Skip to main content
Log in

Quantifying Exercise Heat Acclimatisation in Athletes and Military Personnel: A Systematic Review and Meta-analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Athletes and military personnel are often expected to compete and work in hot and/or humid environments, where decrements in performance and an increased risk of exertional heat illness are prevalent. A physiological strategy for reducing the adverse effects of heat stress is to acclimatise to the heat.

Objective

The aim of this systematic review was to quantify the effects of relocating to a hotter climate to undergo heat acclimatisation in athletes and military personnel.

Eligibility Criteria

Studies investigating the effects of heat acclimatisation in non-acclimatised athletes and military personnel via relocation to a hot climate for < 6 weeks were included.

Data Sources

MEDLINE, SPORTDiscus, CINAHL Plus with Full Text and Scopus were searched from inception to June 2022.

Risk of Bias

A modified version of the McMaster critical review form was utilised independently by two authors to assess the risk of bias.

Data Synthesis

A Bayesian multi-level meta-analysis was conducted on five outcome measures, including resting core temperature and heart rate, the change in core temperature and heart rate during a heat response test and sweat rate. Wet-bulb globe temperature (WBGT), daily training duration and protocol length were used as predictor variables. Along with posterior means and 90% credible intervals (CrI), the probability of direction (Pd) was calculated.

Results

Eighteen articles from twelve independent studies were included. Fourteen articles (nine studies) provided data for the meta-analyses. Whilst accounting for WBGT, daily training duration and protocol length, population estimates indicated a reduction in resting core temperature and heart rate of − 0.19 °C [90% CrI: − 0.41 to 0.05, Pd = 91%] and − 6 beats·min−1 [90% CrI: − 16 to 5, Pd = 83%], respectively. Furthermore, the rise in core temperature and heart rate during a heat response test were attenuated by − 0.24 °C [90% CrI: − 0.67 to 0.20, Pd = 85%] and − 7 beats·min−1 [90% CrI: − 18 to 4, Pd = 87%]. Changes in sweat rate were conflicting (0.01 L·h−1 [90% CrI: − 0.38 to 0.40, Pd = 53%]), primarily due to two studies demonstrating a reduction in sweat rate following heat acclimatisation.

Conclusions

Data from athletes and military personnel relocating to a hotter climate were consistent with a reduction in resting core temperature and heart rate, in addition to an attenuated rise in core temperature and heart rate during an exercise-based heat response test. An increase in sweat rate is also attainable, with the extent of these adaptations dependent on WBGT, daily training duration and protocol length.

PROSPERO Registration

CRD42022337761.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Garden JW, Wilson ID, Rasch PJ. Acclimatization of healthy young adult males to a hot-wet environment. J Appl Physiol. 1966;21(2):665–9. https://doi.org/10.1152/jappl.1966.21.2.665.

    Article  CAS  PubMed  Google Scholar 

  2. Gerrett N, Kingma BRM, Sluijter R, Daanen HAM. Ambient conditions prior to Tokyo 2020 Olympic and Paralympic games: Considerations for acclimation or acclimatization strategies. Front Physiol. 2019;10:414. https://doi.org/10.3389/fphys.2019.00414.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mantzios K, Ioannou LG, Panagiotaki Z, Ziaka S, Périard JD, Racinais S, et al. Effects of weather parameters on endurance running performance: discipline-specific analysis of 1258 races. Med Sci Sports Exerc. 2022;54(1):153–61. https://doi.org/10.1249/MSS.0000000000002769.

    Article  PubMed  Google Scholar 

  4. Ashworth ET, Cotter JD, Kilding AE. Methods for improving thermal tolerance in military personnel prior to deployment. Mil Med Res. 2020;7(1):58. https://doi.org/10.1186/s40779-020-00287-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Joy RJ, Poe RH, Davis TR, Frohlich ED. The effect of prior heat acclimatization upon military performance in hot climates. Mil Med. 1964;129(1):51–7. https://doi.org/10.1093/milmed/129.1.51.

