Skip to main content
Log in

Ankle and Plantar Flexor Muscle–Tendon Unit Function in Sprinters: A Narrative Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Maximal sprinting in humans requires the contribution of various muscle–tendon units (MTUs) and joints to maximize performance. The plantar flexor MTU and ankle joint are of particular importance due to their role in applying force to the ground. This narrative review examines the contribution of the ankle joint and plantar flexor MTUs across the phases of sprinting (start, acceleration, and maximum velocity), alongside the musculotendinous properties that contribute to improved plantar flexor MTU performance. For the sprint start, the rear leg ankle joint appears to be a particularly important contributor to sprint start performance, alongside the stretch–shortening cycle (SSC) action of the plantar flexor MTU. Comparing elite and sub-elite sprinters revealed that elite sprinters had a higher rate of force development (RFD) and normalized average horizontal block power, which was transferred via the ankle joint to the block. For the acceleration phase, the ankle joint and plantar flexor MTU appear to be the most critical of the major lower limb joints/MTUs. The contribution of the ankle joint to power generation and positive work is minimal during the first stance, but an increased contribution is observed during the second stance, mid-acceleration, and late-acceleration. In terms of muscular contributions, the gastrocnemius and soleus have distinct roles. The soleus acts mainly as a supporter, generating large portions of the upward impulse, whereas the gastrocnemius acts as both an accelerator and a supporter, contributing significantly to propulsive and upward impulses. During maximum velocity sprinting the ankle joint is a net dissipater of energy, potentially due to the greater vertical loading placed on the plantar flexors. However, the ankle joint is critical for energy transfer from proximal joints to ground force application to maintain velocity. In terms of the contribution of musculoskeletal factors to ankle joint and plantar flexor performance, an optimal plantar flexor MTU profile potentially exists, which is possibly a combination of several musculoskeletal factors, alongside factors such as footwear and technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuitunen S, Komi PV, Kyröläinen H. Knee and ankle joint stiffness in sprint running. Med Sci Sports Exerc. 2002;34:166–73.

    Article  PubMed  Google Scholar 

  2. Mann R, Herman J. Kinematic analysis of Olympic sprint performance: men’s 200 meters. J Appl Biomech. 1985;1:151–62.

    Google Scholar 

  3. Bezodis IN, Kerwin DG, Salo AIT. Lower-limb mechanics during the support phase of maximum-velocity sprint running. Med Sci Sports Exerc. 2008;40:707–15.

    Article  PubMed  Google Scholar 

  4. Gregoire L, Veeger HE, Huijing PA, van Ingen Schenau GJ. Role of mono- and biarticular muscles in explosive movements. Int J Sports Med. 1984;5:301–5.

    Article  CAS  PubMed  Google Scholar 

  5. Jacobs R, van Ingen Schenau GJ. Intermuscular coordination in a sprint push-off. J Biomech. 1992;25:953–65.

    Article  CAS  PubMed  Google Scholar 

  6. Brazil A, Exell T, Wilson C, Willwacher S, Bezodis IN, Irwin G. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting. J Sports Sci. 2017;35:1629–35.

    PubMed  Google Scholar 

  7. Pain MT, Hibbs A. Sprint starts and the minimum auditory reaction time. J Sports Sci. 2007;25:79–86.

    Article  PubMed  Google Scholar 

  8. Lai A, Schache AG, Lin Y-C, Pandy MG. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed. J Exp Biol. 2014;217:3159–68.

    PubMed  Google Scholar 

  9. Rome LC, Lindstedt SL. The quest for speed: muscles built for high-frequency contractions. Physiol J. 1998;13:261–8.

    Article  Google Scholar 

  10. Weyand PG, Sandell RF, Prime DN, Bundle MW. The biological limits to running speed are imposed from the ground up. J Appl Physiol. 2010;108:950–61.

    Article  PubMed  Google Scholar 

  11. Baumann W. Kinematic and dynamic characteristics of the sprint start. In: Komi PV, editor. Biomech V-B. Baltimore: University Park Press; 1976. p. 194–9.

