Skip to main content
Log in

Clinically Relevant Drug-Drug and Drug-Food Interactions

Underlying Mechanisms and Regulatory Requirements for Drug Licensing

  • Review Article
  • Published:
Pharmaceutical Medicine Aims and scope Submit manuscript

Abstract

Drug interactions arise when the effects of a drug are altered by the co-administration of another drug or food substance. Many factors determine the clinical response seen, including specific drug characteristics, patient age, gender and co-morbidities. The absorption, distribution, metabolism and excretion of a drug all impact upon drug availability at its sites of action and alterations in these processes can result in adverse outcomes. Similarly, the effect of a drug may be altered if co-prescribed with another drug or food substance that acts on the same receptor or physiological system. In recent years, there is a greater understanding of the mechanisms underlying pharmacokinetic and pharmacodynamic drug interactions, including phase I metabolic reactions (involving the family of cytochrome P450 isoenzymes) and the important role played by drug transporter proteins including P-glycoprotein (expressed in many tissues) and organic anion transporters. There is also a growing awareness of the impact that pharmacogenomics has on drug interaction potential, resulting in interindividual variations in drug transport, metabolism and elimination. The number of potential drug interactions is extensive, but the lower incidence seen in clinical practice implies that many of these potential interactions are not clinically relevant. However, with an ageing population, an increasing number of new drugs, more polypharmacy and the growing use of herbal remedies and over-the-counter preparations, the potential for drug interactions is rising and increasing efforts are needed to avoid them. A good knowledge of the mechanisms underlying drug interactions and the promotion of rational and safe prescribing amongst prescribers are essential in predicting (and therefore preventing) drug interactions in clinical practice. A comprehensive evaluation of drug interaction potential is now an integral part of risk assessment during early drug development, and regulatory bodies including the US FDA and the European Medicines Agency have published guidance documents that outline the importance of in vitro and (where appropriate) in vivo studies to predict interactions during drug development. This article discusses the main mechanisms involved in clinically relevant drug-drug and drug-food interactions and outlines some of the studies used to predict them during drug development. Safe prescribing is discussed along with the central role played by regulatory bodies in supporting drug development and postmarketing pharmacovigilance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang L, Reynolds KS, Zhao P, et al. Drug interactions evaluation: an integrated part of risk assessment of therapeutics. Toxicol Appl Pharmacol. 2010;243(2):134–45.

    Article  PubMed  CAS  Google Scholar 

  2. Feely J, Barry M. Adverse drug interactions. Clin Med. 2005;5(1):19–22.

    Article  PubMed  Google Scholar 

  3. Han HK. Role of transporters in drug interactions. Arch Pharm Res. 2011;34:1865–77.

    Article  PubMed  CAS  Google Scholar 

  4. Fugh-Berman A. Herb-drug interactions. Lancet. 2000;355:134–8.

    Article  PubMed  CAS  Google Scholar 

  5. Won CS, Oberlies NH, Paine MF. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport. Pharmacol Ther. 2012;136(2):186–201.

    Article  PubMed  CAS  Google Scholar 

  6. Doucet J, Chassagne P, Trivalle C, et al. Drug-drug interactions related to hospital admissions in older adults: a prospective study of 1000 patients. J Am Geriatr Soc. 1996;44:944–8.

    PubMed  CAS  Google Scholar 

  7. Lindley CM, Tully MP, Paramsothy V, et al. Inappropriate medication is a major cause of adverse drug reactions in elderly patients. Age Ageing. 1992;21:294–300.

    Article  PubMed  CAS  Google Scholar 

  8. Kokter N, Mozina M, Brvar M. Potential drug-drug interactions and admissions due to drug-drug interactions in patients treated in medical departments. Wien Klin Wochenschar. 2010;122:81–8.

    Google Scholar 

  9. Riechelmann RP, Tannock IF, Wang L, et al. Potential drug interactions and duplicate prescriptions among cancer patients. J Natl Cancer Inst. 2007;99:592–600.

