Skip to main content
Log in

Factors Influencing the Hepcidin Response to Exercise: An Individual Participant Data Meta-analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Hepcidin, the master iron regulatory hormone, has been shown to peak 3–6 h postexercise, and is likely a major contributor to the prevalence of iron deficiency in athletes. Although multiple studies have investigated the hepcidin response to exercise, small sample sizes preclude the generalizability of current research findings.

Objective

The aim of this individual participant data meta-analysis was to identify key factors influencing the hepcidin–exercise response.

Methods

Following a systematic review of the literature, a one-stage meta-analysis with mixed-effects linear regression, using a stepwise approach to select the best-fit model, was employed.

Results

We show that exercise is associated with a 1.5–2.5-fold increase in hepcidin concentrations, with pre-exercise hepcidin concentration accounting for ~ 44% of the variance in 3 h postexercise hepcidin concentration. Although collectively accounting for only a further ~ 3% of the variance, absolute 3 h postexercise hepcidin concentrations appear higher in males with lower cardiorespiratory fitness and higher pre-exercise ferritin levels. On the other hand, a greater magnitude of change between the pre- and 3 h postexercise hepcidin concentration was largely attributable to exercise duration (~ 44% variance) with a much smaller contribution from VO2max, pre-exercise ferritin, sex, and postexercise interleukin-6 (~ 6% combined). Although females tended to have a lower absolute 3 h postexercise hepcidin concentration [1.4 nmol·L−1, (95% CI [− 2.6, − 0.3]), p = 0.02] and 30% less change (95% CI [–54.4, – 5.1]), p = 0.02) than males, with different explanatory variables being significant between sexes, sample size discrepancies and individual study design biases preclude definitive conclusions.

Conclusion

Our analysis reveals the complex interplay of characteristics of both athlete and exercise session in the hepcidin response to exercise and highlights the need for further investigation into unaccounted-for mediating factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nabhan D, Bielko S, Sinex JA, Surhoff K, Moreau WJ, Schumacher YO, et al. Serum ferritin distribution in elite athletes. JSAMS. 2020;23(6):554–8.

    Google Scholar 

  2. Peeling P, Dawson B, Goodman C, Landers G, Trinder D. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol. 2008;103(4):381–91.

    Article  CAS  PubMed  Google Scholar 

  3. Haider LM, Schwingshackl L, Hoffmann G, Ekmekcioglu C. The effect of vegetarian diets on iron status in adults: A systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2018;58(8):1359–74.

    Article  CAS  PubMed  Google Scholar 

  4. Petkus DL, Murray-Kolb LE, De Souza MJ. The unexplored crossroads of the female athlete triad and iron deficiency: a narrative review. Sports Med. 2017;47(9):1721–37.

    Article  PubMed  Google Scholar 

  5. Sim M, Garvican-Lewis LA, Cox GR, Govus A, McKay AKA, Stellingwerff T, et al. Iron considerations for the athlete: a narrative review. Eur J Appl Physiol. 2019;119(7):1463–78.

    Article  PubMed  Google Scholar 

  6. Peeling P. Exercise as a mediator of hepcidin activity in athletes. Eur J Appl Physiol. 2010;110(5):877–83.

    Article  CAS  PubMed  Google Scholar 

  7. Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, et al. Effects of exercise on hepcidin response and iron metabolism during recovery. Int J Sport Nutr Exerc Metab. 2009;19(6):583–97.

    Article  CAS  PubMed  Google Scholar 

  8. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.

    Article  CAS  PubMed  Google Scholar 

  9. Peeling P, McKay AKA, Pyne DB, Guelfi KJ, McCormick RH, Laarakkers CM, et al. Factors influencing the post-exercise hepcidin-25 response in elite athletes. Eur J Appl Physiol. 2017;117(6):1233–9.

    Article  CAS  PubMed  Google Scholar 

  10. Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6–33.

    PubMed  Google Scholar 

  11. Hennigar SR, McClung JP, Pasiakos SM. Nutritional interventions and the IL-6 response to exercise. FASEB J. 2017;31(9):3719–28.