    Article  CAS  PubMed  Google Scholar 

  6. Edholm O, Fox R, Adam J, Goldsmith C. Comparison of artificial and natural acclimatization. Fed Proc. 1963;22:709–15.

    Google Scholar 

  7. Havenith G. Heat balance when wearing protective clothing. Ann Occup Hyg. 1999;43(5):289–96. https://doi.org/10.1016/S0003-4878(99)00051-4.

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong LE, Johnson EC, Casa DJ, Ganio MS, McDermott BP, Yamamoto LM, et al. The American football uniform: uncompensable heat stress and hyperthermic exhaustion. J Athl Train. 2010;45(2):117–27. https://doi.org/10.4085/1062-6050-45.2.117.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Puthoff ML, Darter BJ, Nielsen DH, Yack HJ. The effect of weighted vest walking on metabolic responses and ground reaction forces. Med Sci Sports Exerc. 2006;38(4):746–52. https://doi.org/10.1249/01.mss.0000210198.79705.19.

    Article  PubMed  Google Scholar 

  10. Bright FM, Clark B, Jay O, Périard JD. The effect of minimal differences in the skin-to-air vapor pressure gradient at various dry-bulb temperatures on self-paced exercise performance. J Appl Physiol (1985). 2021;131(3):1176–85. https://doi.org/10.1152/japplphysiol.01059.2020.

    Article  PubMed  Google Scholar 

  11. Voltaire B, Galy O, Coste O, Racinais S, Callis A, Blonc S, et al. Effect of fourteen days of acclimatization on athletic performance in tropical climate. Can J Appl Physiol. 2002;27(6):551–62. https://doi.org/10.1139/h02-031.

    Article  PubMed  Google Scholar 

  12. Ely MR, Cheuvront SN, Roberts WO, Montain SJ. Impact of weather on marathon-running performance. Med Sci Sports Exerc. 2007;39(3):487–93. https://doi.org/10.1249/mss.0b013e31802d3aba.

    Article  PubMed  Google Scholar 

  13. Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev. 2021;101(4):1873–979. https://doi.org/10.1152/physrev.00038.2020.

    Article  CAS  PubMed  Google Scholar 

  14. Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, American College of Sports M, et al. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39(3):556–72. https://doi.org/10.1249/MSS.0b013e31802fa199.

    Article  PubMed  Google Scholar 

  15. Casa DJ, Armstrong LE, Kenny GP, O’Connor FG, Huggins RA. Exertional heat stroke: New concepts regarding cause and care. Curr Sport Med Rep. 2012;11(3):115–23. https://doi.org/10.1249/JSR.0b013e31825615cc.

    Article  Google Scholar 

  16. Morris NB, Jay O, Flouris AD, Casanueva A, Gao C, Foster J, et al. Sustainable solutions to mitigate occupational heat strain—an umbrella review of physiological effects and global health perspectives. Environ Health-Glob. 2020;19(1):1–24. https://doi.org/10.1186/s12940-020-00641-7.

    Article  Google Scholar 

  17. Racinais S, Alonso J-M, Coutts AJ, Flouris AD, Girard O, González-Alonso J, et al. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports. 2015;25:6–19. https://doi.org/10.1111/sms.12467.

    Article  PubMed  Google Scholar 

  18. Gibson OR, Mee JA, Tuttle JA, Taylor L, Watt PW, Maxwell NS. Isothermic and fixed intensity heat acclimation methods induce similar heat adaptation following short and long-term timescales. J Therm Biol. 2015;49–50:55–65. https://doi.org/10.1016/j.jtherbio.2015.02.005.

    Article  PubMed  Google Scholar 

  19. Brown HA, Topham TH, Clark B, Smallcombe JW, Flouris AD, Ioannou LG, et al. Seasonal heat acclimatisation in healthy adults: a systematic review. Sports Med. 2022;52(9):2111–28. https://doi.org/10.1007/s40279-022-01677-0.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Karlsen A, Nybo L, Norgaard SJ, Jensen MV, Bonne T, Racinais S. Time course of natural heat acclimatization in well-trained cyclists during a 2-week training camp in the heat. Scand J Med Sci Sports. 2015;25(Suppl 1):240–9. https://doi.org/10.1111/sms.12449.

