Skip to main content

Advertisement

Log in

Reinvest to Assess: Advancing Approaches to Motor Competence Measurement Across the Lifespan

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Measurement of motor competence is a vital process to advancing knowledge in the field of motor development. As motor competence is being more widely linked to research in other academic domains (e.g., public health, neuroscience, behavioral health), it is imperative that measurement methodology and protocols are reproducible with high degrees of validity and reliability. When addressing the plethora of available assessments, mostly developed for youth populations, there are potential questions and concerns that need to be addressed and/or clarified. One of the most prominent issues is the lack of a lifespan measure of motor competence, which is at odds with the premise of the field of motor development—studying changes in motor behavior across the lifespan. We address six areas of concern in lifespan assessment which include: (1) lack of assessment feasibility for conducting research with large samples, (2) lack of accountability for cultural significance of skills assessed, (3) limited sensitivity and discriminatory capabilities of assessments, (4) developmental and ecological validity limitations, (5) a problematic definition of ‘success’ in skill performance, and (6) task complexity and adaptability limitations. It is important to critically analyze current assessment methodologies as it will help us to envision the development and application of potential new assessments through a more comprehensive lens. Ultimately, we propose that reinvesting in how we think about assessment will be highly beneficial for integrating motor development from a holistic perspective, impact scientific advancements in other developmental domains, and increase global and lifespan surveillance of motor competence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robinson LE, Stodden DF, Barnett LM, Lopes VP, Logan SW, Rodrigues LP, et al. Motor competence and its effect on positive developmental trajectories of health. Sports Med. 2015;45(9):1273–84. https://doi.org/10.1007/s40279-015-0351-6.

    Article  Google Scholar 

  2. Eddy LH, Bingham DD, Crossley KL, Shahid NF, Ellingham-Khan M, Otteslev A, et al. The validity and reliability of observational assessment tools available to measure fundamental movement skills in school-age children: a systematic review. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0237919.

    Article  Google Scholar 

  3. Hulteen RM, Barnett LM, True L, Lander NJ, del Pozo CB, Lonsdale C. Validity and reliability evidence for motor competence assessments in children and adolescents: a systematic review. J Sports Sci. 2020;38(15):1717–98. https://doi.org/10.1080/02640414.2020.1756674.

    Article  Google Scholar 

  4. Barnett LM, Webster EK, Hulteen RM, De Meester A, Valentini NC, Lenoir M, et al. Through the looking glass: a systematic review of longitudinal evidence, providing new insight for motor competence and health. Sports Med. 2021. https://doi.org/10.1007/s40279-021-01516-8.

    Article  Google Scholar 

  5. Stodden DF, Goodway JD, Langendorfer SJ, Roberton MA, Rudisill ME, Garcia C, et al. A developmental perspective on the role of motor skill competence in physical activity: an emergent relationship. Quest. 2008;60(2):290–306. https://doi.org/10.1080/00336297.2008.10483582.

    Article  Google Scholar 

  6. Burton A, Miller D. Movement skill assessment. Champaign: Human Kinetics; 1998.

    Google Scholar 

  7. Hands BP, editor. How can we best measure fundamental movement skills, 2002.

  8. Barnett LM, Stodden DF, Hulteen R, Sacko R. Motor competence assessment. In: Brusseau T, Fairclough S, Lubans D, editors. The Routledge handbook of youth physical activity. London: Routledge; 2020. p. 384–408.

    Chapter  Google Scholar 

  9. Logan SW, Barnett LM, Goodway JD, Stodden DF. Comparison of performance on process- and product-oriented assessments of fundamental motor skills across childhood. J Sports Sci. 2017;35(7):634–41. https://doi.org/10.1080/02640414.2016.1183803.

    Article  Google Scholar 

  10. Hulteen RM, True L, Pfeiffer KA. Differences in associations of product- and process-oriented motor competence assessments with physical activity in children. J Sports Sci. 2020;38(4):375–82. https://doi.org/10.1080/02640414.2019.1702279.

    Article  Google Scholar 

  11. Palmer KK, Stodden DF, Ulrich DA, Robinson LE. Using process- and product-oriented measures to evaluate changes in motor skills across an intervention. Meas Phys Educ Exerc Sci. 2021;25(3):273–82. https://doi.org/10.1080/1091367X.2021.1876069.

    Article  Google Scholar 

  12. Sacko RS, Utesch T, Cordovil R, De Meester A, Ferkel R, True L, et al. Developmental sequences for observing and assessing forceful kicking. Eur Phys Educ Rev. 2020. https://doi.org/10.1177/1356336X20962134.

    Article  Google Scholar 

  13. Nesbitt D, Molina S, Sacko R, Robinson LE, Brian A, Stodden D. Examining the feasibility of supine-to-stand as a measure of functional motor competence. J Mot Learn Dev. 2018;6(2):267–86. https://doi.org/10.1123/jmld.2017-0016.

    Article  Google Scholar 

  14. Ré AHN, Logan SW, Cattuzzo MT, Henrique RS, Tudela MC, Stodden DF. Comparison of motor competence levels on two assessments across childhood. J Sports Sci. 2018;36(1):1–6. https://doi.org/10.1080/02640414.2016.1276294.

    Article  Google Scholar 

  15. Stodden DF, Langendorfer SJ, Fleisig GS, Andrews JR. Kinematic constraints associated with the acquisition of overarm throwing part I: step and trunk actions. Res Q Exerc Sport. 2006;77(4):417–27. https://doi.org/10.1080/02701367.2006.10599377.

    Article  Google Scholar 

  16. Stodden DF, Langendorfer SJ, Fleisig GS, Andrews JR. Kinematic constraints associated with the acquisition of overarm throwing part II: upper extremity actions. Res Q Exerc Sport. 2006;77(4):428–36. https://doi.org/10.1080/02701367.2006.10599378.

    Article  Google Scholar 

  17. Roberton MA, Konczak J. Predicting children’s overarm throw ball velocities from their developmental levels in throwing. Res Q Exerc Sport. 2001;72(2):91–103. https://doi.org/10.1080/02701367.2001.10608939.

    Article  CAS  Google Scholar 

  18. Lane AP, Molina SL, Tolleson DA, Langendorfer SJ, Goodway JD, Stodden DF. Developmental sequences for the standing long jump landing: a pre-longitudinal screening. J Mot Learn Dev. 2018;6(1):114–29. https://doi.org/10.1123/jmld.2016-0058.