    Article  CAS  PubMed  Google Scholar 

  12. McKay AKA, Peeling P, Pyne DB, Tee N, Welveart M, Heikura IA, et al. Sustained exposure to high carbohydrate availability does not influence iron-regulatory responses in elite endurance athletes. Int J Sport Nutr Exerc Metab. 2021;31(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  13. McKay AKA, Peeling P, Pyne DB, Tee N, Whitfield J, Sharma AP, et al. Six days of low carbohydrate, not energy availability, alters the iron and immune response to exercise in elite athletes. Med Sci Sports Exerc. 2021;54(3):377–87.

    Article  Google Scholar 

  14. McKay AKA, Peeling P, Pyne DB, Welvaert M, Tee N, Leckey JJ, et al. Chronic adherence to a ketogenic diet modifies iron metabolism in elite athletes. Med Sci Sports Exerc. 2019;51(3):548–55.

    Article  CAS  PubMed  Google Scholar 

  15. McKay AKA, Heikura IA, Burke LM, Peeling P, Pyne DB, van Swelm RPL, et al. Influence of periodizing dietary carbohydrate on iron regulation and immune function in elite triathletes. Int J Sport Nutr Exerc Metab. 2020;30(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  16. Badenhorst CE, Dawson B, Cox GR, Laarakkers CM, Swinkels DW, Peeling P. Acute dietary carbohydrate manipulation and the subsequent inflammatory and hepcidin responses to exercise. Eur J Appl Physiol. 2015;115(12):2521–30.

    Article  CAS  PubMed  Google Scholar 

  17. Badenhorst CE, Dawson B, Cox GR, Sim M, Laarakkers CM, Swinkels DW, et al. Seven days of high carbohydrate ingestion does not attenuate post-exercise IL-6 and hepcidin levels. Eur J Appl Physiol. 2016;116(9):1715–24.

    Article  CAS  PubMed  Google Scholar 

  18. Sim M, Dawson B, Landers G, Wiegerinck E, Swinkels D, Townsend M-A, et al. The effects of carbohydrate ingestion during endurance running on post-exercise inflammation and hepcidin levels. Eur J Appl Physiol. 2012;112(5):1889–98.

    Article  CAS  PubMed  Google Scholar 

  19. Ishibashi A, Kojima C, Tanabe Y, Iwayama K, Hiroyama T, Tsuji T, et al. Effect of low energy availability during three consecutive days of endurance training on iron metabolism in male long distance runners. Physiol Rep. 2020;8(12):e14494.

  20. Dahlquist DT, Stellingwerff T, Dieter BP, McKenzie DC, Koehle MS. Effects of macro- and micronutrients on exercise-induced hepcidin response in highly trained endurance athletes. Appl Physiol Nutr Metab. 2017;42(10):1036–43.

    Article  CAS  PubMed  Google Scholar 

  21. Díaz V, Peinado AB, Barba-Moreno L, Altamura S, Butragueño J, González-Gross M, et al. Elevated hepcidin serum level in response to inflammatory and iron signals in exercising athletes is independent of moderate supplementation with vitamin C and E. Physiol Rep. 2015;3(8):e12475.

    Article  PubMed  PubMed Central  Google Scholar 

  22. McKay AKA, McCormick R, Tee N, Peeling P. Exercise and heat stress: inflammation and the iron regulatory response. Int J Sport Nutr Exerc Metab. 2021;31(6):460–5.

    Article  CAS  PubMed  Google Scholar 

  23. Hayashi N, Yatsutani H, Mori H, Ito H, Badenhorst CE, Goto K. No effect of supplemented heat stress during an acute endurance exercise session in hypoxia on hepcidin regulation. Eur J Appl Physiol. 2020;120(6):1331–40.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng H, Badenhorst CE, Lei TH, Liao YH, Che Muhamed AM, Fujii N, et al. Menstrual phase and ambient temperature do not influence iron regulation in the acute exercise period. Am J Physiol Regul Integr Comp Physiol. 2021;320(6):R780–90.