    Article  PubMed  Google Scholar 

  10. Brunton LL, editor. Goodman and Gilman’s the pharmacological basis of therapeutics. 11th ed. London: McGraw-Hill; 2007.

    Google Scholar 

  11. Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18,820 patients. BMJ. 2004;329:15–9.

    Article  PubMed  Google Scholar 

  12. Kongkaew C, Noyce PR, Ashcroft DM. Hospital admissions associated with adverse drug reactions: a systematic review of prospective observational studies. Ann Pharmacother. 2008;42(7):1017–25.

    Article  PubMed  Google Scholar 

  13. Dequito AB, Mol PG, van Doormaal JE, et al. Preventable and non-preventable adverse drug events in hospitalised patients: a prospective chart review in the Netherlands. Druf Saf. 2011;34(11):1089–100.

    Article  Google Scholar 

  14. Reimche L, Forster AJ, van Walraven C. Incidence and contributors to potential drug-drug interactions in hospitalized patients. J Clin Pharmacol. 2011;51(7):1043–50.

    Article  PubMed  CAS  Google Scholar 

  15. D’Arcy PF. Drug interactions in vitro. Ir J Med Sci. 1974;143(1):93–109.

    Article  Google Scholar 

  16. Blume H, Donath F, Warnke A, et al. Pharmacokinetic drug interaction profiles of proton pump inhibitors. Drug Saf. 2006;29(9):769–84.

    Article  PubMed  CAS  Google Scholar 

  17. Penston J, Wormsley KG. Adverse reactions and interactions with H2-receptor antagonists. Med Toxicol. 1986;1(3):192–216.

    PubMed  CAS  Google Scholar 

  18. Gu C, Karthikeyan KG. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol. 2005;39(8):2660–7.

    Article  PubMed  CAS  Google Scholar 

  19. Neuvonen PJ, Kivistö K, Hirvisalo EL. Effects of resins and activated charcoal on the absorption of digoxin, carbamazepine and frusemide. Br J Clin Pharmacol. 1988;25(2):229–33.

    Article  PubMed  CAS  Google Scholar 

  20. Hirsh J, Fuster V, Ansell J, et al. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. Circulation. 2003;107(12):1692–711.

    Article  PubMed  Google Scholar 

  21. Northcutt RC, Stiel JN, Hollifield JW, et al. The influence of cholestyramine on thyroxine absorption. JAMA. 1969;208(10):1857–61.

    Article  PubMed  CAS  Google Scholar 

  22. Nair VP, Hunter JM. Anticholinesterases and anticholinergic drugs. Cont Educ Anaesth Crit Care Pain. 2004;4(5):164–8.

    Article  Google Scholar 

  23. Wadhwa NK, Schroeder TJ, O’Flaherty E, et al. The effect of oral metoclopramide on the absorption of cyclosporine. Transpl Proc. 1987;19(1 Pt 2):1730–3.

    CAS  Google Scholar 

  24. Chadwick B, Waller DG, Edwards JG. Potentially hazardous drug interactions with psychotropics. Adv Psychiatr Treat. 2005;11:440–9.

    Article  Google Scholar 

  25. EMC. The electronic Medicines Compendium/specific product characteristics: methotrexate [online]. http://www.medicines.org.uk/EMC/medicine/12034/SPC/Methotrexate+10+mg+Tablets/#INTERACTIONS. Accessed 15 Aug 2012.

  26. Koch-Weser J, Sellers EM. Drug interaction with coumarin anticoagulants (Part 1 of 2). N Engl J Med. 1971;285:487–98.

    Article  CAS  Google Scholar 

  27. Cozza KL, Armstrong SC, Oesterheld JR. Concise guide to drug interaction principles for medical practice: cytochrome P450s, UGTs, p-glycoproteins. 2nd ed. Washington, DC: American Psychiatric Association; 2003.