    Article  Google Scholar 

  19. Haubenstricker J, Branta CF. The relationship between distance jumped and developmental level on the standing long jump in young children. In: Clark J, Humphrey J, editors. Motor development: research and reviews Reston. Reston: National Association for Sport and Physical Education; 1997. p. 64–85.

    Google Scholar 

  20. Valentini NC, Getchell N, Logan SW, Liang L-Y, Golden D, Rudisill ME, et al. Exploring associations between motor skill assessments in children with, without, and at-risk for developmental coordination disorder. J Mot Learn Dev. 2015;3(1):39–52. https://doi.org/10.1123/jmld.2014-0048.

    Article  Google Scholar 

  21. Fountain C, Ulrich B, Haubenstricker J, Seefeldt V. Relationship of developmental stage and running velocity in children 2.5 to 5 years of age. The Midwest District Convention of the American Association for Health, Physical Education, Recreation, and Dance. Chicago, IL.1981.

  22. Logan SW, Robinson LE, Rudisill ME, Wadsworth DD, Morera M. The comparison of school-age children’s performance on two motor assessments: the Test of Gross Motor Development and the Movement Assessment Battery for Children. Phys Educ Sport Pedagogy. 2014;19(1):48–59. https://doi.org/10.1080/17408989.2012.726979.

    Article  Google Scholar 

  23. Logan SW, Robinson LE, Getchell N. The comparison of performances of preschool children on two motor assessments. Percept Mot Skills. 2011;113(3):715–23. https://doi.org/10.2466/03.06.25.Pms.113.6.715-723.

    Article  Google Scholar 

  24. Rudd J, Butson ML, Barnett L, Farrow D, Berry J, Borkoles E, et al. A holistic measurement model of movement competency in children. J Sports Sci. 2016;34(5):477–85. https://doi.org/10.1080/02640414.2015.1061202.

    Article  CAS  Google Scholar 

  25. True L, Brian A, Goodway J, Stodden D. Relationships between product- and process-oriented measures of motor competence and perceived competence. J Mot Learn Dev. 2017;5(2):319. https://doi.org/10.1123/jmld.2016-0042.

    Article  Google Scholar 

  26. Griffiths A, Toovey R, Morgan PE, Spittle AJ. Psychometric properties of gross motor assessment tools for children: a systematic review. BMJ Open. 2018. https://doi.org/10.1136/bmjopen-2018-021734.

    Article  Google Scholar 

  27. Scheuer C, Herrmann C, Bund A. Motor tests for primary school aged children: a systematic review. J Sports Sci. 2019;37(10):1097–112. https://doi.org/10.1080/02640414.2018.1544535.

    Article  Google Scholar 

  28. Ulrich DA. Test of gross motor development. Austin: Prod-Ed Publishers; 1985.

    Google Scholar 

  29. Ulrich DA. Test of gross motor development. 2nd ed. Austin: Prod-Ed Publishers; 2000.

    Google Scholar 

  30. Ulrich DA. Test of gross motor development. 3rd ed. Austin: Pro-Ed Publishers; 2019.

    Google Scholar 

  31. Henderson S, Sugden D. Movement assessment battery for children. Kent: The Psychological Corporation; 1992.

    Google Scholar 

  32. Henderson SE, Sugden D, Barnett AL. Movement Assessment Battery for Children-2. (MABC-2); Examiner’s manual. London: The Psychological Corporation; 2007.

    Google Scholar 

  33. Bruininks R, Bruininks B. Bruininks-Oseretsky test of motor proficiency. 2nd ed. Circle Pines: AGS Publishing; 2005.

    Google Scholar 

  34. Kiphard EJ, Schilling F. Körperkoordinationstest für Kinder. Weinheim, Germany: Beltz Test GmbH; 1974.

  35. Kiphard EJ, Schilling F. Körperkoordinationstest für Kinder. Überarbeitete und ergänzte Auflage. Göttingen, Germany: Beltz Test GmbH; 2007.

  36. Clark JE, Whitall J. What is motor development? The lessons of history. Quest. 1989;41(3):183–202. https://doi.org/10.1080/00336297.1989.10483969.

    Article  Google Scholar 

  37. Lorson KM, Stodden DF, Langendorfer SJ, Goodway JD. Age and gender differences in adolescent and adult overarm throwing. Res Q Exerc Sport. 2013;84(2):239–44. https://doi.org/10.1080/02701367.2013.784841.

    Article  Google Scholar 

  38. Williams K, Haywood K, VanSant A. Throwing patterns of older adults: a follow-up investigation. Int J Aging Hum Dev. 1991;33(4):279–94. https://doi.org/10.2190/891h-v1m1-493b-gp4p.

    Article  CAS  Google Scholar 

  39. VanSant AF. Rising from a supine position to erect stand. Phys Ther. 1988;68(2):185–92.

    Article  CAS  Google Scholar 

  40. VanSant AF. Age differences in movement patterns used by children to rise from a supine position to erect stance. Phys Ther. 1988;68(9):1330–8.

    Article  CAS  Google Scholar 

  41. VanSant AF. Life-span development in functional tasks. Phys Ther. 1990;70(12):788–98.

    Article  CAS  Google Scholar 

  42. Rodrigues LP, Luz C, Cordovil R, Bezerra P, Silva B, Camões M, et al. Normative values of the motor competence assessment (MCA) from 3 to 23 years of age. J Sci Med Sport. 2019;22(9):1038–43. https://doi.org/10.1016/j.jsams.2019.05.009.

    Article  Google Scholar 

  43. Rodrigues LP, Cordovil R, Luz C, Lopes VP. Model invariance of the Motor Competence Assessment (MCA) from early childhood to young adulthood. J Sports Sci. 2021;39(20):2353–60. https://doi.org/10.1080/02640414.2021.1932290.

    Article  Google Scholar 

  44. Sigmundsson H, Lorås H, Haga M. Assessment of motor competence across the life span: aspects of reliability and validity of a new test battery. SAGE Open. 2016;6(1):1–10. https://doi.org/10.1177/2158244016633273.