    Article  PubMed  Google Scholar 

  21. Meylan CMP, Bowman K, Stellingwerff T, Pethick WA, Trewin J, Koehle MS. The efficacy of heat acclimatization pre-world cup in female soccer players. Front Sports Act Liv. 2021;3: 614370. https://doi.org/10.3389/fspor.2021.614370.

    Article  Google Scholar 

  22. Charlot K, Tardo-Dino PE, Buchet JF, Koulmann N, Bourdon S, Lepetit B, et al. Short-term, low-volume training improves heat acclimatization in an operational context. Front Physiol. 2017;8:419. https://doi.org/10.3389/fphys.2017.00419.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eijsvogels TM, de Korte JQ, Bongers CC. Beat the heat: how to become a gold medalist at the Tokyo Olympics. Temperature. 2021;8(3):203–5. https://doi.org/10.1080/23328940.2021.1944005.

    Article  Google Scholar 

  24. Notley SR, Racinais S, Kenny GP. Do sex differences in thermoregulation pose a concern for female athletes preparing for the Tokyo Olympics? Br J Sports Med. 2021;55(6):298–9. https://doi.org/10.1136/bjsports-2020-102911.

    Article  PubMed  Google Scholar 

  25. Piil JF, Kingma B, Morris NB, Christiansen L, Ioannou LG, Flouris AD, et al. Proposed framework for forecasting heat-effects on motor-cognitive performance in the Summer Olympics. Temperature (Austin). 2021;8(3):262–83. https://doi.org/10.1080/23328940.2021.1957367.

    Article  PubMed  Google Scholar 

  26. Carr AJ, Vallance BS, Rothwell J, Rea AE, Burke LM, Guy JH. Competing in hot conditions at the Tokyo Olympic games: Preparation strategies used by Australian race walkers. Front Physiol. 2022;13:450. https://doi.org/10.3389/fphys.2022.836858.

    Article  Google Scholar 

  27. Hellon R, Jones R, Macpherson R, Weiner J. Natural and artifical acclimatization to hot environments. J Physiol. 1956;132(3):559. https://doi.org/10.1113/jphysiol.1956.sp005549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 2011;1(4):1883–928. https://doi.org/10.1002/cphy.c100082.

    Article  PubMed  Google Scholar 

  29. Nadel ER, Pandolf KB, Roberts MF, Stolwijk JA. Mechanisms of thermal acclimation to exercise and heat. J Appl Physiol. 1974;37(4):515–20. https://doi.org/10.1152/jappl.1974.37.4.515.

    Article  CAS  PubMed  Google Scholar 

  30. Shapiro Y, Hubbard RW, Kimbrough CM, Pandolf KB. Physiological and hematologic responses to summer and winter dry-heat acclimation. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(4):792–8. https://doi.org/10.1152/jappl.1981.50.4.792.

    Article  CAS  PubMed  Google Scholar 

  31. Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25(Suppl 1):20–38. https://doi.org/10.1111/sms.12408.

    Article  PubMed  Google Scholar 

  32. Adams WM, Hosokawa Y, Casa DJ, Périard JD, Racinais S, Wingo JE, et al. Roundtable on preseason heat safety in secondary school athletics: heat acclimatization. J Athl Train. 2021;56(4):352–61. https://doi.org/10.4085/1062-6050-596-20.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chalmers S, Esterman A, Eston R, Bowering KJ, Norton K. Short-term heat acclimation training improves physical performance: a systematic review, and exploration of physiological adaptations and application for team sports. Sports Med. 2014;44(7):971–88. https://doi.org/10.1007/s40279-014-0178-6.

