK Jr, Nurnberger JI. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;11:5444.

    Article  Google Scholar 

  26. Deslee G, Adair-Kirk TL, Betsuyaku T, Woods JC, Moore CH, Gierada DS, et al. Cigarette smoke induces nucleic-acid oxidation in lung fibroblasts. Am J Respir Cell Mol Biol. 2010;43:576–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Paz-Elizur T, Krupsky M, Blumenstein S, Elinger D, Schechtman E, Livneh Z. DNA repair activity for oxidative damage and risk of lung cancer. J Natl Cancer Inst. 2003;95:1312–9.

    Article  CAS  PubMed  Google Scholar 

  28. Guan P, Huang D, Yin Z. Zhou. Association of the hOGG1 Ser326Cys polymorphism with increased lung cancer susceptibility in Asians: a meta analysis of 18 studies including 7592 cases and 8129 controls. Asian P. J Cancer Prev. 2011;12:1067–72.

    Google Scholar 

  29. Sampath H. Oxidative DNA damage in disease-insights gained from base excision repair glycosylase-deficient mouse models. Environ Mol Mutagen. 2014;55:689–703.

    Article  CAS  PubMed  Google Scholar 

  30. Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland L, Phillips DH, Canzian F, Haugen A, et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis. 2006;27:560–7.

    Article  CAS  PubMed  Google Scholar 

  31. De Ruyck K, Szaumkessel M, Rudder I, Dehoorne A, Vral A, Claes K, et al. Polymorphisms in base-excision repair and nucleotide- excision repair genes in relation to lung cancer risk. Mutat Res. 2007;631:101–10.

    Article  PubMed  Google Scholar 

  32. Kohno T, Kunitoh H, Toyama K, Yamamoto S, Kuchiba A, Saito D, et al. Association of the OGG1-Ser326Cys polymorphism with lung adenocarcinoma risk. Cancer Sci. 2006;97:724–8.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou PT, Li B, Ji J, Wang MM, Gao CF. A systematic review and meta-analysis of the association between OGG1 Ser326Cys polymorphism and cancers. Med Oncol. 2015;32:472.

    PubMed  Google Scholar 

  34. Zhong D, Li G, Long J, Wu J, Hu Y. The hOGG1Ser326Cys polymorphism and increased lung cancer susceptibility in Caucasians: an updated meta-analysis. Scientific Reports. 2012;2:548.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Li H, Hao X, Zhang W, Wei Q, Chen K. The hOGG1 Ser326Cys polymorphism and lung cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2008;17:1739–45.

    Article  PubMed  Google Scholar 

  36. Vogel U, Nexo BA, Wallin H, Overvad K, Tjønneland A, Raaschou-Nielsen O. No association between base excision repair gene polymorphisms and risk of lung cancer. Biochem Genet. 2004;42:453–60.

    Article  CAS  PubMed  Google Scholar 

  37. Kiyohara C, Takayama K, Nakanishi Y. Lung cancer risk and genetic polymorphisms in DNA repair pathways: a meta-analysis. J Nucleic Acids. 2010;4:59–71.

    Google Scholar 

  38. Wei W, He XF, Qin JB, Su J, Li SX, Liu Y, et al. Association between the OGG1 Ser326Cys and APEX1 Asp148Glu polymorphisms and lung cancer risk: a meta-analysis. Mol Biol Rep. 2012;39:11249–62.

    Article  CAS  PubMed  Google Scholar 

  39. Travis WD, Brambilla E, Riely GJ. New pathologic classification for clinical practice and clinical trials. J Clin Oncol. 2013;31:992–1001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all patients.

Author contributions

Drs. L. De Marco, E. Friedman and M. A. Bicalho designed the study and applied for Research Ethics Board approval. Drs. A. J. Bicalho, F. B. Leidenz, M. A. Bicalho, L. Bastos-Rodrigues and Mrs. P. G. Couto recruited the patients and collected the data. Drs. L. Bastos-Rodrigues and Mrs. P. G. Couto analyzed the data and prepared draft figures and tables. Mrs. P. G. Couto prepared the manuscript draft with important intellectual input from Drs. L. De Marco and E. Friedman. All authors approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz De Marco.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Funding

This work was partially funded to L. De Marco by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq # 405053/2013-4) and Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG # APQ-00220-14), Brazil.

Ethical approval and informed consent

The Ethics Committee of Universidade Federal de Minas Gerais approved this study (ETIC 473-05). All subjects signed an informed consent.

The manuscript does not contain clinical studies or patient data and followed the Declaration of Helsinki guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couto, P.G., Bastos-Rodrigues, L., Carneiro, J.G. et al. DNA Base-Excision Repair Genes OGG1 and NTH1 in Brazilian Lung Cancer Patients. Mol Diagn Ther 19, 389–395 (2015). https://doi.org/10.1007/s40291-015-0164-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-015-0164-1

Keywords

Navigation