Skip to main content

Advertisement

Log in

Mechanisms of Estrogen Influence on Skeletal Muscle: Mass, Regeneration, and Mitochondrial Function

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Human menopause is widely associated with impaired skeletal muscle quality and significant metabolic dysfunction. These observations pose significant challenges to the quality of life and mobility of the aging population, and are of relevance when considering the significantly greater losses in muscle mass and force-generating capacity of muscle from post-menopausal females relative to age-matched males. In this regard, the influence of estrogen on skeletal muscle has become evident across human, animal, and cell-based studies. Beneficial effects of estrogen have become apparent in mitigation of muscle injury and enhanced post-damage repair via various mechanisms, including prophylactic effects on muscle satellite cell number and function, as well as membrane stability and potential antioxidant influences following injury, exercise, and/or mitochondrial stress. In addition to estrogen replacement in otherwise deficient states, exercise has been found to serve as a means of augmenting and/or mimicking the effects of estrogen on skeletal muscle function in recent literature. Detailed mechanisms behind the estrogenic effect on muscle mass, strength, as well as the injury response are beginning to be elucidated and point to estrogen-mediated molecular cross talk amongst signalling pathways, such as apoptotic signaling, contractile protein modifications, including myosin regulatory light chain phosphorylation, and the maintenance of muscle satellite cells. This review discusses current understandings and highlights new insights regarding the role of estrogen in skeletal muscle, with particular regard to muscle mass, mitochondrial function, the response to muscle damage, and the potential implications for human physiology and mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baltgalvis KA, Greising SM, Warren GL, Lowe DA. Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. PLoS ONE. 2010;5: e10164.

    PubMed  PubMed Central  Google Scholar 

  2. Ribas V, Drew BG, Zhou Z, Phun J, Kalajian NY, Soleymani T, et al. Skeletal muscle action of estrogen receptor a is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci Transl Med. 2016;8:334ra54.

    PubMed  PubMed Central  Google Scholar 

  3. Nagai S, Ikeda K, Horie-Inoue K, Shiba S, Nagasawa S, Takeda S, et al. Estrogen modulates exercise endurance along with mitochondrial uncoupling protein 3 downregulation in skeletal muscle of female mice. Biochem Biophys Res Commun. 2016;480:758–64.

    CAS  PubMed  Google Scholar 

  4. Park Y-M, Keller AC, Runchey SS, Miller BF, Kohrt WM, van Pelt RE, et al. Acute estradiol treatment reduces skeletal muscle protein breakdown markers in early- but not late-postmenopausal women. Steroids. 2019;146:43–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiik A, Ekman M, Morgan G, Johansson O, Jansson E, Esbjörnsson M. Oestrogen receptor β is present in both muscle fibres and endothelial cells within human skeletal muscle tissue. Histochem Cell Biol. 2005;124:161–5.

    CAS  PubMed  Google Scholar 

  6. Wiik A, Hellsten Y, Berthelson P, Lundholm L, Fischer H, Jansson E. Activation of estrogen response elements is mediated both via estrogen and muscle contractions in rat skeletal muscle myotubes. Am J Physiol Cell Physiol. 2009;296:215–20.

    Google Scholar 

  7. Le G, Novotny SA, Mader TL, Greising SM, Chan SSK, Kyba M, et al. A moderate oestradiol level enhances neutrophil number and activity in muscle after traumatic injury but strength recovery is accelerated. J Physiol. 2018;596:4665–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liao ZH, Huang T, Xiao JW, Gu RC, Ouyang J, Wu G, et al. Estrogen signaling effects on muscle-specific immune responses through controlling the recruitment and function of macrophages and T cells. Skelet Muscle. 2019;9:20–20.

    PubMed  PubMed Central  Google Scholar 

  9. Sitnick M, Foley AM, Brown M, Spangenburg EE. Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. J Appl Physiol. 2006;100:286–93.

    CAS  PubMed  Google Scholar 

  10. Cheema N, Herbst A, McKenzie D, Aiken JM. Apoptosis and necrosis mediate skeletal muscle fiber loss in age-induced mitochondrial enzymatic abnormalities. Aging Cell. 2015;14:1085–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Klinge CM. Estrogens regulate life and death in mitochondria. J Bioenergy Biomembr. 2017;49:307–24.