    Article  PubMed  Google Scholar 

  34. Alhadad SB, Tan PMS, Lee JKW. Efficacy of heat mitigation strategies on core temperature and endurance exercise: a meta-analysis. Front Physiol. 2019;10:71. https://doi.org/10.3389/fphys.2019.00071.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tyler CJ, Reeve T, Hodges GJ, Cheung SS. The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 2016;46(11):1699–724. https://doi.org/10.1007/s40279-016-0538-5.

    Article  PubMed  Google Scholar 

  36. Armstrong LE, Maresh CM. The induction and decay of heat acclimatisation in trained athletes. Sports Med. 1991;12(5):302–12. https://doi.org/10.2165/00007256-199112050-00003.

    Article  CAS  PubMed  Google Scholar 

  37. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71. https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Karlsen A, Racinais S, Jensen MV, Norgaard SJ, Bonne T, Nybo L. Heat acclimatization does not improve VO2max or cycling performance in a cool climate in trained cyclists. Scand J Med Sci Sports. 2015;25(Suppl 1):269–76. https://doi.org/10.1111/sms.12409.

    Article  PubMed  Google Scholar 

  39. Buchheit M, Voss SC, Nybo L, Mohr M, Racinais S. Physiological and performance adaptations to an in-season soccer camp in the heat: associations with heart rate and heart rate variability. Scand J Med Sci Sports. 2011;21(6):e477–85. https://doi.org/10.1111/j.1600-0838.2011.01378.x.

    Article  CAS  PubMed  Google Scholar 

  40. Stacey MMJ, Delves SK, Woods DR, Britland SE, Macconnachie L, Allsopp AJ, et al. Heart rate variability and plasma nephrines in the evaluation of heat acclimatisation status. Eur J Appl Physiol. 2018;118(1):165–74. https://doi.org/10.1007/s00421-017-3758-y.

    Article  CAS  PubMed  Google Scholar 

  41. Duncan KD. Effects of an artificial acclimatization technique on infantry performance in a hot climate. Ergonomics. 1966;9(3):229–43. https://doi.org/10.1080/00140136608964374.

    Article  CAS  PubMed  Google Scholar 

  42. Masters GM. Renewable and efficient electric power systems. Hoboken: Wiley; 2013.

    Google Scholar 

  43. Khatib T, Elmenreich W. Modeling of photovoltaic systems using Matlab: simplified green codes. Hoboken: Wiley; 2016.

    Book  Google Scholar 

  44. Kasten F, Czeplak G. Solar and terrestrial-radiation dependent on the amount and type of cloud. Sol Energy. 1980;24(2):177–89. https://doi.org/10.1016/0038-092x(80)90391-6.

    Article  Google Scholar 

  45. Liljegren JC, Carhart RA, Lawday P, Tschopp S, Sharp R. Modeling the wet bulb globe temperature using standard meteorological measurements. J Occup Environ Hyg. 2008;5(10):645–55. https://doi.org/10.1080/15459620802310770.

    Article  PubMed  Google Scholar 

  46. Lemke B, Kjellstrom T. Calculating workplace WBGT from meteorological data: a tool for climate change assessment. Ind Health. 2012;50(4):267–78. https://doi.org/10.2486/indhealth.ms1352.

    Article  PubMed  Google Scholar 

  47. Shi J, Luo D, Wan X, Liu Y, Liu J, Bian Z, et al. Detecting the skewness of data from the sample size and the five-number summary. arXiv preprint arXiv:05749. 2020; https://doi.org/10.48550/arXiv.2010.05749.

  48. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27(6):1785–805. https://doi.org/10.1177/0962280216669183.

    Article  PubMed  Google Scholar 

  49. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135. https://doi.org/10.1186/1471-2288-14-135.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Racinais S, Périard JD, Karlsen A, Nybo L. Effect of heat and heat acclimatization on cycling time trial performance and pacing. Med Sci Sports Exerc. 2015;47(3):601–6. https://doi.org/10.1249/MSS.0000000000000428.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schmit C, Le Meur Y, Duffield R, Robach P, Oussedik N, Coutts AJ, et al. Heat-acclimatization and pre-cooling: a further boost for endurance performance? Scand J Med Sci Sports. 2015;27(1):55–65. https://doi.org/10.1111/sms.12629.

