Skip to main content
Log in

Oncoapoptotic Markers in Oral Cancer: Prognostics and Therapeutic Perspective

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Oral cancer is one of the most commonly found cancers in many South-Asian underdeveloped countries, especially among men in comparison to women. When considering the mortality rate among all types of existing cancers, in India oral cancer is the primary reason for death in men. Some of the major reasons contributing to the high mortality rate are late diagnosis, lack of treatment options and high prevalence of tobacco consumption. Oral cancer is often diagnosed at a stage when cancer cells have already become aggressive and become resistant to standard therapeutic options. Progression, apoptosis, angiogenesis, metastasis and invasion behold great capability to treat and detect cancer at the molecular level. Dysregulation of apoptosis is one of the most common molecular events known to be associated with the development of oral cancer. In this review, we discuss key apoptotic markers which can be used as prognostic and/or therapeutic targets in oral cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dikshit R, Gupta PC, Ramasundarahettige C, et al. Million Death Study Collaborators. Cancer mortality in India: a nationally representative survey. Lancet. 2012;379:1807–16.

    PubMed  Google Scholar 

  2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.

    PubMed  PubMed Central  Google Scholar 

  3. Bisen PS, Khan Z, Bundela S. Biology of oral cancer - key apoptotic regulators. 1st ed. Boca Raton: CRC Press; 2013.

  4. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    PubMed  CAS  Google Scholar 

  5. Green DR. Apoptotic pathways: ten minutes to dead. Cell. 2005;121:671–4.

    PubMed  CAS  Google Scholar 

  6. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292:727–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–41.

    PubMed  CAS  Google Scholar 

  8. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984;226:1097–9.

    PubMed  CAS  Google Scholar 

  9. Antonsson B. Bax and other pro-apoptotic Bcl-2 family “killer-proteins” and their victim, the mitochondrion. Cell Tissue Res. 2001;306:347–61.

    PubMed  CAS  Google Scholar 

  10. Xie X, Clausen OP, Sudbo J, Boysen M. Diagnostic and prognostic value of nucleolar organizer regions in normal epithelium, dysplasia and squamous cell carcinoma of the oral cavity. Cancer. 1999;79:2200–8.

    Google Scholar 

  11. Zhang M, Zhang P, Zhang C, et al. Prognostic significance of Bcl-2 and Bax protein expression in the patients with oral squamous cell carcinoma. J Oral Pathol Med. 2009;38:307–13.

    PubMed  CAS  Google Scholar 

  12. Kato K, Kawashiri S, Yoshizawa K, Kitahara H, Yamamoto E. Apoptosis-associated markers and clinical outcome in human oral squamous cell carcinomas. J Oral Pathol Med. 2008;37:364–71.

    PubMed  Google Scholar 

  13. Camisasca DR, Honorato J, Bernardo V, et al. Expression of Bcl-2 family proteins and associated clinicopathologic factors predict survival outcome in patients with oral squamous cell carcinoma. Oral Oncol. 2009;45:225–33.

    PubMed  CAS  Google Scholar 

  14. Gomes CC, Bernardes VF, Diniz MG, De Marco L, Gomez RC. Anti-apoptotic gene transcription signature of salivary gland neoplasms. BMC Cancer. 2012;12:61.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Sulkowska M, Famulski W, Chyczewski L, Sulkowski S. Evaluation of p53 and bcl-2 oncoprotein expression in precancerous lesions of the oral cavity. Neoplasma. 2001;48(2):94–8.

    PubMed  CAS  Google Scholar 

  16. Kuropkat C, Venkatesan TK, Caldarelli DD, et al. Abnormalities of molecular regulators of proliferation and apoptosis in carcinoma of the oral cavity and oropharynx. Auris Nasus Larynx. 2002;29:165–74.