    CAS  Google Scholar 

  12. Landen S, Jacques M, Hiam D, Alvarez-Romero J, Harvey NR, Haupt LM, et al. Skeletal muscle methylome and transcriptome integration reveals profound sex differences related to muscle function and substrate metabolism. Clin Epigenet. 2021;13:1–202.

    Google Scholar 

  13. Lemoine S, Granier P, Tiffoche C, Berthon PM, Thieulant M-L, CarrE F, et al. Effect of endurance training on oestrogen receptor alpha expression in different rat skeletal muscle type. Acta Physiol Scand. 2002;175:211–7.

    CAS  PubMed  Google Scholar 

  14. Collins BC, Arpke RW, Larson AA, Baumann CW, Xie N, Cabelka CA, et al. Estrogen regulates the satellite cell compartment in females. Cell Rep Camb. 2019;28:368-381.e6.

    CAS  Google Scholar 

  15. Laakkonen EK, Kulmala J, Aukee P, Hakonen H, Kujala UM, Lowe DA, et al. Female reproductive factors are associated with objectively measured physical activity in middle-aged women. PLoS ONE. 2017;12:e0172054–e0172054.

    PubMed  PubMed Central  Google Scholar 

  16. Larson AA, Baumann CW, Kyba M, Lowe DA. Oestradiol affects skeletal muscle mass, strength and satellite cells following repeated injuries. Exp Physiol. 2020;105:1700–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mangan G, Iqbal S, Hubbard A, Hamilton V, Bombardier E, Tiidus PM. Delay in post-ovariectomy estrogen replacement negates estrogen-induced augmentation of post-exercise muscle satellite cell proliferation. Can J Physiol Pharmacol. 2015;93:945–51.

    CAS  PubMed  Google Scholar 

  18. Roth SM, Martel GF, Ivey FM, Lemmer JT, Metter EJ, Hurley BF, et al. High-volume, heavy-resistance strength training and muscle damage in young and older women. J Appl Physiol. 2000;88:1112–8.

    CAS  PubMed  Google Scholar 

  19. Stubbins RE, Najjar K, Holcomb VB, Hong J, Núñez NP. Oestrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance. Diabetes Obes Metab. 2012;14:58–66.

    CAS  PubMed  Google Scholar 

  20. Phillips SK, Rook KM, Siddle NC, Bruce SA, Woledge RC. Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci. 1993;84:95–8.

    CAS  Google Scholar 

  21. Grodin JM, Siiteri PK, Macdonald PC. Source of estrogen production in postmenopausal women. J Clin Endocrinol Metab. 1973;36:207–14.

    CAS  PubMed  Google Scholar 

  22. Simpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol. 2003;86:225–30.

    CAS  PubMed  Google Scholar 

  23. Berkovitz GD, Brown TR, Fujimoto M. Aromatase activity in human skin fibroblasts grown in cell culture. Steroids. 1987;50:281–95.

    CAS  PubMed  Google Scholar 

  24. Matsumine H, Hirato K, Yanaihara T, Tamada T, Yoshida M. Aromatization by skeletal muscle. J Clin Endocrinol Metab. 1986;63:717–20.

    CAS  PubMed  Google Scholar 

  25. Pöllänen E, Sipilä S, Alen M, Ronkainen PHA, Ankarberg-Lindgren C, Puolakka J, et al. Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre and postmenopausal women. Aging Cell. 2011;10:650–60.

    PubMed  Google Scholar 

  26. Ekenros L, Papoutsi Z, Fridén C, Dahlman Wright K, Lindén HA. Expression of sex steroid hormone receptors in human skeletal muscle during the menstrual cycle. Acta Physiol. 2017;219:486–93.

    CAS  Google Scholar 

  27. Wiik A, Ekman M, Johansson O, Jansson E, Esbjörnsson M. Expression of both oestrogen receptor alpha and beta in human skeletal muscle tissue. Histochem Cell Biol. 2008;131:181–9.

    PubMed  Google Scholar 

  28. Seko D, Fujita R, Kitajima Y, Nakamura K, Imai Y, Ono Y. Estrogen receptor β controls muscle growth and regeneration in young female mice. Stem Cell Rep. 2020;15:577–86.