    Google Scholar 

  12. Hay JG, Reid JG, The anatomical and mechanical bases of human motion. New Jersey. USA: Prentice Hall; 1982.

    Google Scholar 

  13. Bezodis NE, Salo AIT, Trewartha G. Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure? Sports Biomech. 2010;9:258–69.

    Article  PubMed  Google Scholar 

  14. Bezodis NE, Salo AIT, Trewartha G. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters. Eur J Sport Sci. 2015;15:118–24.

    Article  PubMed  Google Scholar 

  15. Slawinski J, Bonnefoy A, Levêque J-M, Ontanon G, Riquet A, Dumas R, Chèze L. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. J Strength Cond Res. 2010;24:896–905.

    Article  PubMed  Google Scholar 

  16. Slawinski J, Bonnefoy A, Ontanon G, Leveque JM, Miller C, Riquet A, Chèze L, Dumas R. Segment-interaction in sprint start: analysis of 3D angular velocity and kinetic energy in elite sprinters .2010;43:1494–502.

  17. Jacobs R, Bobbert MF, van Ingen Schenau GJ. Mechanical output from individual muscles during explosive leg extensions: the role of biarticular muscles. J Biomech. 1996;29:513–23.

    Article  CAS  PubMed  Google Scholar 

  18. Schrödter E, Brüggemann G-P, Willwacher S. Is soleus muscle-tendon-unit behavior related to ground-force application during the sprint start? Int J Sports Physiol Perform. 2017;12:448–54.

    Article  PubMed  Google Scholar 

  19. Debaere S, Delecluse C, Aerenhouts D, Hagman F, Jonkers I. From block clearance to sprint running: characteristics underlying an effective transition. J Sports Sci. 2013;31:137–49.

    Article  PubMed  Google Scholar 

  20. Guissard N, Duchateau J, Hainaut K. EMG and mechanical changes during sprint starts at different front block obliquities. Med Sci Sports Exerc. 1992;24:1257–63.

    Article  CAS  PubMed  Google Scholar 

  21. Mero A, Kuitunen S, Harland M, Kyröläinen H, Komi PV. Effects of muscle–tendon length on joint moment and power during sprint starts. J Sports Sci. 2006;24:165–73.

    Article  PubMed  Google Scholar 

  22. Mero A, Luhtanen P, Komi PV. A biomechanical study of the sprint start. Scand J Sports Sci. 1983;5:20–8.

    Google Scholar 

  23. Bezodis NE, Walton SP, Nagahara R. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance. J Sports Sci. 2019;37:560–7.

    Article  PubMed  Google Scholar 

  24. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann J-P, Braunstein B, Brazil A, Irwin G, Potthast W. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11: e0166219.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brazil A, Exell T, Wilson C, Willwacher S, Bezodis IN, Irwin G. Joint kinetic determinants of starting block performance in athletic sprinting. J Sports Sci. 2018;36:1656–62.

    Article  PubMed  Google Scholar 

  26. Mero A, Komi PV. Reaction time and electromyographic activity during a sprint start. Eur J Appl Physiol Occup Physiol. 1990;61:73–80.

    Article  CAS  PubMed  Google Scholar 

  27. Čoh M, Peharec S, Bačić P. The sprint start: biomechanical analysis of kinematic, dynamic and electromyographic parameters. New Stud Athl. 2007;22:29.

    Google Scholar 

  28. Čoh M, Peharec S, Bačić P, Kampmiller T. Dynamic factors and electromyographic activity in a sprint start. Biol Sport. 2009;26:137–47.

    Article  Google Scholar 

  29. Piechota K, Borysiuk Z, Blaszczyszyn M. Pattern of movement and the pre-and post-start activation phase during the sprint start in the low-distance athletic run. Int J Perform Anal Sport. 2017;17:948–60.

    Article  Google Scholar 

  30. Guissard N, Duchateau J. Electromyography of the sprint start. J Hum Mov Stud. 1990;18:97–106.

    Google Scholar 

  31. Winter EM, Brookes FBC. Electromechanical response times and muscle elasticity in men and women. Eur J App Physiol Occup Physiol. 1991;63:124–8.

    Article  CAS  Google Scholar 

  32. Mero A. Relationships between the maximal running velocity, muscle fiber characteristics, force production and force relaxation of sprinters. Scand J Med Sci Sports. 1981;3:16–22.