    PubMed  Google Scholar 

  17. Yuen AP, Lam KY, Choy JT, Ho WK, Wong LY, Wei WI. Clinicopathologic significance of bcl-2 expression in the surgical treatment of oral tongue carcinoma. Eur J Surg Oncol. 2002;28:667–72.

    PubMed  CAS  Google Scholar 

  18. de Vicente JC, Olay S, Lequerica-Fernandez P, Sanchez-Mayoral J, Junquera LM, Fresno MF. Expression of Bcl-2 but not Bax has a prognostic significance in tongue carcinoma. J Oral Pathol Med. 2006;35:140–5.

    PubMed  Google Scholar 

  19. Bose P, Klimowicz AC, Kornaga E, et al. Bax expression measured by AQUAnalysis is an independent prognostic marker in oral squamous cell carcinoma. BMC Cancer. 2012;12:332.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3:917–21.

    PubMed  CAS  Google Scholar 

  21. Muzio L, Staibano S, Pannone G, et al. Expression of the apoptosis inhibitor survivin in aggressive squamous cell carcinoma. Exp Mol Pathol. 2001;70:249–54.

    PubMed  Google Scholar 

  22. De Maria S, Pannone G, Bufo P, Santoro A, Serpico R, Metafora S, et al. Survivin gene-expression and splicing isoforms in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2009;135:107–16.

    PubMed  CAS  Google Scholar 

  23. Khan Z, Tiwari RP, Mulherkar R, Shah NK, Bisen PS. Detection of survivin and p53 in human oral cancer: correlation with clinicopathologic findings. Head Neck. 2009;31:1039–48.

    PubMed  Google Scholar 

  24. Khan Z, Khan N, Tiwari RP, Patro IK, Prasad GB, Bisen PS. Down-regulation of survivin by oxaliplatin diminishes radioresistance of head and neck squamous carcinoma cells. Radiother Oncol. 2010;96:267–73.

    PubMed  CAS  Google Scholar 

  25. Su L, Wang Y, Xiao M, Lin Y, Yu L. Up-regulation of survivin in oral squamous cell carcinoma correlates with poor prognosis and chemoresistance. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:484–91.

    PubMed  Google Scholar 

  26. Kim YH, Kim SM, Kim YK, Hong SP, Kim MJ, Myoung H. Evaluation of survivin as a prognostic marker in oral squamous cell carcinoma. J Oral Pathol Med. 2010;39:368–75.

    PubMed  CAS  Google Scholar 

  27. Muzio LL, Pannone G, Staibano S, et al. Survivin expression in oral squamous cell carcinoma. Br J Cancer. 2003;89:2244–8.

    PubMed  PubMed Central  Google Scholar 

  28. Engels K, Knauer SK, Metzler D, et al. Dynamic intracellular survivin in oral squamous cell carcinoma: underlying molecular mechanism and potential as an early prognostic marker. J Pathol. 2007;211:532–40.

    PubMed  CAS  Google Scholar 

  29. Lo Muzio L, Pannone G, Leonardi R, et al. Survivin, a potential early predictor of tumor progression in the oral mucosa. J Dent Res 2003;82:923–8.

  30. Lin CY, Hung HC, Kuo RC, Chiang CP, Kuo MYP. Survivin expression predicts poorer prognosis in patients with areca quid chewing-related oral squamous cell carcinoma in Taiwan. Oral Oncol. 2005;41:645–54.

    PubMed  CAS  Google Scholar 

  31. Lo Muzio L, Farina A, Rubini C, et al. Survivin as prognostic factor in squamous cell carcinoma of the oral cavity. Cancer Lett. 2005;225:27–33.

  32. Mineta H, Borg A, Dictor M, et al. p53 mutation, but not p53 overexpression, correlates with survival in head and neck squamous cell carcinoma. Br J Cancer. 1998;78:1084–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Melino G, De Laurenzi V, Vousden KH. p73: friend or foe in tumorigenesis. Nat Rev Cancer. 2002;2:605–15.