    Article  Google Scholar 

  45. Nesbitt D, Molina SL, Cattuzzo MT, Robinson LE, Phillips D, Stodden D. Assessment of a Supine-to-Stand (STS) task in early childhood: a measure of functional motor competence. J Mot Learn Dev. 2017;5(2):252–66. https://doi.org/10.1123/jmld.2016-0049.

    Article  Google Scholar 

  46. Williams K, Haywood K, VanSant A. Changes in throwing by older adults: a longitudinal investigation. Res Q Exerc Sport. 1998;69(1):1–10. https://doi.org/10.1080/02701367.1998.10607661.

    Article  CAS  Google Scholar 

  47. Williams K, Haywood K, VanSant A. Force and accuracy throws by older adult performers. J Aging Phys Act. 1993;1(1):2–12.

    Article  Google Scholar 

  48. Cattuzzo MT, de Santana FS, Safons MP, Ré AHN, Nesbitt DR, Santos ABD, et al. Assessment in the supine-to-stand task and functional health from youth to old age: a systematic review. Int J Environ Res Public Health. 2020;17(16):5794. https://doi.org/10.3390/ijerph17165794.

    Article  Google Scholar 

  49. Bohannon RW, Corrigan DL. Strategies community dwelling elderly women employ to ease the task of standing up from household surfaces. Top Geriatr Rehabil. 2003;19(2):137–44.

    Article  Google Scholar 

  50. Miyamoto K, Takebayashi H, Takimoto K, Miyamoto S, Morioka S, Yagi F. A new simple performance test focused on agility in elderly people: the ten step test. Gerontology. 2008;54(6):365–72. https://doi.org/10.1159/000146787.

    Article  Google Scholar 

  51. Steffen TM, Hacker TA, Mollinger L. Age- and gender-related test performance in community-dwelling elderly people: six-minute walk test, berg balance scale, timed up & go test, and gait speeds. Phys Ther. 2002;82(2):128–37. https://doi.org/10.1093/ptj/82.2.128.

    Article  Google Scholar 

  52. Soubra R, Chkeir A, Novella J-L. A systematic review of thirty-one assessment tests to evaluate mobility in older adults. BioMed Res Int. 2019;2019:1354362. https://doi.org/10.1155/2019/1354362.

    Article  Google Scholar 

  53. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x.

    Article  CAS  Google Scholar 

  54. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85-94. https://doi.org/10.1093/geronj/49.2.m85.

    Article  CAS  Google Scholar 

  55. Shumway-Cook A, Baldwin M, Polissar NL, Gruber W. Predicting the probability for falls in community-dwelling older adults. Phys Ther. 1997;77(8):812–9. https://doi.org/10.1093/ptj/77.8.812.

    Article  CAS  Google Scholar 

  56. Berg K, Wood-Dauphine S, Williams JI, Gayton D. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can. 1989;41(6):304–11. https://doi.org/10.3138/ptc.41.6.304.

    Article  Google Scholar 

  57. Fillenbaum GG, Smyer MA. The development, validity, and reliability of the OARS multidimensional functional assessment questionnaire. J Gerontol. 1981;36(4):428–34. https://doi.org/10.1093/geronj/36.4.428.

    Article  CAS  Google Scholar 

  58. Rikli RE, Jones CJ. Development and validation of a functional fitness test for community-residing older adults. J Aging Phys Act. 1999;7(2):129–61. https://doi.org/10.1123/japa.7.2.129.

    Article  Google Scholar 

  59. Brian A, Getchell N, True L, De Meester A, Stodden DF. Reconceptualizing and operationalizing Seefeldt’s proficiency barrier: applications and future directions. Sports Med. 2020;50(11):1889–900. https://doi.org/10.1007/s40279-020-01332-6.

    Article  Google Scholar 

  60. De Meester A, Stodden D, Goodway J, True L, Brian A, Ferkel R, et al. Identifying a motor proficiency barrier for meeting physical activity guidelines in children. J Sci Med Sport. 2018;21(1):58–62. https://doi.org/10.1016/j.jsams.2017.05.007.

    Article  Google Scholar 

  61. Jonkman NH, Del Panta V, Hoekstra T, Colpo M, van Schoor NM, Bandinelli S, et al. Predicting trajectories of functional decline in 60- to 70-year-old people. Gerontology. 2018;64(3):212–21. https://doi.org/10.1159/000485135.

    Article  Google Scholar 

  62. Jonkman NH, Colpo M, Klenk J, Todd C, Hoekstra T, Del Panta V, et al. Development of a clinical prediction model for the onset of functional decline in people aged 65–75 years: pooled analysis of four European cohort studies. BMC Geriatr. 2019;19(1):179. https://doi.org/10.1186/s12877-019-1192-1.

    Article  Google Scholar 

  63. Davis JC, Bryan S, Best JR, Li LC, Hsu CL, Gomez C, et al. Mobility predicts change in older adults’ health-related quality of life: evidence from a Vancouver falls prevention prospective cohort study. Health Qual Life Outcomes. 2015;13(1):101. https://doi.org/10.1186/s12955-015-0299-0.

    Article  Google Scholar 

  64. Bardid F, Vannozzi G, Logan SW, Hardy LL, Barnett LM. A hitchhiker’s guide to assessing young people’s motor competence: deciding what method to use. J Sci Med Sport. 2019;22(3):311–8. https://doi.org/10.1016/j.jsams.2018.08.007.

    Article  Google Scholar 

  65. Klingberg B, Schranz N, Barnett LM, Booth V, Ferrar K. The feasibility of fundamental movement skill assessments for pre-school aged children. J Sports Sci. 2019;37(4):378–86. https://doi.org/10.1080/02640414.2018.1504603.

    Article  Google Scholar 

  66. Cools W, De Martelaer K, Samaey C, Andries C. Movement skill assessment of typically developing preschool children: a review of seven movement skill assessment tools. J Sports Sci Med. 2009;8(2):154–68.

    Google Scholar 

  67. Lander N, Nahavandi D, Mohamed S, Essiet I, Barnett LM. Bringing objectivity to motor skill assessment in children. J Sports Sci. 2020;38(13):1539–49. https://doi.org/10.1080/02640414.2020.1747743.

    Article  Google Scholar 

  68. Bisi MC, Pacini Panebianco G, Polman R, Stagni R. Objective assessment of movement competence in children using wearable sensors: an instrumented version of the TGMD-2 locomotor subtest. Gait Posture. 2017;56:42–8. https://doi.org/10.1016/j.gaitpost.2017.04.025.

