Skip to main content
Log in

Pyrosequencing for Classification of Human FcγRIIIA Allotypes: A Comparison with PCR-Based Techniques

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Surface-specific antigens expressed by hematopoietic cells are attractive targets for antibody-mediated immunotherapy. Monoclonal antibodies (mAbs) involve various mechanisms to eliminate target cells, including antibody-dependent cellular cytotoxicity (ADCC)- and phagocytosis (ADCP)-mediated killing through natural killer (NK) and macrophage effector cells bearing FcγRIIIA (CD16). The clinical efficacy of ADCC is particularly impacted by a single nucleotide polymorphism (SNP) found in the gene encoding FcγRIIIA (FCGR3A), which generates a variable distribution of the 158 V/V, F/V or F/F CD16 allotypes (F = phenylalanine, V = valine) in the normal human population. Currently, most patients are not screened for CD16 allotypes, creating the potential to include in their treatment a mAb-based therapy that may have limited benefit. Therefore, it is important to identify CD16 allotypes when considering mAb therapies that require ADCC/ADCP.

Objective

The objective of this study was to develop a reliable PCR-based assay for classification of human FcγRIIIA allotypes.

Methods

We studied 42 normal human subjects for the incidence of FcγRIIIA-158 polymorphisms using comparative molecular approaches.

Results

The results of our study showed 100 % accuracy in genotyping by pyrosequencing. In contrast, nested PCR-based allele-specific restriction assay and quantitative PCR techniques proved to be relatively less sensitive and less specific in distinguishing variant genotypes.

Conclusion

Since the efficacy of the mAb-based targeted immunotherapy may be highly dependent upon the CD16 polymorphism in a given individual, we recommend pyrosequencing for CD16 allotype testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Houot R, Kohrt HE, Marabelle A, Levy R. Targeting immune effector cells to promote antibody-induced cytotoxicity in cancer immunotherapy. Trends Immunol. 2011;32(11):510–6.

    Article  CAS  PubMed  Google Scholar 

  2. Ahlgrimm M, Pfreundschuh M, Kreuz M, Regitz E, Preuss KD, et al. The impact of Fc-gamma receptor polymorphisms in elderly patients with diffuse large B-cell lymphoma treated with CHOP with or without rituximab. Blood. 2011;118(17):4657–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Matlawska-Wasowska K, Ward E, Stevens S, Wang Y, Herbst R, et al. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies. Leukemia. 2013;27(6):1263–74.

    Article  CAS  PubMed  Google Scholar 

  4. Edberg JC, Redecha PB, Salmon JE, Kimberly RP. Human Fc gamma RIII (CD16). Isoforms with distinct allelic expression, extracellular domains, and membrane linkages on polymorphonuclear and natural killer cells. J Immunol. 1989;143(5):1642–9.

    CAS  PubMed  Google Scholar 

  5. Hadley AG, Zupanska B, Kumpel BM, Leader KA. The functional activity of Fc gamma RII and Fc gamma RIII on subsets of human lymphocytes. Immunology. 1992;76(3):446–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Carnahan J, Wang P, Kendall R, Chen C, Hu S, et al. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin Cancer Res. 2003;9(10 Pt 2):3982S–90S.

    CAS  PubMed  Google Scholar 

  7. Awan FT, Lapalombella R, Trotta R, Butchar JP, Yu B, et al. CD19 targeting of chronic lymphocytic leukemia with a novel Fc-domain-engineered monoclonal antibody. Blood. 2010;115(6):1204–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87.

    Article  CAS  PubMed  Google Scholar 

  9. McEarchern JA, Oflazoglu E, Francisco L, McDonagh CF, Gordon KA, et al. Engineered anti-CD70 antibody with multiple effector functions exhibits in vitro and in vivo antitumor activities. Blood. 2007;109(3):1185–92.

    Article  CAS  PubMed  Google Scholar 

  10. Mellor JD, Brown MP, Irving HR, Zalcberg JR, Dobrovic A. A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol. 2013;6:1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bowles JA, Weiner GJ. CD16 polymorphisms and NK activation induced by monoclonal antibody-coated target cells. J Immunol Methods. 2005;304(1–2):88–99.

    Article  CAS  PubMed  Google Scholar 

  12. Munn DH, McBride M, Cheung NK. Role of low-affinity Fc receptors in antibody-dependent tumor cell phagocytosis by human monocyte-derived macrophages. Cancer Res. 1991;51(4):1117–23.

    CAS  PubMed  Google Scholar 

  13. Ravetch JV, Perussia B. Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med. 1989;170(2):481–97.

    Article  CAS  PubMed  Google Scholar 

  14. Powles R, Sirohi B, Treleaven J, Kulkarni S, Tait D, et al. The role of posttransplantation maintenance chemotherapy in improving the outcome of autotransplantation in adult acute lymphoblastic leukemia. Blood. 2002;100(5):1641–7.

    Article  CAS  PubMed  Google Scholar 

  15. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21(21):3940–7.

    Article  CAS  PubMed  Google Scholar 

  16. Herbst R, Wang Y, Gallagher S, Mittereder N, Kuta E, et al. B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther. 2010;335(1):213–22.

    Article  CAS  PubMed  Google Scholar 

  17. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277(30):26733–40.

    Article  CAS  PubMed  Google Scholar 

  18. Veeramani S, Wang SY, Dahle C, Blackwell S, Jacobus L, et al. Rituximab infusion induces NK activation in lymphoma patients with the high-affinity CD16 polymorphism. Blood. 2011;118(12):3347–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14.

    PubMed Central  PubMed  Google Scholar 

  20. Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, et al. Fc gammaRIIIa-158 V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood. 1997;90(3):1109–14.