    Article  CAS  PubMed  Google Scholar 

  25. Badenhorst C, Dawson B, Goodman C, Sim M, Cox G, Gore C, et al. Influence of post-exercise hypoxic exposure on hepcidin response in athletes. Eur J Appl Physiol. 2014;114(5):951–9.

    Article  CAS  PubMed  Google Scholar 

  26. Govus A, Abbiss C, Garvican-Lewis L, Swinkels D, Laarakkers C, Gore C, et al. Acute hypoxic exercise does not alter post-exercise iron metabolism in moderately trained endurance athletes. Eur J Appl Physiol. 2014;114(10):2183–91.

    Article  CAS  PubMed  Google Scholar 

  27. Goto K, Kasai N, Kojima C, Ishibashi A. Postexercise serum hepcidin response to repeated sprint exercise under normoxic and hypoxic conditions. Appl Physiol Nutr Metab. 2018;43(3):221–6.

    Article  CAS  PubMed  Google Scholar 

  28. McCormick R, Moretti D, McKay AKA, Laarakkers CM, Vanswelm R, Trinder D, et al. The impact of morning versus afternoon exercise on iron absorption in athletes. Med Sci Sports Exerc. 2019;51(10):2147–55.

    Article  CAS  PubMed  Google Scholar 

  29. Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, et al. Cumulative effects of consecutive running sessions on hemolysis, inflammation and hepcidin activity. Eur J Appl Physiol. 2009;106(1):51–9.

    Article  PubMed  Google Scholar 

  30. Barba-Moreno L, Alfaro-Magallanes VM, de Jonge X, Díaz AE, Cupeiro R, Peinado AB. Hepcidin and interleukin-6 responses to endurance exercise over the menstrual cycle. Eur J Sport Sci. 2022;22(2):218–26.

    Article  PubMed  Google Scholar 

  31. Sim M, Dawson B, Landers G, Swinkels DW, Tjalsma H, Trinder D, et al. Effect of exercise modality and intensity on post-exercise interleukin-6 and hepcidin levels. Int J Sport Nutr Exerc Metab. 2013;23(2):178–86.

    Article  CAS  PubMed  Google Scholar 

  32. Newlin MK, Williams S, McNamara T, Tjalsma H, Swinkels DW, Haymes EM. The effects of acute exercise bouts on hepcidin in women. Int J Sport Nutr Exerc Metab. 2012;22(2):79–88.

    Article  CAS  PubMed  Google Scholar 

  33. Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, et al. Training surface and intensity: inflammation, hemolysis, and hepcidin expression. Med Sci Sports Exerc. 2009;41(5):1138–45.

    Article  PubMed  Google Scholar 

  34. Goto K, Kojima C, Kasai N, Sumi D, Hayashi N, Hwang H. Resistance exercise causes greater serum hepcidin elevation than endurance (cycling) exercise. PLoS ONE. 2020;15(2): e0228766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McKay AKA, Stellingwerff T, Smith ES, Martin DT, Mujika I, Goosey-Tolfrey VL, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317–31.

    Article  PubMed  Google Scholar 

  36. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD statement. JAMA. 2015;313(16):1657–65.

    Article  PubMed  Google Scholar 

  37. Swain DP, Abernathy KS, Smith CS, Lee SJ, Bunn SA. Target heart rates for the development of cardiorespiratory fitness. Med Sci Sports Exerc. 1994;26(1):112–6.

    Article  CAS  PubMed  Google Scholar 

  38. Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC. Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane; 2022. Available from http://www.training.cochrane.org/handbook. Accessed 22 June 2022.

  39. Burden RJ, Pollock N, Whyte GP, Richards T, Moore B, Busbridge M, et al. Effect of intravenous iron on aerobic capacity and iron metabolism in elite athletes. Med Sci Sports Exerc. 2015;47(7):1399–407.

    Article  CAS  PubMed  Google Scholar 

  40. Elliott-Sale KJ, Ross E, Burden R, Hick KM. BASES expert statement on conducting and implementing female based research. Sport Exer Sci. 2020;(65):6–7.