    Google Scholar 

  28. Guengerich FP. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact. 1997;106:161–82.

    Article  PubMed  CAS  Google Scholar 

  29. Spina E, Santoro V, D’Arrigo C. Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: an update. Clin Ther. 2008;30(7):1206–27.

    Article  PubMed  CAS  Google Scholar 

  30. Eichelbaum M, Burk O. CYP3A genetics in drug metabolism. Nat Med. 2001;7(3):285–7.

    Article  PubMed  CAS  Google Scholar 

  31. Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet. 1998;35:361–90.

    Article  PubMed  CAS  Google Scholar 

  32. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet. 2000;38(1):41–57.

    Article  PubMed  CAS  Google Scholar 

  33. Smith HS. Opioid metabolism. Mayo Clin Proc. 2009;84(7):613–24.

    PubMed  CAS  Google Scholar 

  34. Bibi Z. Role of cytochrome P450 in drug interactions. Nutr Metab (Lond). 2008;5:27.

    Article  CAS  Google Scholar 

  35. Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol. 2006;61(3):246–55.

    Article  PubMed  CAS  Google Scholar 

  36. Aymanns C, Keller F, Maus S, et al. Review on pharmacokinetics and pharmacodynamics and the aging kidney. Clin J Am Soc Nephrol. 2010;5(2):314–27.

    Article  PubMed  CAS  Google Scholar 

  37. Maeda A, Tsuruoka S, Kanai Y, et al. Evaluation of the interaction between nonsteroidal anti-inflammatory drugs and methotrexate using human organic anion transporter 3-transfected cells. Eur J Pharmacol. 2008;596(1–3):166–72.

    Article  PubMed  CAS  Google Scholar 

  38. Seymour RM, Routledge PA. Important drug-drug interactions in the elderly. Drugs Aging. 1998;12(6):485–94.

    Article  PubMed  CAS  Google Scholar 

  39. Husted S. Benefits and risks with antiplatelet therapy: how great a problem is bleeding? Eur Heart J Suppl. 2008;10(Suppl. I):I19–24.

    Article  CAS  Google Scholar 

  40. Piper JM, Ray WA, Daugherty JR, et al. Corticosteroid use and peptic ulcer disease: role of nonsteroidal anti-inflammatory drugs. Ann Intern Med. 1991;114:735–40.

    Article  PubMed  CAS  Google Scholar 

  41. Kaye JA, Jick H. Incidence of erectile dysfunction and characteristics of patients before and after the introduction of sildenafil in the United Kingdom: cross sectional study with comparison patients. BMJ. 2003;326(424):1.

    Google Scholar 

  42. Schepkens H, Vanholder R, Billiouw JM, et al. Life-threatening hyperkalemia during combined therapy with angiotensin-converting enzyme inhibitors and spironolactone: an analysis of 25 cases. Am J Med. 2001;110(6):438–41.

    Article  PubMed  CAS  Google Scholar 

  43. Davis A, Day RO, Begg EJ. Interactions between non-steroidal anti-inflammatory drugs and antihypertensives and diuretics. Aust NZ J Med. 1986;16:537–46.

    Article  CAS  Google Scholar 

  44. Van der Woude HJ, Zaagsma J, Postma DS, et al. Detrimental effects of beta-blockers in COPD: a concern for nonselective beta-blockers. Chest. 2005;127:818–24.

    Article  PubMed  Google Scholar 

  45. Shitara Y, Horie T, Sugiyama Y. Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci. 2006;27(5):425–46.

    Article  PubMed  CAS  Google Scholar 

  46. Han HK. Role of transporters in drug interactions. Arch Pharm Res. 2011;34(11):1865–77.

    Article  PubMed  CAS  Google Scholar 

  47. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann Rev Biochem. 1993;62:385–427.

    Article  PubMed  CAS  Google Scholar 

  48. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, et al. P-glycoprotein: from genomics to mechanism. Oncogene. 2003;22:7468–85.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet. 2001;40:159–68.