    Article  PubMed  Google Scholar 

  52. Stacey MJ, Woods DR, Brett SJ, Britland SE, Fallowfield JL, Allsopp AJ, et al. Heat acclimatization blunts copeptin responses to hypertonicity from dehydrating exercise in humans. Physiol Rep. 2018;6(18): e13851. https://doi.org/10.14814/phy2.13851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Racinais S, Buchheit M, Bilsborough J, Bourdon PC, Cordy J, Coutts AJ. Physiological and performance responses to a training camp in the heat in professional Australian football players. Int J Sports Physiol Perform. 2014;9(4):598–603. https://doi.org/10.1123/ijspp.2013-0284.

    Article  PubMed  Google Scholar 

  54. Buchheit M, Racinais S, Bilsborough J, Hocking J, Mendez-Villanueva A, Bourdon PC, et al. Adding heat to the live-high train-low altitude model: a practical insight from professional football. Br J Sports Med. 2013;47 Suppl 1(Suppl 1):i59-69. https://doi.org/10.1136/bjsports-2013-092559.

    Article  CAS  PubMed  Google Scholar 

  55. Law M, Stewart D, Letts L, Pollock N, Bosch J, Westmorland M. McMaster University occupational therapy evidence-based practice research Group. 1998; https://www.unisa.edu.au/siteassets/episerver-6-files/global/health/sansom/documents/icahe/cats/mcmasters_quantitative-review.pdf.

  56. McMaster University. GRADE online modules HOME. 2010 [cited Q12022; Available from: https://cebgrade.mcmaster.ca/index.html. Accessed 27 Sept 2020.

  57. Siemieniuk R, Guyatt G. What is GRADE. BMJ Best Practice 10 2019 [cited 2022; Available from: https://bestpractice.bmj.com/info/toolkit/learn-ebm/what-is-grade/. Accessed 15 Jan 2022.

  58. Bürkner PC. brms: An R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80:1–28. https://doi.org/10.18637/jss.v080.i01.

    Article  Google Scholar 

  59. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.

  60. Malgoyre A, Tardo-Dino PE, Koulmann N, Lepetit B, Jousseaume L, Charlot K. Uncoupling psychological from physiological markers of heat acclimatization in a military context. J Therm Biol. 2018;77:145–56. https://doi.org/10.1016/j.jtherbio.2018.08.017.

    Article  PubMed  Google Scholar 

  61. Gelman A. Prior distributions for variance parameters in hierarchical models(Comment on an Article by Browne and Draper). Bayesian Anal. 2006;1(3):515–33. https://doi.org/10.1214/06-Ba117a.

    Article  Google Scholar 

  62. Wood SN. Thin plate regression splines. J Roy Stat Soc B. 2003;65(1):95–114. https://doi.org/10.1111/1467-9868.00374.

    Article  Google Scholar 

  63. Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner P-C. Rank-normalization, folding, and localization: an improved R for assessing convergence of MCMC (with discussion). Bayesian Anal. 2021;16(2):667–718. https://doi.org/10.1214/20-BA1221.

    Article  Google Scholar 

  64. Kruschke J. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan; 2014.

  65. Makowski D, Ben-Shachar MS, Lüdecke D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J Open Source Softw. 2019;4(40):1541.

    Article  Google Scholar 

  66. Kay M. ggdist: visualizations of distributions and uncertainty. R package version 3.0. 0. 2020.

  67. Wickham H. Data Analysis. In: ggplot2. Springer; 2016, p. 189–201.

  68. Allan JR, Wilson CG. Influence of acclimatization on sweat sodium concentration. J Appl Physiol. 1971;30(5):708–12. https://doi.org/10.1152/jappl.1971.30.5.708.