    PubMed  CAS  Google Scholar 

  34. Khan Z, Bisen PS. Oncoapoptotic signaling and deregulated target genes in cancers: Special reference to oral cancer. BBA Rev Can. 2013;1836:123–45.

    CAS  Google Scholar 

  35. Perrone F, Bossi P, Cortelazzi B, et al. TP53 mutations and pathologic complete response to neoadjuvant cisplatin and fluorouracil chemotherapy in resected oral cavity squamous cell carcinoma. J Clin Oncol. 2010;28:761–6.

    PubMed  CAS  Google Scholar 

  36. Raju B, Mehrotra R, Oijordsbakken G, Al-Sharabi AK, Vasstrand EN, Ibrahim SO. Expression of p53, cyclin D1 and Ki-67 in pre-malignant and malignant oral lesions: association with clinicopathological parameters. Anticancer Res. 2005;25:4699–706.

    PubMed  CAS  Google Scholar 

  37. Smeets SJ, van der Plas M, Schaaij-Visser TB, et al. Immortalization of oral keratinocytes by functional inactivation of the p53 and pRb pathways. Int J Cancer. 2011;128:1596–605.

    PubMed  CAS  Google Scholar 

  38. Iamaroon A, Khemaleelakul U, Pongsiriwet S, Pintong J. Coexpression of p53 and Ki67 and lack of EBV expression in oral squamous cell carcinoma. J Oral Pathol Med. 2004;33:30–6.

    PubMed  CAS  Google Scholar 

  39. Shiraki M, Odajima T, Ikeda T, et al. Combined expression of p53, cyclin D1 and epidermal growth factor receptor improves estimation of prognosis in curatively resected oral cancer. Mod Pathol. 2005;18:1482–9.

    PubMed  CAS  Google Scholar 

  40. Boyle JO, Mao L, Brennan JA, et al. Gene mutations in saliva as molecular markers for head and neck squamous cell carcinomas. Am J Surg. 1994;168:429–32.

    PubMed  CAS  Google Scholar 

  41. Scully C, Field JK, Tanzawa H. Genetic aberrations in oral or head and neck squamous cell carcinoma 3: clinico-pathological applications. Oral Oncol. 2000;36:404–13.

    PubMed  CAS  Google Scholar 

  42. Angiero F, Berenzi A, Benetti A, et al. Expression of p16, p53 and Ki-67 proteins in the progression of epithelial dysplasia of the oral cavity. Anticancer Res. 2008;28:2535–9.

    PubMed  Google Scholar 

  43. Ralhan R, Nath N, Agarwal S, Mathur M, Wasylyk B, Shukla NK. Circulating p53 antibodies as early markers of oral cancer: correlation with p53 alterations. Clin Cancer Res. 1998;4:2147–52.

    PubMed  CAS  Google Scholar 

  44. Yamazaki Y, Chiba I, Ishikawa M, et al. Serum p53 antibodies as a prognostic indicator in oral squamous cell carcinoma. Odontology. 2008;96:32–7.

    PubMed  CAS  Google Scholar 

  45. Lopez M, Aguirre JM, Cuevas N, Anzola M, Videgain J, Aguirregaviria J. Use of cytological specimens for p53 gene alterations detection in oral squamous cell carcinoma risk patients. Clin Oncol. 2004;16:366–70.

    CAS  Google Scholar 

  46. Chen Q, Samaranayake LP, Zhen X, Luo G, Nie M, Li B. Up-regulation of Fas ligand and down regulation of Fas expression in oral carcinogenesis. Oral Oncol. 1999;35:548–53.

    PubMed  CAS  Google Scholar 

  47. Das SN, Khare P, Singh MK, Sharma SC. Fas receptor (CD95) & Fas ligand (CD178) expression in patients with tobacco-related intraoral squamous cell carcinoma. Ind J Med Res. 2011;134:54–60.