    Google Scholar 

  33. Crotty ED, Hayes K, Harrison AJ. Sprint start performance: the potential influence of triceps surae electromechanical delay. Sports Biomech. 2019;21:604–21.

    Article  PubMed  Google Scholar 

  34. Bissas A, Walker J, Tucker CB, Paradisis GP, Merlino S. Biomechanical Report for the IAAF World Championships 2017: 100 Metres Men. IAAF World Championships Biomechanics Research Project. 2017. https://www.worldathletics.org/about-iaaf/documents/research-centre. Accessed 1 Dec 2022

  35. Bissas A, Walker J, Tucker CB, Paradisis GP, Merlino S. Biomechanical Report for the IAAF World Championships 2017: 100 Metres Women. IAAF World Championships Biomechanics Research Project. 2017. https://www.worldathletics.org/about-iaaf/documents/research-centre. Accessed 1 Dec 2022.

  36. Volkov NI, Lapin VI. Analysis of the velocity curve in sprint running. Med Sci Sports. 1979;11:332–7.

    CAS  PubMed  Google Scholar 

  37. Krzysztof M, Mero A. A kinematics analysis of three best 100-m performances ever. J Hum Kinet. 2013;36:149–60.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Colyer SL, Nagahara R, Salo AIT. Kinetic demands of sprinting shift across the acceleration phase: novel analysis of entire force waveforms. Scand J Med Sci Sports. 2018;28:1784–92.

    Article  CAS  PubMed  Google Scholar 

  39. Hamner SR, Delp SL. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J Biomech. 2013;46:780–7.

    Article  PubMed  Google Scholar 

  40. Mann R, Sprague P. A kinetic analysis of the ground leg during sprint running. Res Q Exerc Sport. 1980;51:334–48.

    Article  CAS  PubMed  Google Scholar 

  41. Schache AG, Lai AK, Brown NA, Crossley KM, Pandy MG. Lower-limb joint mechanics during maximum acceleration sprinting. J Exp Biol. 2019;222: jeb09460.

    Google Scholar 

  42. Johnson MD, Buckley JG. Muscle power patterns in the mid-acceleration phase of sprinting. J Sports Sci. 2001;19:263–72.

    Article  CAS  PubMed  Google Scholar 

  43. Pandy MG, Lai AK, Schache AG, Lin Y-C. How muscles maximize performance in accelerated sprinting. Scand J Med Sci Sports. 2021;31:1882–96.

    Article  PubMed  Google Scholar 

  44. Bezodis NE, Trewartha G, Salo AIT. Understanding the effect of touchdown distance and ankle joint kinematics on sprint acceleration performance through computer simulation. Sports Biomech. 2015;14:232–45.

    Article  PubMed  Google Scholar 

  45. Stefanyshyn DJ, Nigg BM. Dynamic angular stiffness of the ankle joint during running and sprinting. J Appl Biomech. 1998;14:292–9.

    Article  PubMed  Google Scholar 

  46. Komi PV. Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exerc Sport Sci Rev. 1984;12:81–121.

    Article  CAS  PubMed  Google Scholar 

  47. Komi PV. Stretch-shortening cycle: a powerful model to study normal and fatigued muscle. J Biomech. 2000;33:1197–206.

    Article  CAS  PubMed  Google Scholar 

  48. Hennessy L, Kilty J. Relationship of the stretch-shortening cycle to sprint performance in trained female athletes. J Strength Cond Res. 2001;15:326–31.

    CAS  PubMed  Google Scholar 

  49. Lichtwark GA, Bougoulias K, Wilson AM. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech. 2007;40:157–64.

    Article  CAS  PubMed  Google Scholar 

  50. Morin J-B, Slawinski J, Dorel S, de Villareal ES, Couturier A, Samozino P, Brughelli M, Rabita G. Acceleration capability in elite sprinters and ground impulse: push more, brake less? J Biomech. 2015;48:3149–54.