    CAS  Google Scholar 

  29. Ventura-Clapier R, Piquereau J, Veksler V, Garnier A. Estrogens, estrogen receptors effects on cardiac and skeletal muscle mitochondria. Front Endocrinol. 2019;10:557–557.

    Google Scholar 

  30. Velez LM, Van C, Moore T, Zhou Z, Johnson C, Hevener AL, et al. Genetic variation of putative myokine signaling is dominated by biological sex and sex hormones. Elife. 2022;11:e76887.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet (Br Ed). 2019;393:2636–46.

    Google Scholar 

  32. Rathnayake N, Alwis G, Lenora J, Lekamwasam S. Factors associated with measures of sarcopenia in pre and postmenopausal women. BMC Women’s Health. 2021;21:5–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. 2014;11:177–80.

    PubMed  PubMed Central  Google Scholar 

  34. Iwamura M, Kanauchi M. A cross-sectional study of the association between dynapenia and higher-level functional capacity in daily living in community-dwelling older adults in Japan. BMC Geriatr. 2017;17:1–1.

    PubMed  PubMed Central  Google Scholar 

  35. Dam TV, Dalgaard LB, Ringgaard S, Johansen FT, Bengtsen MB, Mose M, et al. Transdermal estrogen therapy improves gains in skeletal muscle mass after 12 weeks of resistance training in early postmenopausal women. Front Physiol. 2021;11:596130–596130.

    PubMed  PubMed Central  Google Scholar 

  36. Hansen M, Skovgaard D, Reitelseder S, Holm L, Langbjerg H, Kjaer M. Effects of estrogen replacement and lower androgen status on skeletal muscle collagen and myofibrillar protein synthesis in postmenopausal women. J Gerontol A Biol Sci Med Sci. 2012;67:1005–13.

    PubMed  Google Scholar 

  37. Sipilä S, Törmäkangas T, Sillanpää E, Aukee P, Kujala UM, Kovanen V, et al. Muscle and bone mass in middle-aged women: role of menopausal status and physical activity. J Cachexia Sarcopenia Muscle. 2020;11:698–709.

    PubMed  PubMed Central  Google Scholar 

  38. Finni T, Noorkoiv M, Pöllänen E, Ronkainen PHA, Alén M, Kaprio J, et al. Muscle function in monozygotic female twin pairs discordant for hormone replacement therapy. Muscle Nerve. 2011;44:769–75.

    CAS  PubMed  Google Scholar 

  39. Greising SM, Baltgalvis KA, Lowe DA, Warren GL. Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci. 2009;64A:1071–81.

    CAS  PubMed Central  Google Scholar 

  40. Ronkainen PHA, Kovanen V, Alen M, Pollanen E, Palonen E-M, Ankarberg-Lindgren C, et al. Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: a study with monozygotic twin pairs. J Appl Physiol. 2009;107:25–33.

    CAS  PubMed  Google Scholar 

  41. Qaisar R, Renaud G, Hedstrom Y, Pöllänen E, Ronkainen P, Kaprio J, et al. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs. J Physiol. 2013;591:2333–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Javed AA, Mayhew AJ, Shea AK, Raina P. Association between hormone therapy and muscle mass in postmenopausal women: a systematic review and meta-analysis. JAMA Netw open. 2019;2:e1910154–e1910154.

    PubMed  PubMed Central  Google Scholar 

  43. Onambele-Pearson GL, Tomlinson DJ, Morse CI, Degens H. A prolonged hiatus in postmenopausal HRT, does not nullify the therapy’s positive impact on ageing related sarcopenia. PLoS ONE. 2021;16:e0250813–e0250813.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pöllänen E, Kangas R, Horttanainen M, Niskala P, Kaprio J, Butler-Browne G, et al. Intramuscular sex steroid hormones are associated with skeletal muscle strength and power in women with different hormonal status. Aging Cell. 2015;14:236–48.

    PubMed  PubMed Central  Google Scholar 

  45. Tiidus P, Bombardier E, Bloemberg D, Vigna C, Quadrilatero J, Tupling R. Estrogen receptor-α partially mediates estrogen effect on muscle Hsp70 levels. FASEB J. 2011;25:1060.2.

    Google Scholar 

  46. Goldbohm RA, van den Brandt P. Type and timing of menopausal hormone therapy and breast cancer risk: individual participant meta-analysis of the worldwide epidemiological evidence. Lancet. 2019;394:1159–68.