    CAS  Google Scholar 

  48. Lee YB, Kyung Kim E, Park HJ, et al. Expression of Fas and Fas ligand in primary cutaneous squamous cell carcinoma in association with grade of tumor differentiation. Int J Dermatol. 2013;52:1092–7.

  49. Hadzi-Mihailovic M, Raybaud H, Monteil R, Jankovic L. Expression of Fas/FasL in patients with oral lichen planus. J BUON. 2009;14:487–93.

    PubMed  CAS  Google Scholar 

  50. Guler N, Uckan S, Celik I, Oznurlu Y, Uckan D. Expression of Fas and Fas-ligand and analysis of argyrophilic nucleolar organizer regions in squamous cell carcinoma: relationships with tumor stage and grade, and apoptosis. Int J Oral Maxillofac Surg. 2005;34:900–6.

    PubMed  CAS  Google Scholar 

  51. Akagi H, Higuchi H, Sumimoto H, et al. Suppression of myeloid cell leukemia-1 (Mcl-1) enhances chemotherapy-associated apoptosis in gastric cancer cells. Gastric Cancer. 2013;16:100–10.

    PubMed  CAS  Google Scholar 

  52. Mallick S, Agarwal J, Kannan S, Pawar S, Kane S, Teni T. PCNA and anti-apoptotic Mcl-1 proteins predict disease-free survival in oral cancer patients treated with definitive radiotherapy. Oral Oncol. 2010;46:688–93.

    PubMed  CAS  Google Scholar 

  53. Palve VC, Teni TR. Association of anti-apoptotic Mcl-1L isoform expression with radioresistance of oral squamous carcinoma cells. Radiat Oncol. 2012;7:135.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Yu CH, Chen HM, Lin HP, Chiang CP. Expression of Bak and Bak/Mcl-1 ratio can predict photodynamic therapy outcome for oral verrucous hyperplasia and leukoplakia. J Oral Pathol Med. 2013;42:257–62.

    PubMed  CAS  Google Scholar 

  55. Schiegnitz E, Kämmerer PW, Koch FP, Krüger M, Berres M, Al-Nawas B. GDF 15 as an anti-apoptotic, diagnostic and prognostic marker in oral squamous cell carcinoma. Oral Oncol. 2012;48:608–14.

    PubMed  CAS  Google Scholar 

  56. Coutinho-Camillo CM, Lourenço SV, Nishimoto IN, Kowalski LP, Soares FA. Caspase expression in oral squamous cell carcinoma. Head Neck. 2011;33:1191–8.

    PubMed  Google Scholar 

  57. Yang XH, Feng ZE, Yan M, et al. XIAP is a predictor of cisplatin-based chemotherapy response and prognosis for patients with advanced head and neck cancer. PLoS One. 2012;7:e31601.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Tamatani T, Takamaru N, Uchida D, Nagai H, Fujisawa K, Miyamoto Y. The expression of X-linked inhibitor of apoptosis in human oral squamous cell carcinoma and its relationship with clinical factors [abstract no. 4954]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31–Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl 1). doi:10.1158/1538-7445.AM2012-4954

  59. Goto M, Tsukamoto T, Inada K, et al. Loss of p21WAF1/CIP1 expression in invasive fronts of oral tongue squamous cell carcinomas is correlated with tumor progression and poor prognosis. Oncol Rep. 2005;14:837–46.

    PubMed  CAS  Google Scholar 

  60. Nemes JA, Nemes Z, Márton IJ. p21WAF1/CIP1 expression is a marker of poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med. 2005;34:274–9.

    PubMed  CAS  Google Scholar 

  61. Xi S, Grandis JR. Gene therapy for the treatment of oral squamous cell carcinoma. J Dent Res. 2003;82:11–6.

    PubMed  CAS  Google Scholar 

  62. Lopez-Martinez M, Anzola M, Cuevas N, Aguirre JM, De-Pancorbo M. Clinical applications of the diagnosis of p53 alterations in squamous cell carcinoma of the head and neck. Med Oral. 2002;7:108–20.