    CAS  PubMed  Google Scholar 

  21. Dall’Ozzo S, Andres C, Bardos P, Watier H, Thibault G. Rapid single-step FCGR3A genotyping based on SYBR Green I fluorescence in real-time multiplex allele-specific PCR. J Immunol Methods. 2003;277(1–2):185–92.

    Article  PubMed  Google Scholar 

  22. Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Investig. 1997;100(5):1059–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Treon SP, Hansen M, Branagan AR, Verselis S, Emmanouilides C, et al. Polymorphisms in FcgammaRIIIA (CD16) receptor expression are associated with clinical response to rituximab in Waldenstrom’s macroglobulinemia. J Clin Oncol. 2005;23(3):474–81.

    Article  CAS  PubMed  Google Scholar 

  24. Ge B, Gurd S, Gaudin T, Dore C, Lepage P, et al. Survey of allelic expression using EST mining. Genome Res. 2005;15(11):1584–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hurvitz SA, Betting DJ, Stern HM, Quinaux E, Stinson J, et al. Analysis of Fcgamma receptor IIIa and IIa polymorphisms: lack of correlation with outcome in trastuzumab-treated breast cancer patients. Clin Cancer Res. 2012;18(12):3478–86.

    Article  CAS  PubMed  Google Scholar 

  26. Dall’Ozzo S, Tartas S, Paintaud G, Cartron G, Colombat P, et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res. 2004;64(13):4664–9.

    Article  PubMed  Google Scholar 

  27. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kim DH, Jung HD, Kim JG, Lee JJ, Yang DH, et al. FCGR3A gene polymorphisms may correlate with response to frontline R-CHOP therapy for diffuse large B-cell lymphoma. Blood. 2006;108(8):2720–5.

    Article  CAS  PubMed  Google Scholar 

  29. Ghesquieres H, Cartron G, Seymour JF, Delfau-Larue MH, Offner F, et al. Clinical outcome of patients with follicular lymphoma receiving chemoimmunotherapy in the PRIMA study is not affected by FCGR3A and FCGR2A polymorphisms. Blood. 2012;120(13):2650–7.

    Article  CAS  PubMed  Google Scholar 

  30. Weng WK, Negrin RS, Lavori P, Horning SJ. Immunoglobulin G Fc receptor FcgammaRIIIa 158 V/F polymorphism correlates with rituximab-induced neutropenia after autologous transplantation in patients with non-Hodgkin’s lymphoma. J Clin Oncol. 2010;28(2):279–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Carlotti E, Palumbo GA, Oldani E, Tibullo D, Salmoiraghi S, et al. FcgammaRIIIA and FcgammaRIIA polymorphisms do not predict clinical outcome of follicular non-Hodgkin’s lymphoma patients treated with sequential CHOP and rituximab. Haematologica. 2007;92(8):1127–30.

    Article  CAS  PubMed  Google Scholar 

  32. Prochazka V, Papajik T, Gazdova J, Divoka M, Rozmanova S, et al. FcgammaRIIIA receptor genotype does not influence an outcome in patients with follicular lymphoma treated with risk-adapted immunochemotherapy. Neoplasma. 2011;58(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  33. Delgado DC, Hank JA, Kolesar J, Lorentzen D, Gan J, et al. Genotypes of NK cell KIR receptors, their ligands, and Fcgamma receptors in the response of neuroblastoma patients to Hu14.18-IL2 immunotherapy. Cancer Res. 2010;70(23):9554–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Cooper N, Stasi R, Cunningham-Rundles S, Cesarman E, McFarland JG, et al. Platelet-associated antibodies, cellular immunity and FCGR3a genotype influence the response to rituximab in immune thrombocytopenia. Br J Haematol. 2012;158(4):539–47.

    Article  CAS  PubMed  Google Scholar 

  35. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol. 2008;26(11):1789–96.

    Article  CAS  PubMed  Google Scholar 

  36. Burchard PR, Malhotra S, Kaur P, Tsongalis GJ. Detection of the FCGR3a polymorphism using a real-time polymerase chain reaction assay. Cancer Genet. 2013;206(4):130–4.

    Article  CAS  PubMed  Google Scholar 

  37. van der Straaten T, Martijn R, el Hajoui T, Baak-Pablo R, Guchelaar HJ. A novel specific pyrosequencing method for genotyping FCGR3A rs396991 without coamplification of homologous gene FCGR3B. Pharmacogenet Genomics. 2013;23(11):631–5.

    Article  PubMed  Google Scholar 

  38. Ellison SL, English CA, Burns MJ, Keer JT. Routes to improving the reliability of low level DNA analysis using real-time PCR. BMC Biotechnol. 2006;6:33.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to conduct this study or prepare this manuscript. K. Matlawska-Wasowska, J.M. Gale, C.K. Nickl, P. Khalili, B. Shirley, B.S. Wilson, M.A. Vasef and S.S. Winter have no conflicts of interest that are directly relevant to the content of this study. K.M.W. designed and performed the research, wrote and reviewed the manuscript and supervised the project. J.M.G. developed the pyrosequencing protocol, performed the research, wrote and reviewed the manuscript. C.K.N. designed and performed qPCR. P.K. and B.S. were involved in performing pyrosequencing and qPCR, respectively. M.A.V. and B.S.W. participated in designing the research and reviewed the manuscript. S.S.W. originated and supervised the project, wrote and reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia Matlawska-Wasowska.

Additional information

K. Matlawska-Wasowska, J. M. Gale contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matlawska-Wasowska, K., Gale, J.M., Nickl, C.K. et al. Pyrosequencing for Classification of Human FcγRIIIA Allotypes: A Comparison with PCR-Based Techniques. Mol Diagn Ther 18, 665–673 (2014). https://doi.org/10.1007/s40291-014-0120-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-014-0120-5

Keywords

Navigation