    Google Scholar 

  47. Genazzani AR, Monteleone P, Giannini A, Simoncini T. Hormone therapy in the postmenopausal years: considering benefits and risks in clinical practice. Hum Reprod Update. 2021;27:1115–50.

    CAS  PubMed  Google Scholar 

  48. Vigneswaran K, Hamoda H. Hormone replacement therapy—current recommendations. Best Pract Res Clin Obstet Gynaecol. 2022;81:8–21.

    PubMed  Google Scholar 

  49. Park Y-M, Pereira RI, Erickson CB, Swibas TA, Kang C, Van Pelt RE. Time since menopause and skeletal muscle estrogen receptors, pgc-1α, and AMPK. Menopause. 2017;24:815–23.

    PubMed  PubMed Central  Google Scholar 

  50. Toth MJ, Poehlman ET, Matthews DE, Tchernof A, MacCoss MJ. Effects of estradiol and progesterone on body composition, protein synthesis, and lipoprotein lipase in rats. Am J Physiol Endocrinol Metab. 2001;280:496–501.

    Google Scholar 

  51. Juppi H-K, Sipilä S, Cronin NJ, Karvinen S, Karppinen JE, Tammelin TH, et al. Role of menopausal transition and physical activity in loss of lean and muscle mass: a follow-up study in middle-aged finnish women. J Clin Med. 2020;9:1588.

    PubMed  PubMed Central  Google Scholar 

  52. Cho E-J, Choi Y, Jung S-J, Kwak H-B. Role of exercise in estrogen deficiency-induced sarcopenia. J Exerc Rehabil. 2022;18:2–9.

    PubMed  PubMed Central  Google Scholar 

  53. Luk HY, Kraemer WJ, Szivak TK, Flanagan SD, Hooper DR, Kupchak BR, et al. Acute resistance exercise stimulates sex-specific dimeric immunoreactive growth hormone responses. Growth Horm IGF Res. 2015;25:136–40.

    CAS  PubMed  Google Scholar 

  54. Cho E-J, Choi Y, Kim J, Bae JH, Cho J, Park D-H, et al. Exercise training attenuates ovariectomy-induced alterations in skeletal muscle remodeling, apoptotic signaling, and atrophy signaling in rat skeletal muscle. Int Neurourol J. 2021;25:S47–54.

    PubMed  PubMed Central  Google Scholar 

  55. Haines M, McKinley-Barnard SK, Andre TL, Gann JJ, Hwang PS, Willoughby DS. Skeletal muscle estrogen receptor activation in response to eccentric exercise up-regulates myogenic-related gene expression independent of differing serum estradiol levels occurring during the human menstrual cycle. J Sports Sci Med. 2018;17:31–9.

    PubMed  PubMed Central  Google Scholar 

  56. Cho E-J, Choi Y, Kim J, Bae JH, Cho J, Park D-H, et al. Exercise training attenuates ovariectomy-induced alterations in skeletal muscle remodeling, apoptotic signaling, and atrophy signaling in rat skeletal muscle. Int Neurourol J. 2021;25(Suppl 2):S47-54.

    PubMed  PubMed Central  Google Scholar 

  57. Shi R, Tian X, Feng Y, Cheng Z, Lu J, Brann DW, et al. Expression of aromatase and synthesis of sex steroid hormones in skeletal muscle following exercise training in ovariectomized rats. Steroids. 2019;143:91–6.

    CAS  PubMed  Google Scholar 

  58. Pöllänen E, Fey V, Törmäkangas T, Ronkainen PHA, Taaffe DR, Takala T, et al. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle. Age. 2010;32:347–63.

    PubMed  PubMed Central  Google Scholar 

  59. Wei Z, Ge F, Che Y, Wu S, Dong X, Song D. Metabolomics coupled with pathway analysis provides insights into sarco-osteoporosis metabolic alterations and estrogen therapeutic effects in mice. Biomolecules. 2021;12:41.

  60. Jaiswal N, Gavin MG, Quinn WJ, Luongo TS, Gelfer RG, Baur JA, et al. The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis. Mol Metab. 2019;28:1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu J, Hu Y, Li Y, Han T, Zhu R, Fu P. Resistance training relieves skeletal muscle atrophy induced by hypoxia via the AKT–FOXO1–MURF1/atrogin-1 signaling pathway. Preprint [Internet]. 2022. https://doi.org/10.21203/rs.3.rs-1601629/v1.