    PubMed  CAS  Google Scholar 

  63. Liu TJ, Zhang WW, Taylor DL, Roth JA, Goepfert H, Clayman GL. Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res. 1994;54:3662–7.

    PubMed  CAS  Google Scholar 

  64. Clayman GL, el-Naggar AK, Lippman SM, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol. 1998;16:2221–32.

  65. Rudin CM, Cohen EE, Papadimitrakopoulou VA, et al. An attenuated adenovirus, ONYX-015, as mouthwash therapy for premalignant oral dysplasia. J Clin Oncol. 2003;21:4546–52.

    PubMed  CAS  Google Scholar 

  66. Heise C, Kirn DH. Replication-selective adenoviruses as oncolytic agents. J Clin Invest. 2000;105:847–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Nemunaitis J, Cunningham C, Tong AW, et al. Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther. 2003;10:341–52.

    PubMed  CAS  Google Scholar 

  68. Li G, Tan X-H. Inhibitory effect on growth of oral cancer cell lines KB induced by survivin RNAi. China Res Prev Treat. 2011;38:257–60.

  69. Khan Z, Tiwari RP, Khan N, Prasad GB, Bisen PS. Induction of apoptosis and sensitization of head and neck squamous carcinoma cells to cisplatin by targeting survivin gene expression. Curr Gene Ther. 2012;12:444–53.

    PubMed  CAS  Google Scholar 

  70. Nagata M, Wada K, Nakajima A, et al. Role of myeloid cell leukemia-1 in cell growth of squamous cell carcinoma. J Pharmacol Sci. 2009;110:344–53.

    PubMed  CAS  Google Scholar 

  71. Leech SH, Olie RA, Gautschi O, et al. Induction of apoptosis in lung-cancer cells following BCL-XL antisense treatment. Int J Cancer. 2000;86:570–6.

    PubMed  CAS  Google Scholar 

  72. Simoes-Wust AP, Olie RA, Gautschi O, et al. BCL-XL antisense treatment induces apoptosis in breast carcinoma cells. Int J Cancer. 2000;87:582–90.

    PubMed  CAS  Google Scholar 

  73. Gibson SA, Pellenz C, Hutchison RE, Davey FR, Shillitoe EJ. Induction of apoptosis in oral cancer cells by an anti-bcl-2 ribozyme delivered by an adenovirus vector. Clin Cancer Res. 2000;6:213–22.

    PubMed  CAS  Google Scholar 

  74. Kaur J, Kaur J, Ralhan R. Induction of apoptosis by abrogation of HSP70 expression in human oral cancer cells. Int J Cancer. 2000;85:1–5.

    PubMed  CAS  Google Scholar 

  75. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010;11:21–8.

    PubMed  CAS  Google Scholar 

  76. Judd NP, Winkler AE, Murillo-Sauca O, et al. ERK1/2 regulation of CD44 modulates oral cancer aggressiveness. Cancer Res. 2012;72:365–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Kok SH, Yeh CC, Chen ML, Kuo MY. Esculetin enhances TRAIL-induced apoptosis through DR5 upregulation in human oral cancer SAS cells. Oral Oncol. 2009;45:1067–72.

    PubMed  CAS  Google Scholar 

  78. Finnberg N, El-Deiry WS. Selective TRAIL-induced apoptosis in dysplastic neoplasia of the colon may lead to new neoadjuvant or adjuvant therapies. Clin Cancer Res. 2006;12:4132–6.

    PubMed  CAS  Google Scholar 

  79. Rowinsky EK. Targeted induction of apoptosis in cancer management: the emerging role of tumor necrosis factor-related apoptosis-inducing ligand receptor activating agents. J Clin Oncol. 2005;23:9394–407.