    Article  Google Scholar 

  69. Stodden DF, Gao Z, Goodway JD, Langendorfer SJ. Dynamic relationships between motor skill competence and health-related fitness in youth. Pediatr Exerc Sci. 2014;26(3):231–41. https://doi.org/10.1123/pes.2013-0027.

    Article  Google Scholar 

  70. Stodden DF, Langendorfer S, Roberton MA. The association between motor skill competence and physical fitness in young adults. Res Q Exerc Sport. 2009;80(2):223–9.

    Article  Google Scholar 

  71. Langendorfer SJ, Roberton MA, Stodden D. Biomechanical aspects of the development of object project skills. Paediatric biomechanics and motor control. London: Routledge; 2011.

    Google Scholar 

  72. Brian A, Pennell A, Taunton S, Starrett A, Howard-Shaughnessy C, Goodway JD, et al. Motor competence levels and developmental delay in early childhood: a multicenter cross-sectional study conducted in the USA. Sports Med. 2019;49(10):1609–18. https://doi.org/10.1007/s40279-019-01150-5.

    Article  Google Scholar 

  73. Eberhardt T, Niessner C, Oriwol D, Buchal L, Worth A, Bös K. Secular trends in physical fitness of children and adolescents: a review of large-scale epidemiological studies published after 2006. Int J Environ Res Public Health. 2020. https://doi.org/10.3390/ijerph17165671.

    Article  Google Scholar 

  74. Huotari P, Heikinaro-Johansson P, Watt A, Jaakkola T. Fundamental movement skills in adolescents: Secular trends from 2003 to 2010 and associations with physical activity and BMI. Scand J Med Sci Sports. 2018;28(3):1121–9. https://doi.org/10.1111/sms.13028.

    Article  CAS  Google Scholar 

  75. Greier K, Riechelmann H, Ruedl G, Drenowatz C. Changes in motor competence over four decades in 10 to 14-year-old Austrian boys. Current Issues in Sport Science (CISS). 2019;4:012. https://doi.org/10.15203/CISS_2019.012.

    Article  Google Scholar 

  76. Barnett LM, Stodden DF, Cohen KE, Smith JJ, Lubans DR, Lenoir M, et al. Fundamental movement skills: an important focus. J Teach Phys Educ. 2016;35(3):219–25. https://doi.org/10.1123/jtpe.2014-0209.

    Article  Google Scholar 

  77. Hulteen RM, Morgan PJ, Barnett LM, Stodden DF, Lubans DR. Development of foundational movement skills: a conceptual model for physical activity across the lifespan. Sports Med. 2018;48(7):1533–40. https://doi.org/10.1007/s40279-018-0892-6.

    Article  Google Scholar 

  78. Hulteen RM, Smith JJ, Morgan PJ, Barnett LM, Hallal PC, Colyvas K, et al. Global participation in sport and leisure-time physical activities: a systematic review and meta-analysis. Prev Med. 2017;95:14–25. https://doi.org/10.1016/j.ypmed.2016.11.027.

    Article  Google Scholar 

  79. Ulrich DA. Introduction to the special section: evaluation of the psychometric properties of the TGMD-3. J Mot Learn Dev. 2017;5(1):1–4. https://doi.org/10.1123/jmld.2017-0020.

    Article  Google Scholar 

  80. Estevan I, Molina-García J, Queralt A, Álvarez O, Castillo I, Barnett L. Validity and reliability of the Spanish version of the test of gross motor development-3. J Mot Learn Dev. 2017;5(1):69–81. https://doi.org/10.1123/jmld.2016-0045.

    Article  Google Scholar 

  81. Mohammadi F, Bahram A, Khalaji H, Ghadiri F. Determining motor development status of 3–10 year-old children in Ahvaz City using TGMD-3 test. Int J Basic Sci Med. 2017;2(3):139–46. https://doi.org/10.15171/ijbsm.2017.26.

    Article  Google Scholar 

  82. Simons J, Hombeeck C. Toepasbaarheid van de test of gross motor development second edition. Kinevaria. 2003;39:16–21.

    Google Scholar 

  83. Tomaz SA, Jones RA, Hinkley T, Bernstein SL, Twine R, Kahn K, et al. Gross motor skills of South African preschool-aged children across different income settings. J Sci Med Sport. 2019;22(6):689–94. https://doi.org/10.1016/j.jsams.2018.12.009.

    Article  CAS  Google Scholar 

  84. Evaggelinou C, Tsigilis N, Papa A. Construct validity of the test of gross motor development: a cross-validation approach. Adapt Phys Activ Q. 2002;19(4):483–95. https://doi.org/10.1123/apaq.19.4.483.

    Article  Google Scholar 

  85. Issartel J, McGrane B, Fletcher R, O’Brien W, Powell D, Belton S. A cross-validation study of the TGMD-2: the case of an adolescent population. J Sci Med Sport. 2017;20(5):475–9. https://doi.org/10.1016/j.jsams.2016.09.013.

    Article  Google Scholar 

  86. Coppens E, Laureys F, Mostaert M, D’Hondt E, Deconinck FJA, Lenoir M. Validation of a motor competence assessment tool for children and adolescents (KTK3+) with normative values for 6- to 19-year-olds. Front Physiol. 2021. https://doi.org/10.3389/fphys.2021.652952.

    Article  Google Scholar 

  87. Okely T, Reilly JJ, Tremblay MS, Kariippanon KE, Draper CE, El Hamdouchi A, et al. Cross-sectional examination of 24-hour movement behaviours among 3- and 4-year-old children in urban and rural settings in low-income, middle-income and high-income countries: the SUNRISE study protocol. BMJ Open. 2021;11(10): e049267. https://doi.org/10.1136/bmjopen-2021-049267.

    Article  Google Scholar 

  88. Haywood K, Getchell N. Lifespan motor development. 7th ed. Champaign: Human Kinetics; 2019.

    Google Scholar 

  89. Freitas DL, Lausen B, Maia JA, Lefevre J, Gouveia ER, Thomis M, et al. Skeletal maturation, fundamental motor skills and motor coordination in children 7–10 years. J Sports Sci. 2015;33(9):924–34. https://doi.org/10.1080/02640414.2014.977935.