  41. Pinheiro J, Bates D, R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–1592022. https://CRAN.R-project.org/package=nlme. Accessed 31 Aug 2022.

  42. Venables WN, Ripley BD. Modern Applied Statistics with S. New York: Springer; 2002. https://www.stats.ox.ac.uk/pub/MASS4/. Accessed 31 Aug 2022.

  43. Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4(2):133–42.

    Article  Google Scholar 

  44. Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Mean. R package version 1.7.52022. https://CRAN.R-project.org/package=emmeans. Accessed 31 Aug 2022.

  45. Dayimu A. forestploter: Create Flexible Forest Plot. R package version 0.1.62022. https://CRAN.R-project.org/package=forestplote. Accessed 31 Aug 2022.

  46. Peeling P, Sim M, Badenhorst CE, Dawson B, Govus AD, Abbiss CR, et al. Iron status and the acute post-exercise hepcidin response in athletes. PLoS ONE. 2014;9(3): e93002.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fensham NC, McKay AKA, Tee N, Lundy B, Anderson B, Morabito A, et al. Sequential submaximal training in elite male rowers does not result in amplified increases in interleukin-6 or hepcidin. Int J Sport Nutr Exerc Metab. 2022;32(3):177–85.

    Article  CAS  PubMed  Google Scholar 

  48. Galetti V, Stoffel NU, Sieber C, Zeder C, Moretti D, Zimmermann MB. Threshold ferritin and hepcidin concentrations indicating early iron deficiency in young women based on upregulation of iron absorption. EClinicalMedicine. 2021;39: 101052.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Costello JT, Bieuzen F, Bleakley CM. Where are all the female participants in sports and exercise medicine research? Eur J Sport Sci. 2014;14(8):847–51.

    Article  PubMed  Google Scholar 

  50. Cowley ES, Olenick AA, McNulty KL, Ross EZ. “Invisible Sportswomen”: the sex data gap in sport and exercise science research. Women Sport Phys Act J. 2021;29(2):146–51.

    Article  Google Scholar 

  51. Smith ES, McKay AKA, Ackerman KE, Harris R, Elliott-Sale KJ, Stellingwerff T, et al. Methodology review: a protocol to audit the representation of female athletes in sports science and sports medicine research. Int J Sport Nutr Exerc Metab. 2022;32(2):114–27.

    Article  PubMed  Google Scholar 

  52. Elliott-Sale KJ, Minahan CL, de Jonge X, Ackerman KE, Sipila S, Constantini NW, et al. Methodological considerations for studies in sport and exercise science with women as participants: a working guide for standards of practice for research on women. Sports Med. 2021;51(5):843–61.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Badenhorst CE, Goto K, O’Brien WJ, Sims S. Iron status in athletic females, a shift in perspective on an old paradigm. J Sports Sci. 2021;39(14):1565–75.

    Article  PubMed  Google Scholar 

  54. Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005;106(5):1864–6.

    Article  CAS  PubMed  Google Scholar 

  55. Nilsonne G, Lekander M, Åkerstedt T, Axelsson J, Ingre M. Diurnal variation of circulating interleukin-6 in humans: a meta-analysis. PLoS ONE. 2016;11(11): e0165799.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, et al. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J. 2001;15(14):1–15.

    Article  Google Scholar 

  57. Toft AD, Falahati A, Steensberg A. Source and kinetics of interleukin-6 in humans during exercise demonstrated by a minimally invasive model. Eur J Appl Physiol. 2011;111(7):1351–9.

    Article  CAS  PubMed  Google Scholar 

  58. Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, et al. Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med Sci Sports Exerc. 1998;30(5):671–8.

    Article  CAS  PubMed  Google Scholar 

  59. McKay AKA, Sim M, Moretti D, Hall R, Stellingwerff T, Burden RJ, et al. Methodological considerations for investigating iron status and regulation in exercise and sport science studies. Int J Sport Nutr Exerc Metab. 2022;32(5):359–70.