    Article  PubMed  Google Scholar 

  51. Morin J-B, Edouard P, Samozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc. 2011;43:1680–8.

    Article  PubMed  Google Scholar 

  52. Zamparo P, Pavei G, Nardello F, Bartolini D, Monte A, Minetti AE. Mechanical work and efficiency of 5 + 5 m shuttle running. Eur J App Physiol. 2016;116:1911–9.

    Article  Google Scholar 

  53. Werkhausen A, Willwacher S, Albracht K. Medial gastrocnemius muscle fascicles shorten throughout stance during sprint acceleration. Scand J Med Sci Sports. 2021;31:1471–80.

    Article  PubMed  Google Scholar 

  54. Bezodis NE, Salo AIT, Trewartha G. Lower limb joint kinetics during the first stance phase in athletics sprinting: three elite athlete case studies. J Sports Sci. 2014;32:738–46.

    Article  PubMed  Google Scholar 

  55. Debaere S, Delecluse C, Aerenhouts D, Hagman F, Jonkers I. Control of propulsion and body lift during the first two stances of sprint running: a simulation study. J Sports Sci. 2015;33:2016–24.

    Article  PubMed  Google Scholar 

  56. Charalambous L, Irwin G, Bezodis IN, Kerwin D. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off. J Sports Sci. 2012;30:1–9.

    Article  PubMed  Google Scholar 

  57. Lai A, Schache AG, Brown NAT, Pandy MG. Human ankle plantar flexor muscle–tendon mechanics and energetics during maximum acceleration sprinting. J R Soc Interface. 2016;13:20160391.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cavagna GA, Komarek L, Mazzoleni S. The mechanics of sprint running. J Physiol. 1971;217:709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miller RH, Umberger BR, Caldwell GE. Limitations to maximum sprinting speed imposed by muscle mechanical properties. J Biomech. 2012;45:1092–7.

    Article  PubMed  Google Scholar 

  60. Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89:1991–9.

    Article  CAS  PubMed  Google Scholar 

  61. Zhong Y, Fu W, Wei S, Li Q, Liu Y. Joint torque and mechanical power of lower extremity and its relevance to hamstring strain during sprint running. J Healthc Eng. 2017;2017:8927415.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yu J, Sun Y, Yang C, Wang D, Yin K, Herzog W, Liu Y. Biomechanical insights into differences between the mid-acceleration and maximum velocity phases of sprinting. J Strength Cond Res. 2016;30:1906–16.

    Article  PubMed  Google Scholar 

  63. Dorn TW, Schache AG, Pandy MG. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J Exp Biol. 2012;215:1944–56.

    Article  PubMed  Google Scholar 

  64. Suga T, Terada M, Tanaka T, Miyake Y, Ueno H, Otsuka M, Nagano A, Isaka T. Calcaneus height is a key morphological factor of sprint performance in sprinters. Sci Rep. 2020;10:15425.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee SS, Piazza SJ. Built for speed: musculoskeletal structure and sprinting ability. J Exp Biol. 2009;212:3700–7.

    Article  PubMed  Google Scholar 

  66. Baxter JR, Novack TA, Van Werkhoven H, Pennell DR, Piazza SJ. Ankle joint mechanics and foot proportions differ between human sprinters and non-sprinters. Proc R Soc B Biol Sci. 2012;279:2018–24.

    Article  Google Scholar 

  67. Tanaka T, Suga T, Otsuka M, Misaki J, Miyake Y, Kudo S, Nagano A, Isaka T. Relationship between the length of the forefoot bones and performance in male sprinters. Scand J Med Sci Sports. 2017;27:1673–80.

    Article  CAS  PubMed  Google Scholar 

  68. Tomita D, Suga T, Tanaka T, Ueno H, Miyake Y, Otsuka M, Nagano A, Isaka T. A pilot study on the importance of forefoot bone length in male 400-m sprinters: is there a key morphological factor for superior long sprint performance? BMC Res Notes. 2018;11:583.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Karamanidis K, Albracht K, Braunstein B, Catala MM, Goldmann J-P, Brüggemann G-P. Lower leg musculoskeletal geometry and sprint performance. Gait Posture. 2011;34:138–41.