    Article  PubMed Central  Google Scholar 

  62. Dieli-Conwright CM, Spektor TM, Rice JC, Schroeder ET. Hormone therapy attenuates exercise-induced skeletal muscle damage in postmenopausal women. J Appl Physiol. 2009;107:853–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Olivieri F, Ahtiainen M, Lazzarini R, Pöllänen E, Capri M, Lorenzi M, et al. Hormone replacement therapy enhances IGF-1 signaling in skeletal muscle by diminishing miR-182 and miR-223 expressions: a study on postmenopausal monozygotic twin pairs. Aging Cell. 2014;13:850–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ronda AC, Boland RL. Intracellular distribution and involvement of GPR30 in the actions of E2 on C2C12 cells. J Cell Biochem. 2016;117:793–805.

    CAS  PubMed  Google Scholar 

  65. Wang Y, Li B, Zhang W, Liu Y, Xue P, Ma J, et al. Impaired PI3 K Akt expression in liver and skeletal muscle of ovariectomized rats. Endocrine. 2013;44:659–65.

    CAS  PubMed  Google Scholar 

  66. Wang Z, Grange M, Wagner T, Kho AL, Gautel M, Raunser S. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell. 2021;184:2135-2150.e13.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu Q, Li R, Chen G, Wang J, Hu B, Li C, et al. Inhibitory effect of 17 beta-estradiol on triglyceride synthesis in skeletal muscle cells is dependent on ESR1 and not ESR2. Mol Med Rep. 2019;19:5087–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, et al. Critical role of FOXO3a in carcinogenesis. Mol Cancer. 2018;17:104–104.

    PubMed  PubMed Central  Google Scholar 

  69. Montalvo RN, Counts BR, Carson JA. Understanding sex differences in the regulation of cancer-induced muscle wasting. Curr Opin Support Palliat Care. 2018;12:394–403.

    PubMed  PubMed Central  Google Scholar 

  70. Counts BR, Fix DK, Hetzler KL, Carson JA. The effect of estradiol administration on muscle mass loss and cachexia progression in female Apc(Min/+) mice. Front Endocrinol. 2019;10:720.

    Google Scholar 

  71. Tang L, Cao W, Zhao T, Yu K, Sun L, Guo J, et al. Weight-bearing exercise prevents skeletal muscle atrophy in ovariectomized rats. J Physiol Biochem. 2021;77:273–81.

    CAS  PubMed  Google Scholar 

  72. Park K-S, Kim H, Kim HJ, Lee K-I, Lee S-Y, Kim J. Paeoniflorin alleviates skeletal muscle atrophy in ovariectomized mice through the ERΑ/NRF1 mitochondrial biogenesis pathway. Pharmaceuticals. 2022;15:390.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Moran AL, Nelson SA, Landisch RM, Warren GL, Lowe DA. Estradiol replacement reverses ovariectomy-induced muscle contractile and myosin dysfunction in mature female mice. J Appl Physiol. 2007;102:1387–93.

    CAS  PubMed  Google Scholar 

  74. Lai S, Collins BC, Colson BA, Kararigas G, Lowe DA. Estradiol modulates myosin regulatory light chain phosphorylation and contractility in skeletal muscle of female mice. Am J Physiol Endocrinol Metab. 2016;310:E724–33.

    PubMed  PubMed Central  Google Scholar 

  75. Cabelka CA, Baumann CW, Collins BC, Nash N, Le G, Lindsay A, et al. Effects of ovarian hormones and estrogen receptor α on physical activity and skeletal muscle fatigue in female mice. Exp Gerontol. 2019;115:155–64.

    CAS  PubMed  Google Scholar 

  76. Colson BA, Petersen KJ, Collins BC, Lowe DA, Thomas DD. The myosin super-relaxed state is disrupted by estradiol deficiency. Biochem Biophys Res Commun. 2015;456:151–5.

    CAS  PubMed  Google Scholar 

  77. Phung LA, Karvinen SM, Colson BA, Thomas DD, Lowe DA. Age affects myosin relaxation states in skeletal muscle fibers of female but not male mice. PLoS ONE. 2018;13: e0199062.