    Article  PubMed  CAS  Google Scholar 

  50. Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and p-glycoprotein. Pharm Res. 1999;16:408–14.

    Article  PubMed  CAS  Google Scholar 

  51. Zhou SF. Structure function and regulation of p-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38:802–32.

    Article  PubMed  CAS  Google Scholar 

  52. Ding R, Tayrouz Y, Riedel KD, et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther. 2004;76:73–84.

    Article  PubMed  CAS  Google Scholar 

  53. Dorian P, Strauss M, Cardella C, et al. Digoxin-cyclosporine interaction: severe digitalis toxicity after cyclosporine treatment. Clin Invest Med. 1988;11:108–12.

    PubMed  CAS  Google Scholar 

  54. Kim RB. Drugs as p-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev. 2002;34(Pt 1 & 2):47–54.

    Article  PubMed  CAS  Google Scholar 

  55. Kis O, Robillard K, Chan GN, et al. The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci. 2010;31:22–35.

    Article  PubMed  CAS  Google Scholar 

  56. Minuesa G, Huber-Ruano I, Pastor-Anglada M, et al. Drug uptake transporters in antiretroviral therapy. Pharmacol Ther. 2011;132(3):268–79.

    Article  PubMed  CAS  Google Scholar 

  57. Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res. 2007;24:450–70.

    Article  PubMed  CAS  Google Scholar 

  58. Srimaroeng C, Perry JL, Pritchard JB. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica. 2008;38:889–935.

    Article  PubMed  CAS  Google Scholar 

  59. Burckhardt G. Drug transport by organic anion transporters (OATs). Pharmacol Ther. 2012;136(1):106–30.

    Article  PubMed  CAS  Google Scholar 

  60. Hagos Y, Wolff NA. Assessment of the role of renal organic anion transporters in drug-induced nephrotoxicity. Toxins (Basel). 2010;2(8):2055–82.

    Article  CAS  Google Scholar 

  61. Ho ES, Lin DC, Mendel DB, et al. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol. 2000;11(3):383–93.

    PubMed  CAS  Google Scholar 

  62. DeGorter MK, Xia CQ, Yang JJ, et al. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol. 2012;52:249–73.

    Article  PubMed  CAS  Google Scholar 

  63. Niemi M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics. 2007;8:787–802.

    Article  PubMed  CAS  Google Scholar 

  64. Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol. 2012;52:135–51.

    Article  PubMed  CAS  Google Scholar 

  65. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158(3):693–705.

    Article  PubMed  CAS  Google Scholar 

  66. Amundsen R, Christiensen H, Zabihyan B, et al. Cyclosporine A, but not tacrolimus, shows relevant inhibition of organic anion-transporting protein 1B1-mediated transport of atorvastatin. Drug Metab Dispos. 2010;38:1499–504.

    Article  PubMed  CAS  Google Scholar 

  67. Genser D. Food and drug interaction: consequences for the nutrition/health status. Ann Nutr Metab. 2008;52(1):29–32.

    Article  PubMed  CAS  Google Scholar 

  68. Won CS, Oberlies NH, Paine MF. Influence of dietary substances on intestinal drug metabolism and transport. Curr Drug Metab. 2010;11(9):778–92.

    Article  PubMed  CAS  Google Scholar 

  69. EMC. The Electronic Medicines Compendium/specific product characteristics: zentiva [online]. http://www.medicines.org.uk/emc/medicine/22474/SPC/Alendronic+Acid+70mg+Tablets/#INTERACTIONS. Accessed 12 Aug 2012.

  70. Chan LN. Drug-nutrient interactions. In: Shils ME, Shike M, Ross AC, et al., editors. Modern nutrition in health and disease. Baltimore (MD): Lippincott Williams & Wilkins; 2006. p. 1540–53.