    Article  Google Scholar 

  90. Beunen G, Malina RM. Growth and physical performance relative to the timing of the adolescent Spurt. Exerc Sport Sci Rev. 1988;16(1):503–40.

    CAS  Google Scholar 

  91. Beunen G, Malina RM, Van’t Hof M, Simons J, Ostyn M, Renson R, et al. Adolescent growth and motor performance: a longitudinal study of Belgian boys. London: Human Kinetics Publishers; 1988.

    Google Scholar 

  92. Philippaerts RM, Vaeyens R, Janssens M, Van Renterghem B, Matthys D, Craen R, et al. The relationship between peak height velocity and physical performance in youth soccer players. J Sports Sci. 2006;24(3):221–30. https://doi.org/10.1080/02640410500189371.

    Article  Google Scholar 

  93. Longmuir PE, Boyer C, Lloyd M, Yang Y, Boiarskaia E, Zhu W, et al. The Canadian Assessment of Physical Literacy: methods for children in grades 4 to 6 (8 to 12 years). BMC Public Health. 2015;15(1):767. https://doi.org/10.1186/s12889-015-2106-6.

    Article  Google Scholar 

  94. Tyler R, Foweather L, Mackintosh KA, Stratton G. A dynamic assessment of children’s physical competence: the Dragon challenge. Med Sci Sports Exerc. 2018;50(12):2474–87. https://doi.org/10.1249/MSS.0000000000001739.

    Article  Google Scholar 

  95. Herrmann C, Gerlach E, Seelig H. Development and validation of a test instrument for the assessment of basic motor competencies in primary school. Meas Phys Educ Exerc Sci. 2015;19(2):80–90. https://doi.org/10.1080/1091367X.2014.998821.

    Article  Google Scholar 

  96. Herrmann C, Seelig H. Structure and Profiles of Basic Motor Competencies in the Third Grade—Validation of the Test Instrument MOBAK-3. Percept Mot Skills. 2017;124(1):5–20. https://doi.org/10.1177/0031512516679060.

    Article  Google Scholar 

  97. Herrmann C, Seelig H. Basic motor competencies of fifth graders: construct validity of MOBAK-5 test instrument and determinants. Ger J Exerc Sport Res. 2017;47(2):110–21. https://doi.org/10.1007/s12662-016-0430-3.

    Article  Google Scholar 

  98. Department of Education Victoria. Fundamental motor skills: a manual for classroom teachers. Melbourne, Victoria, Australia: Fundamental Motor Skills A Manual for Classroom Teachers; 1998.

  99. Keogh JF. The study of movement skill development. Quest. 1977;28(1):76–88. https://doi.org/10.1080/00336297.1977.10519902.

    Article  Google Scholar 

  100. Wickstrom RL. Fundamental movement patterns. Philadelphia: Lea & Febiger; 1977.

    Google Scholar 

  101. Bonney E, Smits-Engelsman BCM. Movement skill assessment in children: overview and recommendations for research and practice. Curr Dev Disord Rep. 2019;6(2):67–77. https://doi.org/10.1007/s40474-019-00160-2.

    Article  Google Scholar 

  102. Kugler PN, Scott Kelso JA, Turvey MT. On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In: Stelmach GE, Requin J, editors. Advances in psychology. North-Holland: Elsevier; 1980. p. 3–47.

    Google Scholar 

  103. Guthrie ER. Psychology of learning. New York: Harper; 1952.

    Google Scholar 

  104. Newell KM. Coordination, control and skill. In: Goodman D, Wilberg RB, Franks IM, editors. Advances in psychology. North-Holland: Elsevier; 1985. p. 295–317.

    Google Scholar 

  105. Ng JL, Button C. Reconsidering the fundamental movement skills construct: implications for assessment. Mov Sports Sci. 2018;2018:19–29.

    Article  Google Scholar 

  106. Ng JL. An Ecological Dynamics Approach for Movement Assessment (Thesis, Doctor of Philosophy). university of Otago: 2019.

  107. Richard V, Aubertin P, Yang YY, Kriellaars D. Factor structure of play creativity: a new instrument to assess movement creativity. Creat Res J. 2020;32(4):383–93. https://doi.org/10.1080/10400419.2020.1821567.

    Article  Google Scholar 

  108. Trevlas E, Matsouka O, Zachopoulou E. Relationship between playfulness and motor creativity in preschool children. Early Child Dev Care. 2003;173(5):535–43. https://doi.org/10.1080/0300443032000070482.

    Article  Google Scholar 

  109. Gilhooly KJ, Gilhooly MLM. Aging and creativity. 1st ed. New York: Academic Press; 2021.

    Google Scholar 

  110. Williams HG, Pfeiffer KA, Dowda M, Jeter C, Jones S, Pate RR. A field-based testing protocol for assessing gross motor skills in preschool children: the children’s activity and movement in preschool study motor skills protocol. Meas Phys Educ Exerc Sci. 2009;13(3):151–65. https://doi.org/10.1080/10913670903048036.

    Article  Google Scholar 

  111. Rudd J, Foulkes JD, O’Sullivan M, Woods CT. A ‘fundamental’ myth of movement with a ‘functional’ solution. In: Whitehead A, Coe J, editors. Myths of sport coaching. Yorkshire: Sequoia Books; 2021.

    Google Scholar 

  112. Ulrich DA. Evaluation of the psychometric properties of the TGMD-3. J Mot Learn Dev. 2019;5(1):4.

    Google Scholar 

  113. Hulteen RM, Barnett LM, Morgan PJ, Robinson LE, Barton CJ, Wrotniak BH, et al. Development, content validity and test-retest reliability of the Lifelong Physical Activity Skills Battery in adolescents. J Sports Sci. 2018;36(20):2358–67. https://doi.org/10.1080/02640414.2018.1458392.

    Article  Google Scholar 

  114. Bruzi AT, Benda RN, Palhares LR, Fialho JVAP, Ugrinowitsch H. Discreet motor skill acquisition: effect of number of visual demonstrations. J Phys Educ. 2018. https://doi.org/10.4025/jphyeduc.v30i1.3004.

    Article  Google Scholar 

  115. Valentini NC. Visual cues, verbal cues and child development. Strategies. 2004;17(3):21–3. https://doi.org/10.1080/08924562.2004.10591081.