    PubMed  CAS  Google Scholar 

  80. Fukuda M, Hamao A, Tanaka A, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/APO2L) and its receptors expression in human squamous cell carcinoma of the oral cavity. Oncol Rep. 2003;10:1113–9.

    PubMed  CAS  Google Scholar 

  81. Teng MS, Brandwein-Gensler MS, Teixeira MS, Martignetti JA, Duffey DC. A study of TRAIL receptors in squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg. 2005;131:407–12.

    PubMed  Google Scholar 

  82. Nakashima T, Miura M, Hara M. Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res. 2000;60:1229–35.

  83. Tinhofer I, Anether G, Senfter M, et al. Stressful death of T-ALL tumor cells after treatment with the anti-tumor agent Tetrocarcin-A. FASEB J. 2002;16:1295–7.

    PubMed  CAS  Google Scholar 

  84. Tzung SP, Kim KM, Basanez G, et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol. 2001;3:183–91.

    PubMed  CAS  Google Scholar 

  85. Chan SL, Lee MC, Tan KO, et al. Identification of chelerythrine as an inhibitor of BclXL function. J Biol Chem. 2003;278:20453–6.

    PubMed  CAS  Google Scholar 

  86. Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15:1126–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Nguyen JT, Wells JA. Direct activation of the apoptosis machinery as a mechanism to target cancer cells. Proc Natl Acad Sci USA. 2003;100:7533–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Zhang HZ, Kasibhatla S, Wang Y, et al. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem. 2004;12:309–17.

    PubMed  Google Scholar 

  89. Matsumiya T, Imaizumi T, Yoshida H, Kimura H, Satoh K. Cisplatin inhibits the expression of X-chromosome-linked inhibitor of apoptosis protein in an oral carcinoma cell line. Oral Oncol. 2001;37:296–300.

    PubMed  CAS  Google Scholar 

  90. Midgley CA, Desterro JM, Saville MK, et al. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene. 2000;19:2312–23.

    PubMed  CAS  Google Scholar 

  91. Chene P, Fuchs J, Bohn J, et al. A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J Mol Biol. 2000;299:245–53.

    PubMed  CAS  Google Scholar 

  92. Grasberger BL, Lu T, Schubert C, et al. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem. 2005;48:909–12.

    PubMed  CAS  Google Scholar 

  93. Issaeva N, Bozko P, Enge M, et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med. 2004;10:1321–8.

    PubMed  CAS  Google Scholar 

  94. Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8.

    PubMed  CAS  Google Scholar 

  95. Shangary S, Qin D, McEachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA. 2008;105:3933–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Yang Y, Ludwig RL, Jensen JP, et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell. 2005;7:547–59.

    PubMed  CAS  Google Scholar 

  97. Lain S, Hollick JJ, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell. 2008;13:454–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Staples OD, Hollick JJ, Campbell J, et al. Characterization, chemical optimization and anti-tumour activity of a tubulin poison identified by a p53-based phenotypic screen. Cell Cycle. 2008;7:3417–27.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Selivanova G, Iotsova V, Okan I, et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med. 1997;3:632–8.

    PubMed  CAS  Google Scholar 

  100. Friedler A, Hansson LO, Veprintsev DB, et al. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci USA. 2002;99:937–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Issaeva N, Friedler A, Bozko P, et al. Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. Proc Natl Acad Sci USA. 2003;100:13303–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Bykov VJ, Issaeva N, Shilov A, et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular weight compound. Nat Med. 2002;8:282–8.

    PubMed  CAS  Google Scholar 

  103. Foster BA, Coffey HA, Morin MJ, Rastinejad F. Pharmacological rescue of mutant p53 conformation and function. Science. 1999;286:2507–10.

    PubMed  CAS  Google Scholar 

  104. Wang W, Takimoto R, Rastinejad F, El-Deiry WS. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol. 2003;23:2171–81.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Luu Y, Bush J, Cheung KJ Jr, Li G. The p53 stabilizing compound CP-31398 induces apoptosis by activating the intrinsic Bax/mitochondrial/caspase-9 pathway. Exp Cell Res. 2002;276:214–22.