    PubMed  PubMed Central  Google Scholar 

  78. Collins BC, Mader TL, Cabelka CA, Iñigo MR, Spangenburg EE, Lowe DA. Deletion of estrogen receptor α in skeletal muscle results in impaired contractility in female mice. J Appl Physiol. 2018;124:980–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schneider BSP, Fine JP, Nadolski T, Tiidus PM. The effects of estradiol and progesterone on plantarflexor muscle fatigue in ovariectomized mice. Biol Res Nurs. 2004;5:265–75.

    PubMed  Google Scholar 

  80. Mandelli A, Tacconi E, Levinger I, Duque G, Hayes A. The role of estrogens in osteosarcopenia: from biology to potential dual therapeutic effects. Climacteric. 2021;25:81–7.

    PubMed  Google Scholar 

  81. Miller MS, Bedrin NG, Callahan DM, Previs MJ, Jennings ME, Ades PA, et al. Age-related slowing of myosin actin cross-bridge kinetics is sex specific and predicts decrements in whole skeletal muscle performance in humans. J Appl Physiol. 2013;115:1004–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nag S, Trivedi DV. To lie or not to lie: super-relaxing with myosins. Elife. 2021;10:e63703

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vandenboom R. Modulation of skeletal muscle contraction by myosin phosphorylation. In: Comprehensive physiology. 2016. p. 171–212.

  84. Peyton MP, Yang T, Higgins L, et al. Global phosphoproteomic profiling of skeletal muscle in ovarian-hormone deficient mice. Res Square. 2022. https://doi.org/10.21203/rs.3.rs-1386846/v1.

    Article  Google Scholar 

  85. Jiao L, Machuki JO, Wu Q, Shi M, Fu L, Adekunle AO, et al. Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2020;318:H820–9.

    CAS  PubMed  Google Scholar 

  86. Colson BA, Petersen KJ, Bunch TA, Collins BC, Thomas DD, Lowe DA. The super-relaxed state of myosin is altered by estradiol in skeletal muscle of aged female mice. Biophys J. 2016;110:303a–4a.

    Google Scholar 

  87. Dirks AJ, Leeuwenburgh C. The role of apoptosis in age-related skeletal muscle atrophy. Sport Med. 2005;35:473–83.

    Google Scholar 

  88. Kangas R, Pöllänen E, Rippo MR, Lanzarini C, Prattichizzo F, Niskala P, et al. Circulating miR-21, miR-146a and Fas ligand respond to postmenopausal estrogen-based hormone replacement therapy—a study with monozygotic twin pairs. Mech Ageing Dev. 2014;143–144:1–8.

    PubMed  Google Scholar 

  89. Karvinen S, Juppi H-K, Le G, Cabelka CA, Mader TL, Lowe DA, et al. Estradiol deficiency and skeletal muscle apoptosis: Possible contribution of microRNAs. Exp Gerontol. 2021;147:111267–111267.

    CAS  PubMed  Google Scholar 

  90. Ronda AC, Vasconsuelo A, Boland R. Extracellular-regulated kinase and p38 mitogen-activated protein kinases are involved in the antiapoptotic action of 17β-estradiol in skeletal muscle cells. J Endocrinol. 2010;206:235–46.

    CAS  PubMed  Google Scholar 

  91. Vasconsuelo AA, Ronda AC, Milanesi LM, Boland R. 17beta-estradiol as pro-survival agent: HSP27 a new target in the regulation of apoptosis in muscle cells? Bone. 2008;43:S133–S133.

    Google Scholar 

  92. Ronda AC, Vasconsuelo A, Boland R. 17—Estradiol protects mitochondrial functions through extracellular-signal-regulated kinase in C2C12 muscle cells. Cell Physiol Biochem. 2013;32:1011–23.

    CAS  PubMed  Google Scholar 

  93. La Colla A, Boland R, Vasconsuelo A. 17-estradiol abrogates apoptosis inhibiting PKC, JNK, and p66Shc activation in C2C12 cells. J Cell Biochem. 2015;116:1454–65.