    Article  Google Scholar 

  116. Karlin L, Mortimer RG. Effects of visual and verbal cues on learning a motor skill. J Exp Psychol. 1962;64(6):608–14. https://doi.org/10.1037/h0048793.

    Article  CAS  Google Scholar 

  117. Langendorfer SJ, Roberton MA. Individual pathways in the development of forceful throwing. Res Q Exerc Sport. 2002;73(3):245–56. https://doi.org/10.1080/02701367.2002.10609018.

    Article  Google Scholar 

  118. Roberton MA. Put that target away until later: developing skill in object projection. Future Focus. 1996;17:6–8.

    Google Scholar 

  119. Clark JE, Metcalfe J. The mountain of motor development: a metaphor. In: Clark J, Humphrey J, editors. Motor development: research and reviews. Reston: National Assocation of sport and Physical Education; 2002. p. 163–90.

    Google Scholar 

  120. Orth D, van der Kamp J, Memmert D, Savelsbergh GJP. Creative motor actions as emerging from movement variability. Front Psychol. 2017. https://doi.org/10.3389/fpsyg.2017.01903.

    Article  Google Scholar 

  121. Pesce C, Croce R, Ben-Soussan TD, Vazou S, McCullick B, Tomporowski PD, et al. Variability of practice as an interface between motor and cognitive development. Int J Sport Exerc Psychol. 2019;17(2):133–52. https://doi.org/10.1080/1612197X.2016.1223421.

    Article  Google Scholar 

  122. Hristovski R, Davids K, Araujo D, Passos P. Constraints-induced emergence of functional novelty in complex neurobiological systems: a basis for creativity in sport. Nonlinear Dyn Psychol Life Sci. 2011;15(2):175–206.

    Google Scholar 

  123. Stodden DF, Lakes KD, Côté J, Aadland E, Benzing V, Brian A, et al. Exploration: an overarching focus for holistic development. Braz J Mot Behav. 2021;15(5):301–20. https://doi.org/10.20338/bjmb.v15i5.254.

    Article  Google Scholar 

  124. Richard V, Lebeau J-C, Becker F, Inglis ER, Tenenbaum G. Do more creative people adapt better? An investigation into the association between creativity and adaptation. Psychol Sport Exerc. 2018;38(8P):89.

    Google Scholar 

  125. Memmert D. Sports and creativity. In: Runco MA, Pritzker SR, editors. Encyclopedia of creativity. 2nd ed. San Diego: Academic Press; 2011. p. 373–8.

    Chapter  Google Scholar 

  126. Pesce C, Stodden DF, Lakes KD. Editorial: physical activity “enrichment”: a joint focus on motor competence, hot and cool executive functions. Front Psychol. 2021. https://doi.org/10.3389/fpsyg.2021.658667.

    Article  Google Scholar 

  127. Hadders-Algra M. Variation and variability: key words in human motor development. Phys Ther. 2010;90(12):1823–37. https://doi.org/10.2522/ptj.20100006.

    Article  Google Scholar 

  128. Hadders-Algra M. Early human motor development: from variation to the ability to vary and adapt. Neurosci Biobehav Rev. 2018;90:411–27. https://doi.org/10.1016/j.neubiorev.2018.05.009.

    Article  Google Scholar 

  129. Davids K, Araújo D, Correia V, Vilar L. How small-sided and conditioned games enhance acquisition of movement and decision-making skills. Exerc Sport Sci Rev. 2013;41(3):154–61. https://doi.org/10.1097/JES.0b013e318292f3ec.

    Article  Google Scholar 

  130. Rudd JR, Pesce C, Strafford BW, Davids K. Physical literacy—a journey of individual enrichment: an ecological dynamics rationale for enhancing performance and physical activity in all. Front Psychol. 2020. https://doi.org/10.3389/fpsyg.2020.01904.

    Article  Google Scholar 

  131. Roedl KJ, Wilson LS, Fine J. A systematic review and comparison of functional assessments of community-dwelling elderly patients. J Am Assoc Nurse Pract. 2016;28(3):160–9. https://doi.org/10.1002/2327-6924.12273.

    Article  Google Scholar 

  132. Duncan MJ, Lawson C, Walker LJ, Stodden D, Eyre ELJ. The utility of the supine-to-stand test as a measure of functional motor competence in children aged 5–9 years. Sports (Basel). 2017;5(3):67. https://doi.org/10.3390/sports5030067.

    Article  Google Scholar 

  133. Christopher A, Kraft E, Olenick H, Kiesling R, Doty A. The reliability and validity of the Timed Up and Go as a clinical tool in individuals with and without disabilities across a lifespan: a systematic review. Disabil Rehabil. 2021;43(13):1799–813. https://doi.org/10.1080/09638288.2019.1682066.

    Article  Google Scholar 

  134. Itzkowitz A, Kaplan S, Doyle M, Weingarten G, Lieberstein M, Covino F, et al. Timed up and go: reference data for children who are school age. Pediatr Phys Ther. 2016;28(2):239–46. https://doi.org/10.1097/pep.0000000000000239.

    Article  Google Scholar 

  135. Nicolini-Panisson RD, Donadio MV. Timed “Up & Go” test in children and adolescents. Rev Paul Pediatr. 2013;31(3):377–83. https://doi.org/10.1590/s0103-05822013000300016.

    Article  Google Scholar 

  136. VanSant AF. Rising from a supine position to erect stance. Description of adult movement and a developmental hypothesis. Phys Ther. 1988;68(2):185–92. https://doi.org/10.1093/ptj/68.2.185.

    Article  CAS  Google Scholar 

  137. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait speed and survival in older adults. J Am Med Assoc. 2011;305(1):50–8. https://doi.org/10.1001/jama.2010.1923.

    Article  CAS  Google Scholar 

  138. White DK, Neogi T, Nevitt MC, Peloquin CE, Zhu Y, Boudreau RM, et al. Trajectories of gait speed predict mortality in well-functioning older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2013;68(4):456–64. https://doi.org/10.1093/gerona/gls197.

    Article  Google Scholar 

  139. Svinøy OE, Hilde G, Bergland A, Strand BH. Timed up and go: reference values for community-dwelling older adults with and without arthritis and non-communicable diseases: the Tromsø study. Clin Interv Aging. 2021;16:335–43. https://doi.org/10.2147/cia.S294512.