    PubMed  CAS  Google Scholar 

  106. Takimoto R, Wang W, Dicker DT, et al. The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol Ther. 2002;1:47–55.

    PubMed  CAS  Google Scholar 

  107. Bykov VJ, Issaeva N, Zache N, et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J Biol Chem. 2005;280:30384–91.

    PubMed  CAS  Google Scholar 

  108. Xu GW, Mawji IA, Macrae CJ, et al. A high-content chemical screen identifies ellipticine as a modulator of p53 nuclear localization. Apoptosis. 2008;13:413–22.

    PubMed  CAS  Google Scholar 

  109. Weinmann L, Wischhusen J, Demma MJ, et al. A novel p53 rescue compound induces p53-dependent growth arrest and sensitises glioma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ. 2008;15:718–29.

    PubMed  CAS  Google Scholar 

  110. North S, Pluquet O, Maurici D, El-Ghissassi F, Hainaut P. Restoration of wild-type conformation and activity of a temperature-sensitive mutant of p53 (p53(V272M)) by the cytoprotective aminothiol WR1065 in the esophageal cancer cell line TE-1. Mol Carcinog. 2002;33:181–8.

    PubMed  CAS  Google Scholar 

  111. Nakahara T, Takeuchi M, Kinoyama I, et al. YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res. 2007;67:8014–21.

    PubMed  CAS  Google Scholar 

  112. Kumar B, Yadav A, Lang JC, et al. YM155 reverses cisplatin resistance in head and neck cancer by decreasing cytoplasmic survivin levels. Mol Cancer Ther. 2012;11:1988–98.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Zhang M, Zhu W, Ding N, Zhang W, Li Y. Identification and characterization of small molecule inhibitors of signal transducer and activator of transcription 3 (STAT3) signaling pathway by virtual screening. Bioorg Med Chem Lett. 2013;23:2225–9.

    PubMed  CAS  Google Scholar 

  114. Zhang X, Sun Y, Pireddu R, et al. A novel inhibitor of STAT3 homodimerization selectively suppresses STAT3 activity and malignant transformation. Cancer Res. 2013;73:1922–33.

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Feng R, Zhou S, Liu Y, et al. Sox2 protects neural stem cells from apoptosis via up-regulating survivin expression. Biochem J. 2013;450:459–68.

    PubMed  CAS  Google Scholar 

  116. Guha M, Xia F, Raskett CM, Altieri DC. Caspase 2-mediated tumor suppression involves survivin gene silencing. Oncogene. 2010;29:1280–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Carrasco RA, Stamm NB, Marcusson E, Sandusky G, Iversen P, Patel BK. Antisense inhibition of survivin expression as a cancer therapeutic. Mol Cancer Ther. 2011;10:221–32.

    PubMed  CAS  Google Scholar 

  118. Sapra P, Wang M, Bandaru R, Zhao H, Greenberger LM, Horak ID. Down-modulation of survivin expression and inhibition of tumor growth in vivo by EZN-3042, a locked nucleic acid antisense oligonucleotide. Nucleosides Nucleotides Nucleic Acids. 2010;29:97–112.

    PubMed  CAS  Google Scholar 

  119. Hendruschk S, Wiedemuth R, Aigner A, et al. RNA interference targeting survivin exerts antitumoral effects in vitro and in established glioma xenografts in vivo. Neuro Oncol. 2011;13:1074–89.

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Liu X, Gao R, Dong Y, et al. Survivin gene silencing sensitizes prostate cancer cells to selenium growth inhibition. BMC Cancer. 2010;10:418.

    PubMed  PubMed Central  Google Scholar 

  121. Montazeri Aliabadi H, Landry B, Mahdipoor P, Uludag H. Induction of apoptosis by survivin silencing through siRNA delivery in a human breast cancer cell line. Mol Pharm. 2011;8:1821–30.