  71. Mandlekar S, Hong JL, Kong AN. Modulation of metabolic enzymes by dietary phytochemicals: a review of mechanisms underlying beneficial versus unfavorable effects. Curr Drug Metab. 2006;7(6):661–75.

    Article  PubMed  CAS  Google Scholar 

  72. Rodriguez-Fragoso L, Martinez-Arismendi JL, Orozco-Bustos D, et al. Potential risks resulting from fruit/vegetable-drug interactions: effects on drug-metabolizing enzymes and drug transporters. J Food Sci. 2011;76(4):112–24.

    Article  CAS  Google Scholar 

  73. Edgar B, Bailey D, Bergstrand R, et al. Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics of felodipine and its potential clinical relevance. Eur J Clin Pharmacol. 1992;42(3):313–7.

    Article  PubMed  CAS  Google Scholar 

  74. Satoh H, Yamashita F, Tsujimoto M, et al. Citrus juices inhibit the function of human organic anion-transporting polypeptide OATP-B. Drug Metab Dispos. 2005;33(4):518–23.

    Article  PubMed  CAS  Google Scholar 

  75. Pham DQ, Pham AQ. Interaction potential between cranberry juice and warfarin. Am J Health Syst Pharm. 2007;64:490–4.

    Article  PubMed  CAS  Google Scholar 

  76. Kim H, Yoon YJ, Shon JH, et al. Inhibitory effects of fruit juices on CYP3A activity. Drug Metab Dispos. 2006;34:521–3.

    Article  PubMed  CAS  Google Scholar 

  77. Piver B, Berthou F, Dreano Y, et al. Inhibition of CYP3A, CYP1A and CYP2EI activities by resveratrol and other non volatile red wine components. Toxicol Lett. 2001;125:83–91.

    Article  PubMed  CAS  Google Scholar 

  78. Farkas D, Greenblatt DJ. Influence of fruit juices on drug disposition: discrepancies between in vitro and clinical studies. Expert Opin Drug Metab Toxicol. 2008;4:381–93.

    Article  PubMed  CAS  Google Scholar 

  79. Wason S, Digiacinto JL, Davis MW. Effects of grapefruit and seville orange juices on the pharmacokinetic properties of colchicine in healthy subjects. Clin Ther. 2012;34(10):2161–73.

    Article  PubMed  CAS  Google Scholar 

  80. Dresser GK, Bailey DG, Leake BF, et al. Fruit juices inhibit organic anion transporting polypeptide-mediated uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther. 2002;71:11–20.

    Article  PubMed  CAS  Google Scholar 

  81. Lambert JD, Sang S, Lu AY, et al. Metabolism of dietary polyphenols and possible interactions with drugs. Curr Drug Metab. 2007;8(5):499–507.

    Article  PubMed  CAS  Google Scholar 

  82. Alvarez AI, Real R, Pérez M, et al. Modulation of the activity of ABC transporters (p-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J Pharm Sci. 2010;99(2):598–617.

    PubMed  CAS  Google Scholar 

  83. Thummel KE, Kunze KL, Shen DD. Metabolically-based drug-drug interactions: principles and mechanisms. In: Levy RH, Thummel KE, Trager WF, et al., editors. Metabolic drug interactions. Philadelphia (PA): Lippincott Williams & Wilkins; 2000. p. 3–19.

  84. Edwards LD, Fox AW, Stonier PD, editors. Drug Interactions: principles and practice of pharmaceutical medicine. 3rd ed. Wiley-Blackwell: Chichester; 2010.

    Google Scholar 

  85. Feng B, Mills JB, Davidson RE, et al. In vitro p-glycoprotein assays to predict the in vivo interactions of p-glycoprotein with drugs in the central nervous system. Drug Metab Dispos. 2008;36:268–75.

    Article  PubMed  CAS  Google Scholar 

  86. Karyekar CS, Eddington ND, Garimella TS, et al. Evaluation of p-glycoprotein-mediated renal drug interactions in an MDR1-MDCK model. Pharmacotherapy. 2003;23(4):436–42.