    Article  Google Scholar 

  140. Murphy EI, An Y, Lee SR, Wood R, editors. Rising from a supine position affects physical function in older adults. Int J Exerc Sci: Conference Proceedings. 2020; 8(8): Artcile 87.

  141. National Association for Sport and Physical Education (NASPE). PE metrics: assessing national standards 1–6 in elementary school. 2nd ed. Reston: NASPE Publication; 2010.

    Google Scholar 

  142. Joensuu L, Syväoja H, Kallio J, Kulmala J, Kujala UM, Tammelin TH. Objectively measured physical activity, body composition and physical fitness: cross-sectional associations in 9- to 15-year-old children. Eur J Sport Sci. 2018;18(6):882–92. https://doi.org/10.1080/17461391.2018.1457081.

    Article  Google Scholar 

  143. Jaakkola T, Huhtiniemi M, Salin K, Seppälä S, Lahti J, Hakonen H, et al. Motor competence, perceived physical competence, physical fitness, and physical activity within Finnish children. Scand J Med Sci Sports. 2019;29(7):1013–21. https://doi.org/10.1111/sms.13412.

    Article  Google Scholar 

  144. Jaakkola T, Yli-Piipari S, Huhtiniemi M, Salin K, Seppälä S, Hakonen H, et al. Longitudinal associations among cardiorespiratory and muscular fitness, motor competence and objectively measured physical activity. J Sci Med Sport. 2019;22(11):1243–8. https://doi.org/10.1016/j.jsams.2019.06.018.

    Article  CAS  Google Scholar 

  145. Jaakkola T, Yli-Piipari S, Stodden DF, Huhtiniemi M, Salin K, Seppälä S, et al. Identifying childhood movement profiles and tracking physical activity and sedentary time across 1 year. Transl Sports Med. 2020;3(5):480–7. https://doi.org/10.1002/tsm2.156.

    Article  Google Scholar 

  146. Jaakkola T, Hakonen H, Kankaanpää A, Joensuu L, Kulmala J, Kallio J, et al. Longitudinal associations of fundamental movement skills with objectively measured physical activity and sedentariness during school transition from primary to lower secondary school. J Sci Med Sport. 2019;22(1):85–90. https://doi.org/10.1016/j.jsams.2018.07.012.

    Article  Google Scholar 

  147. Terlizzi B, Abrams TC, Sacko RS, Hand AF, Silvey K, Stodden DF. The relationship between functional motor competence and performance on the army combat fitness test in army reserve officer training corps cadets. Mil Med. 2022. https://doi.org/10.1093/milmed/usab537.

    Article  Google Scholar 

  148. Ludyga S, Gerber M, Kamijo K. Exercise types and working memory components during development. Trends Cogn Sci. 2022. https://doi.org/10.1016/j.tics.2021.12.004.

    Article  Google Scholar 

  149. Maurer MN, Roebers CM. Towards a better understanding of the association between motor skills and executive functions in 5- to 6-year-olds: the impact of motor task difficulty. Hum Mov Sci. 2019;66:607–20. https://doi.org/10.1016/j.humov.2019.06.010.

    Article  Google Scholar 

  150. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68. https://doi.org/10.1146/annurev-psych-113011-143750.

    Article  Google Scholar 

  151. Maylor E, Birak K, Schlaghecken F. Inhibitory motor control in old age: evidence for de-automatization? Front Psychol. 2011. https://doi.org/10.3389/fpsyg.2011.00132.

    Article  Google Scholar 

  152. Berchicci M, Lucci G, Pesce C, Spinelli D, Di Russo F. Prefrontal hyperactivity in older people during motor planning. Neuroimage. 2012;62(3):1750–60. https://doi.org/10.1016/j.neuroimage.2012.06.031.

    Article  Google Scholar 

  153. Tomporowski PD, Pesce C. Exercise, sports, and performance arts benefit cognition via a common process. Psychol Bull. 2019;145(9):929–51. https://doi.org/10.1037/bul0000200.

    Article  Google Scholar 

  154. Pesce C, Vazou S, Benzing V, Álvarez-Bueno C, Anzeneder S, Mavilidi MF, et al. Effects of chronic physical activity on cognition across the lifespan: a systematic meta-review of randomized controlled trials and realist synthesis of contextualized mechanisms. Int Rev Sport Exerc Psychol. 2021. https://doi.org/10.1080/1750984X.2021.1929404.

    Article  Google Scholar 

  155. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56. https://doi.org/10.1111/1467-8624.00117.

    Article  CAS  Google Scholar 

  156. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77. https://doi.org/10.1007/s12311-013-0511-x.

    Article  Google Scholar 

  157. Ben-Soussan TD, Glicksohn J, Berkovich-Ohana A. From cerebellar activation and connectivity to cognition: a review of the Quadrato motor training. Biomed Res Int. 2015;2015: 954901. https://doi.org/10.1155/2015/954901.

    Article  CAS  Google Scholar 

  158. Adolph KE, Hoch JE. Motor development: embodied, embedded, enculturated, and enabling. Annu Rev Psychol. 2019;70:141–64. https://doi.org/10.1146/annurev-psych-010418-102836.

    Article  Google Scholar 

  159. Engel AK, Maye A, Kurthen M, König P. Where’s the action? The pragmatic turn in cognitive science. Trends Cogn Sci. 2013;17(5):202–9. https://doi.org/10.1016/j.tics.2013.03.006.

    Article  Google Scholar 

  160. Marmeleira J, Duarte SG. Do not neglect the body and action: the emergence of embodiment approaches to understanding human development. Percept Mot Skills. 2019;126(3):410–45. https://doi.org/10.1177/0031512519834389.

    Article  Google Scholar 

  161. Mavilidi MF, Ouwehand K, Schmidt M, Pesce C, Tomporowski PD, Okely AD et al. Embodiment as a pedagogical tool to enhance learning. In: L.S. S, editor. The body, embodiment, and education: an interdisciplinary approach. 2022.

  162. Scibinetti P, Tocci N, Pesce C. Motor creativity and creative thinking in children: the diverging role of inhibition. Creat Res J. 2011;23(3):262–72. https://doi.org/10.1080/10400419.2011.595993.