    Article  PubMed  Google Scholar 

  70. McDonald KA, Stearne SM, Alderson JA, North I, Pires NJ, Rubenson J. The role of arch compression and metatarsophalangeal joint dynamics in modulating plantar fascia strain in running. PLoS One. 2016;11: e0152602.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stearne SM, McDonald KA, Alderson JA, North I, Oxnard CE, Rubenson J. The foot’s arch and the energetics of human locomotion. Sci Rep. 2016;6:19403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wager JC, Challis JH. Elastic energy within the human plantar aponeurosis contributes to arch shortening during the push-off phase of running. J Biomech. 2016;49:704–9.

    Article  PubMed  Google Scholar 

  73. Murley GS, Menz HB, Landorf KB. A protocol for classifying normal- and flat-arched foot posture for research studies using clinical and radiographic measurements. J Foot Ankle Res. 2009;2:22.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bex T, Iannaccone F, Stautemas J, Baguet A, De Beule M, Verhegghe B, Aerts P, De Clercq D, Derave W. Discriminant musculo-skeletal leg characteristics between sprint and endurance elite Caucasian runners. Scand J Med Sci Sports. 2017;27:275–81.

    Article  CAS  PubMed  Google Scholar 

  75. Morin J-B, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour J-R. Mechanical determinants of 100-m sprint running performance. Eur J App Physiol. 2012;112:3921–30.

    Article  Google Scholar 

  76. Miller R, Balshaw TG, Massey GJ, Maeo S, Lanza MB, Johnston M, Allen SJ, Folland JP. The muscle morphology of elite sprint running. Med Sci Sports Exerc. 2021;53:804–15.

    Article  CAS  PubMed  Google Scholar 

  77. Stafilidis S, Arampatzis A. Muscle–tendon unit mechanical and morphological properties and sprint performance. J Sports Sci. 2007;25:1035–46.

    Article  PubMed  Google Scholar 

  78. Kubo K, Ikebukuro T, Yata H, Tomita M, Okada M. Morphological and mechanical properties of muscle and tendon in highly trained sprinters. J Appl Biomech. 2011;27:336–44.

    Article  PubMed  Google Scholar 

  79. Harridge SDR, White MJ. A comparison of voluntary and electrically evoked isokinetic plantar flexor torque in males. Eur J App Physiol Occup Physiol. 1993;66:343–8.

    Article  CAS  Google Scholar 

  80. Dowson MN, Nevill ME, Lakomy HKA, Nevill AM, Hazeldine RJ. Modelling the relationship between isokinetic muscle strength and sprint running performance. J Sports Sci. 1998;16:257–65.

    Article  CAS  PubMed  Google Scholar 

  81. Wilson GJ, Murphy AJ. The use of isometric tests of muscular function in athletic assessment. Sports Med. 1996;22:19–37.

    Article  CAS  PubMed  Google Scholar 

  82. Monte A, Zamparo P. Correlations between muscle-tendon parameters and acceleration ability in 20 m sprints. PLoS One. 2019;14: e0213347.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tanaka T, Suga T, Imai Y, Ueno H, Misaki J, Miyake Y, Otsuka M, Nagano A, Isaka T. Characteristics of lower leg and foot muscle thicknesses in sprinters: does greater foot muscles contribute to sprint performance? Eur J Sport Sci. 2019;19:442–50.

    Article  PubMed  Google Scholar 

  84. Tottori N, Suga T, Miyake Y, Tsuchikane R, Otsuka M, Nagano A, Fujita S, Isaka T. Hip flexor and knee extensor muscularity are associated with sprint performance in sprint-trained preadolescent boys. Pediatr Exerc Sci. 2018;30:115–23.

    Article  PubMed  Google Scholar 

  85. Tottori N, Suga T, Miyake Y, Tsuchikane R, Tanaka T, Terada M, Otsuka M, Nagano A, Fujita S, Isaka T. Trunk and lower limb muscularity in sprinters: what are the specific muscles for superior sprint performance? BMC Res Notes. 2021;14:1–6.

    Article  Google Scholar 

  86. Sugisaki N, Kobayashi K, Tsuchie H, Kanehisa H. Associations between individual lower-limb muscle volumes and 100-m sprint time in male sprinters. Int J Sports Physiol Perform. 2018;13:214–9.