  122. Cao W, Fan R, Wang L, et al. Expression and regulatory function of miRNA-34a in targeting survivin in gastric cancer cells. Tumour Biol. 2013;34:963–71.

    PubMed  CAS  Google Scholar 

  123. Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell. 2007;131:257–70.

    PubMed  CAS  Google Scholar 

  124. Reuschenbach M, von Knebel Doeberitz M, Wentzensen N. A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother. 2009;58:1535–44.

  125. Widenmeyer M, Griesemann H, Stevanovic S, et al. Promiscuous survivin peptide induces robust CD4+T-cell responses in the majority of vaccinated cancer patients. Int J Cancer. 2012;131:140–9.

    PubMed  CAS  Google Scholar 

  126. Becker JC, Andersen MH, Hofmeister-Muller V, et al. Survivin-specific T-cell reactivity correlates with tumor response and patient survival: a phase-II peptide vaccination trial in metastatic melanoma. Cancer Immunol Immunother. 2012;61:2091–103.

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Weiss A, Brill B, Borghouts C, Delis N, Mack L, Groner B. Survivin inhibition by an interacting recombinant peptide, derived from the human ferritin heavy chain, impedes tumor cell growth. J Cancer Res Clin Oncol. 2012;138:1205–20.

    PubMed  CAS  Google Scholar 

  128. Rosato R, Almenara J, Kolla S, et al. Mechanism and functional role of XIAP and Mcl-1 down-regulation in flavopiridol/vorinostat antileukemic interactions. Mol Cancer Ther. 2007;6:692.

    PubMed  CAS  Google Scholar 

  129. Chen R, Wierda W, Chubb S, et al. Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia. Blood. 2009;113:4637.

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Rahmani M, Davis E, Bauer C, Dent P, Grant S. Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem. 2005;280:35217.

    PubMed  CAS  Google Scholar 

  131. Yu C, Bruzek L, Meng X, et al. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43–9006. Oncogene. 2005;24:6861.

    PubMed  CAS  Google Scholar 

  132. Rahmani M, Davis E, Crabtree T, et al. The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol. 2007;27:5499.

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Schwickart M, Huang X, Lill J, et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature. 2010;463:103.

    PubMed  CAS  Google Scholar 

  134. Sun H, Kapuria V, Peterson L, et al. Bcr-abl ubiquitination and Usp9x inhibition block kinase signaling and promote CML cell apoptosis. Blood. 2011;117:3151.

    PubMed  CAS  Google Scholar 

  135. Chen S, Dai Y, Harada H, Dent P, Grant S. Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res. 2007;67:782.

    PubMed  CAS  Google Scholar 

  136. Nguyen M, Marcellus R, Roulston A, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA. 2007;104:19512.

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Wei J, Kitada S, Rega M, et al. Apogossypol derivatives as antagonists of antiapoptotic Bcl-2 family proteins. Mol Cancer Ther. 2009;8:904.

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Wei J, Stebbins J, Kitada S, et al. BI-97C1, an optically pure apogossypol derivative as pan-active inhibitor of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins. J Med Chem. 2010;53:4166.

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Kazi A, Sun J, Doi K, et al. The BH3 alpha-helical mimic BH3-M6 disrupts bcl-X(L), bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax-and Bim-dependent manner. J Biol Chem. 2011;286:9382–92.

Download references

Acknowledgements and Disclosures

The authors are thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for the award of Emeritus Scientist to Professor P.S. Bisen. No sources of funding were used to prepare this article. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash S. Bisen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Bundela, S., Tiwari, R.P. et al. Oncoapoptotic Markers in Oral Cancer: Prognostics and Therapeutic Perspective. Mol Diagn Ther 18, 483–494 (2014). https://doi.org/10.1007/s40291-014-0104-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-014-0104-5

Keywords

Navigation