    Article  CAS  PubMed  Google Scholar 

  60. Podlogar T, Leo P, Spragg J. Using V̇O2max as a marker of training status in athletes—can we do better? J Appl Physiol. 2022;133(1):144–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schoffelen PFM, den Hoed M, van Breda E, Plasqui G. Test-retest variability of VO2max using total-capture indirect calorimetry reveals linear relationship of VO2 and Power. Scand J Med Sci Sports. 2019;29(2):213–22.

    Article  PubMed  Google Scholar 

  62. Basset FA, Boulay MR. Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. Eur J Appl Physiol. 2000;81(3):214–21.

    Article  CAS  PubMed  Google Scholar 

  63. Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol (1985). 1994;76(6):2253–61.

    Article  CAS  PubMed  Google Scholar 

  64. Burke LM, Ross ML, Garvican-Lewis LA, Welvaert M, Heikura IA, Forbes SG, et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol. 2017;595(9):2785–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roe MA, Collings R, Dainty JR, Swinkels DW, Fairweather-Tait SJ. Plasma hepcidin concentrations significantly predict interindividual variation in iron absorption in healthy men. Am J Clin Nutr. 2009;89(4):1088–91.

    Article  CAS  PubMed  Google Scholar 

  66. Badenhorst CE, Dawson B, Cox GR, Laarakkers CM, Swinkels DW, Peeling P. Timing of post-exercise carbohydrate ingestion: influence on IL-6 and hepcidin responses. Eur J Appl Physiol. 2015;115(10):2215–22.

    Article  CAS  PubMed  Google Scholar 

  67. Hayashi N, Ishibashi A, Goto K. Effects of diet before endurance exercise on hepcidin response in young untrained females. J Exerc Nutrition Biochem. 2018;22(4):55–61.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the authors who contributed their data and enabled this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita C. Fensham.

Ethics declarations

Funding

No funding was required for the conduct of this systematic review and meta-analysis.

Conflict of Interest

The authors have no conflicts of interest to declare. Although an intellectual interest bias has informed the motivation for conducting this meta-analysis, with some of the authors having published extensively in this area and whose papers are included, these authors declare that this has not impacted the results.

Ethics Approval

Ethics approval was granted by the Australian Catholic University Human Research Ethics Committee (2021-223N).

Availability of Data

The datasets generated during and/or analyzed during the current study are not publicly available as they were provided by individual study authors after signed agreement. Data may be able to be provided upon request from the authors pending approval by the Australian Catholic University’s Human Research Ethics Committee.

Consent to Publish

A letter of agreement, signed by the authors of the individual studies prior to data transfer, referred to our registered protocol in which the dissemination/publication plans were detailed.

Author Contributions

NF and AM were responsible for conceiving the idea for the review and meta-analysis and study selection. NF conducted data retrieval from individual authors and subsequent data consolidation. Statistical analysis was performed by NF and AG. The first draft of the manuscript was written by NF. All authors contributed to data interpretation and reviewing the manuscript. All authors read and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

40279_2023_1874_MOESM1_ESM.xlsx

Online Resource 1: Summary of studies retrieved through the systematic search, and those included/excluded from the individual participant data meta-analysis

Online Resource 2: Risk of bias assessment

Online Resource 3: Method utilized for analysis of hepcidin, interleukin-6, and ferritin concentrations in each study

Online Resource 4: Code dictionary and reference values

Online Resource 5: R code for all analyses and graphical plots

Online Resource 6: 3 h post-exercise serum hepcidin model parameter comparison (stratified intercept)

Online Resource 7: 3 h post-exercise serum hepcidin model parameter comparison (random intercept)

Online Resource 8: Change in serum hepcidin model parameter comparison

Online Resource 9: 3 h post-exercise urinary hepcidin model parameter comparison (stratified intercept)

Online Resource 10: Post-exercise serum interleukin-6 model parameter comparison (random intercept)

Online Resource 11: Diet and exercise control prior to each study's trial

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fensham, N.C., Govus, A.D., Peeling, P. et al. Factors Influencing the Hepcidin Response to Exercise: An Individual Participant Data Meta-analysis. Sports Med 53, 1931–1949 (2023). https://doi.org/10.1007/s40279-023-01874-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-023-01874-5

Navigation