    Article  PubMed  Google Scholar 

  87. Miyake Y, Suga T, Terada M, Tanaka T, Ueno H, Kusagawa Y, Otsuka M, Nagano A, Isaka T. No correlation between plantar flexor muscle volume and sprint performance in sprinters. Front Sports Act Living. 2021;3: 671248.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rothwell DT, Williams DJ, Furlong L-AM. Measuring muscle size and symmetry in healthy adult males using a time-efficient analysis of magnetic resonance images. Physiol Meas. 2019;40:064005.

    Article  PubMed  Google Scholar 

  89. Fukutani A, Tsuruhara Y, Miyake Y, Takao K, Ueno H, Otsuka M, Suga T, Terada M, Nagano A, Isaka T. Comparison of the relative muscle volume of triceps surae among sprinters, runners, and untrained participants. Physiol Rep. 2020;8: e14588.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Handsfield GG, Knaus KR, Fiorentino NM, Meyer CH, Hart JM, Blemker SS. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters. Scand J Med Sci Sports. 2017;27:1050–60.

    Article  CAS  PubMed  Google Scholar 

  91. Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running. Sports Med. 1992;13:376–92.

    Article  CAS  PubMed  Google Scholar 

  92. Trappe SW, Trappe TA, Lee GA, Costill DL. Calf muscle strength in humans. Int J Sports Med. 2001;22:186–91.

    Article  CAS  PubMed  Google Scholar 

  93. Saunders PU, Pyne DB, Telford RD, Hawley JA. Factors affecting running economy in trained distance runners. Sports Med. 2004;34:465–85.

    Article  PubMed  Google Scholar 

  94. Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol. 2000;88:811–6.

    Article  CAS  PubMed  Google Scholar 

  95. Abe T, Fukashiro S, Harada Y, Kawamoto K. Relationship between sprint performance and muscle fascicle length in female sprinters. J Physiol Anthropol Appl Human Sci. 2001;20:141–7.

    Article  CAS  PubMed  Google Scholar 

  96. Lieber RL, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23:1647–66.

    Article  CAS  PubMed  Google Scholar 

  97. Katz B. The relation between force and speed in muscular contraction. J Physiol. 1939;96:45–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. 2000;32:1125–9.

    Article  CAS  PubMed  Google Scholar 

  99. Blazevich AJ, Gill ND, Bronks R, Newton RU. Training-specific muscle architecture adaptation after 5-wk training in athletes. Med Sci Sports Exerc. 2003;35:2013–22.

    Article  PubMed  Google Scholar 

  100. Drazan JF, Hullfish TJ, Baxter JR. Muscle structure governs joint function: linking natural variation in medial gastrocnemius structure with isokinetic plantar flexor function. Biol Open. 2019;8: bio048520.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lieber RL, Ward SR. Skeletal muscle design to meet functional demands. Philos Trans R Soc B Biol Sci. 2011;366:1466–76.

    Article  Google Scholar 

  102. Fukunaga T, Ichinose Y, Ito M, Kawakami Y, Fukashiro S. Determination of fascicle length and pennation in a contracting human muscle in vivo. J Appl Physiol. 1997;82:354–8.

    Article  CAS  PubMed  Google Scholar 

  103. Farris DJ, Sawicki GS. Human medial gastrocnemius force–velocity behavior shifts with locomotion speed and gait. Proc Natl Acad Sci. 2012;109:977–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Costill DL, Daniels J, Evans W, Fink W, Krahenbuhl G, Saltin B. Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol. 1976;40:149–54.

    Article  CAS  PubMed  Google Scholar 

  105. Johnson M, Polgar J, Weightman D, Appleton D. Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J Neurol Sci. 1973;18:111–29.

    Article  CAS  PubMed  Google Scholar 

  106. Lichtwark GA, Wilson AM. Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running. J Theor Biol. 2008;252:662–73.

    Article  CAS  PubMed  Google Scholar 

  107. Biewener AA, Roberts TJ. Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc Sport Sci Rev. 2000;28:99–107.

    CAS  PubMed  Google Scholar 

  108. Hof AL, Van Zandwijk JP, Bobbert MF. Mechanics of human triceps surae muscle in walking, running and jumping: mechanics of human triceps surae. Acta Physiol Scand. 2002;174:17–30.