    Article  CAS  PubMed  Google Scholar 

  69. Cleland TS, Horvath SM, Phillips M. Acclimatization of women to heat after training. Int Z Angew Physiol. 1969;27(1):15–24. https://doi.org/10.1007/BF00695014.

    Article  CAS  PubMed  Google Scholar 

  70. Lim CL, Chung KK, Hock LL. The effects of prolonged passive heat exposure and basic military training on thermoregulatory and cardiovascular responses in recruits from a tropical country. Mil Med. 1997;162(9):623–7. https://doi.org/10.1093/milmed/162.9.623.

    Article  CAS  PubMed  Google Scholar 

  71. Mudambo KS, Coutie W, Rennie MJ. Plasma arginine vasopressin, atrial natriuretic peptide and brain natriuretic peptide responses to long-term field training in the heat: effects of fluid ingestion and acclimatization. Eur J Appl Physiol Occup Physiol. 1997;75(3):219–25. https://doi.org/10.1007/s004210050151.

    Article  CAS  PubMed  Google Scholar 

  72. Stevens CJ, Ross ML, Carr AJ, Vallance B, Best R, Urwin C, et al. Postexercise hot-water immersion does not further enhance heat adaptation or performance in endurance athletes training in a hot environment. Int J Sports Physiol Perform. 2020;16(4):480–8. https://doi.org/10.1123/ijspp.2020-0114.

    Article  PubMed  Google Scholar 

  73. Hue O, Antoine-Jonville S, Sara F. The effect of 8 days of training in tropical environment on performance in neutral climate in swimmers. Int J Sports Med. 2007;28(1):48–52. https://doi.org/10.1055/s-2006-923958.

    Article  CAS  PubMed  Google Scholar 

  74. McCutcheon LJ, Geor RJ, Ecker GL, Lindinger MI. Equine sweating responses to submaximal exercise during 21 days of heat acclimation. J Appl Physiol (1985). 1999;87(5):1843–51. https://doi.org/10.1152/jappl.1999.87.5.1843.

    Article  CAS  PubMed  Google Scholar 

  75. Yeargin SW, Casa DJ, Judelson DA, McDermott BP, Ganio MS, Lee EC, et al. Thermoregulatory responses and hydration practices in heat-acclimatized adolescents during preseason high school football. J Athl Train. 2010;45(2):136–46. https://doi.org/10.4085/1062-6050-45.2.136.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Racinais S, Mohr M, Buchheit M, Voss SC, Gaoua N, Grantham J, et al. Individual responses to short-term heat acclimatisation as predictors of football performance in a hot, dry environment. Br J Sports Med. 2012;46(11):810–5. https://doi.org/10.1136/bjsports-2012-091227.

    Article  PubMed  Google Scholar 

  77. Hue O, Voltaire B, Galy O, Costes O, Callis A, Hertogh C, et al. Effect of 8 days of acclimation on biological and performance response in a tropical climate. J Sport Med Phys Fit. 2004;44(1):30–7.

    CAS  Google Scholar 

  78. Ganio MS, Brown CM, Casa DJ, Becker SM, Yeargin SW, McDermott BP, et al. Validity and reliability of devices that assess body temperature during indoor exercise in the heat. J Athl Train. 2009;44(2):124–35. https://doi.org/10.4085/1062-6050-44.2.124.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Casa DJ, Becker SM, Ganio MS, Brown CM, Yeargin SW, Roti MW, et al. Validity of devices that assess body temperature during outdoor exercise in the heat. J Athl Train. 2007;42(3):333–42.

    PubMed  PubMed Central  Google Scholar 

  80. Henderson MJ, Chrismas BCR, Fransen J, Coutts AJ, Taylor L. Responses to a 5-day sport-specific heat Acclimatization camp in elite female rugby sevens athletes. Int J Sports Physiol Perform. 2022;17(6):969–78. https://doi.org/10.1123/ijspp.2021-0406.