    Article  Google Scholar 

  163. Tocci N, Sicibinetti P, Mazzoli E, Mavilidi M, Masci I, Schmid M, et al. Giving ideas some legs or legs some ideas? Children’s motor creativity is enhanced by physical activity enrichment: direct and mediated paths. Front Psychol. 2022. https://doi.org/10.3389/fpsyg.2022.806065.

    Article  Google Scholar 

  164. Huang HJ, Mercer VS. Dual-task methodology: applications in studies of cognitive and motor performance in adults and children. Pediatr Phys Ther. 2001;13(3):133–40.

    Article  CAS  Google Scholar 

  165. Best JR, Miller PH. A developmental perspective on executive function. Child Dev. 2010;81(6):1641–60. https://doi.org/10.1111/j.1467-8624.2010.01499.x.

    Article  Google Scholar 

  166. Ferguson HJ, Brunsdon VEA, Bradford EEF. The developmental trajectories of executive function from adolescence to old age. Sci Rep. 2021;11(1):1382. https://doi.org/10.1038/s41598-020-80866-1.

    Article  CAS  Google Scholar 

  167. Ten Eycke KD, Dewey D. Parent-report and performance-based measures of executive function assess different constructs. Child Neuropsychol. 2016;22(8):889–906. https://doi.org/10.1080/09297049.2015.1065961.

    Article  Google Scholar 

  168. Toplak ME, West RF, Stanovich KE. Practitioner review: do performance-based measures and ratings of executive function assess the same construct? J Child Psychol Psychiatry. 2013;54(2):131–43. https://doi.org/10.1111/jcpp.12001.

    Article  Google Scholar 

  169. Toussaint-Thorin M, Marchal F, Benkhaled O, Pradat-Diehl P, Boyer FC, Chevignard M. Executive functions of children with developmental dyspraxia: assessment combining neuropsychological and ecological tests. Ann Phys Rehabil Med. 2013;56(4):268–87. https://doi.org/10.1016/j.rehab.2013.02.006.

    Article  CAS  Google Scholar 

  170. Schott N, Klotzbier TJ. Profiles of cognitive-motor interference during walking in children: does the motor or the cognitive task matter? Front Psychol. 2018. https://doi.org/10.3389/fpsyg.2018.00947.

    Article  Google Scholar 

  171. Perrochon A, Kemoun G, Watelain E, Berthoz A. Walking Stroop carpet: an innovative dual-task concept for detecting cognitive impairment. Clin Interv Aging. 2013;8:317–28. https://doi.org/10.2147/cia.S38667.

    Article  CAS  Google Scholar 

  172. Ruffieux J, Keller M, Lauber B, Taube W. Changes in standing and walking performance under dual-task conditions across the lifespan. Sports Med. 2015;45(12):1739–58. https://doi.org/10.1007/s40279-015-0369-9.

    Article  Google Scholar 

  173. Wollesen B, Janssen TI, Müller H, Voelcker-Rehage C. Effects of cognitive-motor dual task training on cognitive and physical performance in healthy children and adolescents: a scoping review. Acta Psychol (Amst). 2022;224: 103498. https://doi.org/10.1016/j.actpsy.2022.103498.

    Article  Google Scholar 

  174. Hillel I, Gazit E, Nieuwboer A, Avanzino L, Rochester L, Cereatti A, et al. Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring. Eur Rev Aging Phys Act. 2019;16:6. https://doi.org/10.1186/s11556-019-0214-5.

    Article  Google Scholar 

  175. Wollesen B, Voelcker-Rehage C. Training effects on motor–cognitive dual-task performance in older adults. Eur Rev Aging Phys Act. 2014;11(1):5–24. https://doi.org/10.1007/s11556-013-0122-z.

    Article  Google Scholar 

  176. Kit BK, Akinbami LJ, Isfahani NS, Ulrich DA. Gross motor development in children aged 3–5 years, United States 2012. Matern Child Health J. 2017;21(7):1573–80. https://doi.org/10.1007/s10995-017-2289-9.

    Article  Google Scholar 

  177. Bolger LE, Bolger LA, O’Neill C, Coughlan E, O’Brien W, Lacey S, et al. Global levels of fundamental motor skills in children: a systematic review. J Sports Sci. 2021;39(7):717–53. https://doi.org/10.1080/02640414.2020.1841405.

    Article  Google Scholar 

  178. Ulrich DA. The homepage of the Test of Gross Motor Development—3rd edition (TGMD-3). 2016. https://sites.google.com/a/umich.edu/tgmd-3/home.

  179. Aubert S, Barnes JD, Abdeta C, Abi Nader P, Adeniyi AF, Aguilar-Farias N, et al. Global Matrix 3.0 physical activity report card grades for children and youth: results and analysis from 49 countries. J Phys Act Health. 2018;15(s2):S251–73. https://doi.org/10.1123/jpah.2018-0472.

    Article  Google Scholar 

  180. Schranz N, Glennon V, Evans J, Gomersall S, Hardy L, Hesketh KD, et al. Results from Australia’s 2018 report card on physical activity for children and youth. J Phys Act Health. 2018;15(s2):S315–7. https://doi.org/10.1123/jpah.2018-0418.

    Article  Google Scholar 

  181. ParticipACTION. The Brain + Body Equation: Canadian kids need active bodies to build their best brains. The 2018 ParticipACTION Report Card on Physical Activity for Children and Youth. Toronto: ParticipACTION; 2018

  182. Stratton G, Edwards L, Tyler R, Blain D, Bryant A. Active healthy kids wales 2018 report card. 2018.

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan M. Hulteen.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Ryan Hulteen, Bryan Terlizzi, Thomas Abrams, Ryan Sacko, An De Meester, Caterina Pesce and David Stodden declare that they have no conflicts of interest relevant to the content of this review.

Author contributions

Authors DFS and RMH conceptualized the initial ideas for this manuscript. All authors (RMH, BT, TCA, RSS, ADM, CP, DFS) all made substantial contributions to the initial conceptualization and were all actively involved in the writing of the manuscript. All authors critically reviewed the manuscript, approved the final version to be published, and agreed to be accountable for all aspects of the work.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Data sharing and data accessibility

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulteen, R.M., Terlizzi, B., Abrams, T.C. et al. Reinvest to Assess: Advancing Approaches to Motor Competence Measurement Across the Lifespan. Sports Med 53, 33–50 (2023). https://doi.org/10.1007/s40279-022-01750-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01750-8

Navigation