    Article  PubMed  CAS  Google Scholar 

  87. Ramachandra M, Ambudkar SV, Chen D, et al. Human p-glycoprotein exhibits reduced affinity for substrates during a catalytic transition state. Biochemistry. 1998;37:5010–9.

    Article  PubMed  CAS  Google Scholar 

  88. Tiberghien F, Loor F. Ranking of p-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. Anticancer Drugs. 1996;7(5):568–78.

    Article  PubMed  CAS  Google Scholar 

  89. US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research. Drug interaction studies: study design, data analysis, implications for dosing, and labelling recommendations (draft guidance February 2012) [online]. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf. Accessed 25 Aug 2012.

  90. Windass AS, Lowes S, Wang Y, et al. The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther. 2007;322(3):1221–7.

    Article  PubMed  CAS  Google Scholar 

  91. European Medicines Agency Committee for Human Medicinal Products. Guideline on the investigation of drug interactions [online]. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf. Accessed 25 Aug 2012.

  92. Huang SM, Strong JM, Zhang L, et al. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J Clin Pharmacol. 2008;48(6):662–70.

    Article  PubMed  CAS  Google Scholar 

  93. Magro L, Moretti U, Leone R. Epidemiology and characteristics of adverse drug reactions caused by drug-drug interactions. Expert Opin Drug Saf. 2012;11(1):83–94.

    Article  PubMed  CAS  Google Scholar 

  94. Shi S, Mörike K, Klotz U. The clinical implications of ageing for rational drug therapy. Eur J Clin Pharmacol. 2008;64:183–99.

    Article  PubMed  Google Scholar 

  95. Schwartz JB. The current state of knowledge on age, sex, and their interactions on clinical pharmacology. Clin Pharmacol Ther. 2007;82:87–96.

    Article  PubMed  CAS  Google Scholar 

  96. Le Couteur DG, Fraser R, Hilmer S, et al. The hepatic sinusoid in aging and cirrhosis: effects on hepatic substrate disposition and drug clearance. Clin Pharmacokinet. 2005;44:187–200.

    Article  PubMed  Google Scholar 

  97. Schmucker DL. Liver function and phase I drug metabolism in the elderly: a paradox. Drugs Aging. 2001;18:837–51.

    Article  PubMed  CAS  Google Scholar 

  98. Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc. 1985;33:278–85.

    PubMed  CAS  Google Scholar 

  99. Stenberg P, Bergstrom CA, Luthman K, et al. Theoretical predictions of drug absorption in drug discovery and development. Clin Pharmacokinet. 2002;41(11):877–99.

    Article  PubMed  CAS  Google Scholar 

  100. Fagerholm U. Prediction of human pharmacokinetics-gastrointestinal absorption. J Pharm Pharmacol. 2007;59(7):905–16.

    Article  PubMed  CAS  Google Scholar 

  101. Mangoni AA, Jackson SHD. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):6–14.

    Article  PubMed  CAS  Google Scholar 

  102. Tobias D. Age-related changes in pharmacokinetics and pharmacodynamics: a review. Consult Pharm. 2004;19:736–9.

    Article  PubMed  Google Scholar 

  103. Nebert DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet. 1990;56:247–58.

    Article  Google Scholar 

  104. Brandt JT, Close SL, Iturria SJ, et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost. 2007;5(12):2429–36.

    Article  PubMed  CAS  Google Scholar 

  105. Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy: a genomewide study. SEARCH Collaborative Group. N Engl J Med. 2008;359(8):789–99.

    Article  PubMed  CAS  Google Scholar 

  106. Jannetto PJ, Bratanow NC. Utilization of pharmacogenomics and therapeutic drug monitoring for opioid pain management. Pharmacogenomics. 2009;10:1157–67.

    Article  PubMed  CAS  Google Scholar 

  107. Xie HG, Kim RB, Wood AJJ, et al. Molecular basis of ethnic differences in drug disposition and response. Ann Rev Pharmacol Toxicol. 2001;41:815–50.