    Article  CAS  PubMed  Google Scholar 

  109. Roberts TJ. The integrated function of muscles and tendons during locomotion. Comp Biochem Physiol Part A Mol Integr Physiol. 2002;133:1087–99.

    Article  Google Scholar 

  110. Cavanagh PR, Komi PV. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J App Physiol Occup Physiol. 1979;42:159–63.

    Article  CAS  Google Scholar 

  111. Reeves ND, Maganaris CN, Narici MV. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol. 2003;548:971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bojsen-Møller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol. 2005;99:986–94.

    Article  PubMed  Google Scholar 

  113. Viitasalo JT, Komi PV. Interrelationships between electromyographic, mechanical, muscle structure and reflex time measurements in man. Acta Physiol Scand. 1981;111:97–103.

    Article  CAS  PubMed  Google Scholar 

  114. Wilson GJ, Murphy AJ, Pryor JF. Musculotendinous stiffness: its relationship to eccentric, isometric, and concentric performance. J Appl Physiol. 1994;76:2714–9.

    Article  CAS  PubMed  Google Scholar 

  115. Blackburn JT, Bell DR, Norcross MF, Hudson JD, Engstrom LA. Comparison of hamstring neuromechanical properties between healthy males and females and the influence of musculotendinous stiffness. J Electromyogr Kinesiol. 2009;19:e362–9.

    Article  PubMed  Google Scholar 

  116. Arampatzis A, Karamanidis K, Morey-Klapsing G, De Monte G, Stafilidis S. Mechanical properties of the triceps surae tendon and aponeurosis in relation to intensity of sport activity. J Biomech. 2007;40:1946–52.

    Article  PubMed  Google Scholar 

  117. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Elasticity of tendon structures of the lower limbs in sprinters: elastic profiles of sprinters. Acta Physiol Scand. 2000;168:327–35.

    Article  CAS  PubMed  Google Scholar 

  118. Kubo K, Miyazaki D, Ikebukuro T, Yata H, Okada M, Tsunoda N. Active muscle and tendon stiffness of plantar flexors in sprinters. J Sports Sci. 2016;35:742–8.

    Article  PubMed  Google Scholar 

  119. Kubo K, Miyazaki D, Yata H, Tsunoda N. Mechanical properties of muscle and tendon at high strain rate in sprinters. Physiol Rep. 2020;8: e14583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Seynnes OR, Bojsen-Møller J, Albracht K, Arndt A, Cronin NJ, Finni T, Magnusson SP. Ultrasound-based testing of tendon mechanical properties: a critical evaluation. J Appl Physiol. 1985;118:133–41.

    Article  Google Scholar 

  121. Krikelis G, Pain MT, Furlong L-AM. Sources of error when measuring Achilles tendon mechanics during the stance phase of running. J Biomech Eng. 2021;143:094505.

    Article  PubMed  Google Scholar 

  122. Tomita D, Suga T, Ueno H, Miyake Y, Tanaka T, Terada M, Otsuka M, Nagano A, Isaka T. Achilles tendon length is not related to 100-m sprint time in sprinters. J Appl Biomech. 2021;37:30–5.

    Article  PubMed  Google Scholar 

  123. Bohm S, Mersmann F, Schroll A, Mäkitalo N, Arampatzis A. Insufficient accuracy of the ultrasound-based determination of Achilles tendon cross-sectional area. J Biomech. 2016;49:2932–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan D. Crotty.

Ethics declarations

Funding

This work was supported by the Irish Research Council under Project number GOIPG/2017/378.

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Author contributions

EC, LAF, and DH contributed to the study conception and design. EC performed the literature search, interpreted the data, and wrote the original draft of the manuscript. EC, LAF, and DH contributed to the data interpretation and revised the manuscript. EC, LAF, and DH read and approved the final version of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crotty, E.D., Furlong, LA.M. & Harrison, A.J. Ankle and Plantar Flexor Muscle–Tendon Unit Function in Sprinters: A Narrative Review. Sports Med 54, 585–606 (2024). https://doi.org/10.1007/s40279-023-01967-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-023-01967-1

Navigation