    Article  PubMed  Google Scholar 

  81. Bradford CD, Lucas SJ, Gerrard DF, Cotter JD. Swimming in warm water is ineffective in heat acclimation and is non-ergogenic for swimmers. Scand J Med Sci Sports. 2015;25(Suppl 1):277–86. https://doi.org/10.1111/sms.12351.

    Article  PubMed  Google Scholar 

  82. Bradford CD, Gerrard DF, Lucas SJ, Sun ZF, Cotter JD. Is swimming in warm water actually putting swimmers in hot water. In: Proceedings of the 15th International Conference on Environmental Ergonomics; 2013: ICEE Queenstown, New Zealand; 2013. p. 65–7.

  83. Cheung SS, McLellan TM, Tenaglia S. The thermophysiology of uncompensable heat stress. Physiological manipulations and individual characteristics. Sports Med. 2000;29(5):329–59. https://doi.org/10.2165/00007256-200029050-00004.

    Article  CAS  PubMed  Google Scholar 

  84. Ravanelli N, Coombs G, Imbeault P, Jay O. Thermoregulatory adaptations with progressive heat acclimation are predominantly evident in uncompensable, but not compensable, conditions. J Appl Physiol (1985). 2019;127(4):1095–106. https://doi.org/10.1152/japplphysiol.00220.2019.

    Article  CAS  PubMed  Google Scholar 

  85. Périard JD, Travers GJS, Racinais S, Sawka MN. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci. 2016;196:52–62. https://doi.org/10.1016/j.autneu.2016.02.002.

    Article  PubMed  Google Scholar 

  86. Ravanelli N, Coombs GB, Imbeault P, Jay O. Maximum skin wettedness after aerobic training with and without heat acclimation. Med Sci Sports Exerc. 2018;50(2):299–307. https://doi.org/10.1249/Mss.0000000000001439.

    Article  PubMed  Google Scholar 

  87. Kerr ZY, Register-Mihalik JK, Pryor RR, Pierpoint LA, Scarneo SE, Adams WM, et al. The association between mandated preseason heat acclimatization guidelines and exertional heat illness during preseason high school american football practices. Environ Health Perspect. 2019;127(4):47003. https://doi.org/10.1289/EHP4163.

    Article  PubMed  Google Scholar 

  88. Tan SCC, Ang WH, Lim LSX, Low ICC, Lee JKW. Efficacy of isothermic conditioning over military-based heat acclimatization and interval training in tropical native males. Med Sci Sports Exerc. 2022;54(11):1925–35. https://doi.org/10.1249/MSS.0000000000002991.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Andrew Woodward for his statistical consultations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien D. Périard.

Ethics declarations

Funding

This study was funded by the National Health and Medical Research Council and the University of Canberra Research Institute for Sport and Exercise.

Conflicts of Interest

Harry Brown, Thomas Topham, Brad Clark, Leonidas Ioannou, Andreas Flouris, James Smallcombe, Richard Telford, Ollie Jay and Julien Périard declare that they have no conflicts of interest relevant to the content of this review.

Availability of Data and Material

Extracted data are available as supplementary materials at the Open Science Framework (https://osf.io/hwa4b/?view_only=cf1c7a75af5e481589bb14cffd0673a4).

Authors’ Contributions

HB, TT BC and JP were involved in database searches, data extraction and methodological quality assessment. HB, BC, LI, AF and JP were involved in the conception, design and interpretation of data. HB completed initial drafting of the manuscript, which was reviewed and edited by TT, BC, LI, AF, JS, RT, OJ and JP. All authors approved the final version of the submitted manuscript.

Code Availability

Not applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, H.A., Topham, T.H., Clark, B. et al. Quantifying Exercise Heat Acclimatisation in Athletes and Military Personnel: A Systematic Review and Meta-analysis. Sports Med 54, 727–741 (2024). https://doi.org/10.1007/s40279-023-01972-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-023-01972-4

Navigation