    Article  CAS  Google Scholar 

  108. Garsa AA, McLeod HL, Marsh S. CYP3A4 and CYP3A5 genotyping by Pyrosequencing. BMC Med Genet. 2005;6:19–24.

    Article  PubMed  CAS  Google Scholar 

  109. Chowbay B, Zhou S, Lee EJ. An interethnic comparison of polymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore. Drug Metab Rev. 2005;37(2):327–78.

    PubMed  CAS  Google Scholar 

  110. Reeder TA, Mutnick A. Pharmacist-versus physician-obtained medication histories. Am J Health Syst Pharm. 2008;65:857–60.

    Article  PubMed  Google Scholar 

  111. Carter MK, Allin DM, Scott LA, et al. Pharmacist-acquired medication histories in a university hospital emergency department. Am J Health Syst Pharm. 2006;63:2500–3.

    Article  PubMed  Google Scholar 

  112. Johnsen SP, Sørensen HT, Mellemkjoer L, et al. Hospitalisation for upper gastrointestinal bleeding associated with use of oral anticoagulants. Thromb Haemost. 2001;86(2):563–8.

    PubMed  CAS  Google Scholar 

  113. Donyai P, O’Grady K, Jacklin A, et al. The effects of electronic prescribing on the quality of prescribing. Br J Clin Pharmacol. 2008;65:230–7.

    Article  PubMed  Google Scholar 

  114. Westbrook JI, Reckmann M, Li L, et al. Effects of two commercial electronic prescribing systems on prescribing error rates in hospital in-patients: a before and after study. PLoS Med. 2012;9(1):e1001164.

    Article  PubMed  Google Scholar 

  115. Sandilands EA, Reid K, Shaw L, et al. Impact of a focussed teaching programme on practical prescribing skills among final year medical students. Br J Clin Pharmacol. 2011;71(1):29–33.

    Article  PubMed  Google Scholar 

  116. Tobaiqy M, McLay J, Ross S. Foundation year 1 doctors and clinical pharmacology and therapeutics teaching: a retrospective view in light of experience. Br J Clin Pharmacol. 2007;64(3):363–72.

    Article  PubMed  Google Scholar 

  117. Ross S, Loke YK. Do educational interventions improve prescribing by medical students and junior doctors? A systematic review. Br J Clin Pharmacol. 2009;67(6):662–70.

    Article  PubMed  Google Scholar 

  118. Vries de TP, Henning RH, Hogerzeil HV, et al. Guide to good prescribing. World Health Organisation. Action Programme on Essential Drugs, Geneva [online]. 1994. http://docsse.com/view.php?id=662760. Accessed 11 Sep 2012.

  119. Behrman RE, Benner JS, Brown JS, et al. Developing the sentinel system: a national resource for evidence development. N Engl J Med. 2011;364:498–9.

    Article  PubMed  CAS  Google Scholar 

  120. European Medicines Agency. Eudravigilance: pharmacovigilance in the European economic area [online]. http://eudravigilance.ema.europa.eu/highres.htm/. Accessed 13 Sep 2012.

  121. Barroso JM. The European Parliament commission implementing regulation (EU) No 520/2012 of 19 June 2012 on the performance of pharmacovigilance activities provided for in Regulation (EC) No 726/2004 of the European Parliament and of the Council and Directive 2001/83/EC of the European Parliament. Official J Eur Union L159/25 [online]. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:159:0005:0025:EN:PDF. Accessed 10 Sep 2012.

Download references

Acknowledgments

The authors have no conflicts of interest to declare that are directly relevant to the content of this article. No funding was received to assist in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Brewer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brewer, L., Williams, D. Clinically Relevant Drug-Drug and Drug-Food Interactions. Pharm Med 27, 9–23 (2013). https://doi.org/10.1007/s40290-013-0008-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40290-013-0008-4

Keywords

Navigation