    PubMed  Google Scholar 

  94. Bombardier E, Vigna C, Bloemberg D, Quadrilatero J, Tiidus PM, Tupling AR. The role of estrogen receptor-α in estrogen-mediated regulation of basal and exercise-induced Hsp70 and Hsp27 expression in rat soleus. Can J Physiol Pharmacol. 2013;91:823–9.

    CAS  PubMed  Google Scholar 

  95. Rathor M, Suryakumar G, Singh SN, Kumar B. Heat shock protein 60 (HSP60): skeletal muscle diseases and novel prospects for therapy. HESP. 2019;18:277–93.

    Google Scholar 

  96. Locke M, Salerno SA. Ovariectomy alters lengthening contraction induced heat shock protein expression. Appl Physiol Nutr Metab. 2020;45:530–8.

    CAS  PubMed  Google Scholar 

  97. Romani WA, Russ DW. Acute effects of sex-specific sex hormones on heat shock proteins in fast muscle of male and female rats. Eur J Appl Physiol. 2013;113:2503–10.

    CAS  PubMed  Google Scholar 

  98. Wang H, Alencar A, Lin M, Sun X, Sudo RT, Zapata-Sudo G, et al. Activation of GPR30 improves exercise capacity and skeletal muscle strength in senescent female Fischer344 × Brown Norway rats. Biochem Biophys Res Commun. 2016;475:81–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Stupka N, Lowther S, Chorneyko K, Bourgeois JM, Hogben C, Tarnopolsky MA. Gender differences in muscle inflammation after eccentric exercise. J Appl Physiol. 2000;89:2325–32.

    CAS  PubMed  Google Scholar 

  100. Kerksick C, Taylor L, Harvey A, Willoughby D. Gender-related differences in muscle injury, oxidative stress, and apoptosis. Med Sci Sports Exerc. 2008;40:1772–80.

    CAS  PubMed  Google Scholar 

  101. Collins BC, Laakkonen EK, Lowe DA. Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone. 2019;123:137–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hevener AL, Ribas V, Moore TM, Zhou Z. The impact of skeletal muscle ER alpha on mitochondrial function and metabolic health. Endocrinology (Philadelphia). 2020;161:bqz017.

    Google Scholar 

  103. Mauvais-Jarvis F, Manson JE, Stevenson JC, Fonseca VA. Menopausal hormone therapy and type 2 diabetes prevention: evidence, mechanisms and clinical implications. Endocr Rev. 2017;38:173–88.

    PubMed  PubMed Central  Google Scholar 

  104. Romero-Aleshire MJ, Diamond-Stanic MK, Hasty AH, Hoyer PB, Brooks HL. Loss of ovarian function in the VCD mouse-model of menopause leads to insulin resistance and a rapid progression into the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol. 2009;297:587–92.

    Google Scholar 

  105. Adeyanju OA, Soetan OA, Soladoye AO, Olatunji LA. Oral hormonal therapy with ethinylestradiol–levonorgestrel improves insulin resistance, obesity, and glycogen synthase kinase-3 independent of circulating mineralocorticoid in estrogen-deficient rats. Can J Physiol Pharmacol. 2018;96:577–86.

    CAS  PubMed  Google Scholar 

  106. Robeva R, Mladenović D, Vesković M, Hrnčić D, Bjekić-Macut J, Stanojlović O, et al. The interplay between metabolic dysregulations and non-alcoholic fatty liver disease in women after menopause. Maturitas. 2021;151:22–30.

    CAS  PubMed  Google Scholar 

  107. Bryzgalova G, Gao H, Ahren B, Zierath JR, Galuska D, Steiler TL, et al. Evidence that oestrogen receptor-α plays an important role in the regulation of glucose homeostasis in mice: insulin sensitivity in the liver. Diabetologia. 2006;49:588–97.

    CAS  PubMed  Google Scholar 

  108. Sligar J, DeBruin DA, Saner NJ, Philp AM, Philp A. The importance of mitochondrial quality control for maintaining skeletal muscle function across health span. Am J Physiol Cell Physiol. 2022;322:C461–7.

    CAS  PubMed  Google Scholar 

  109. Lee H, Kim YI, Nirmala FS, Kim J-S, Seo H-D, Ha TY, et al. MiR-141-3p promotes mitochondrial dysfunction in ovariectomy- induced sarcopenia via targeting Fkbp5 and Fibin. Aging. 2021;13:4881–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Capllonch-Amer G, Lladó I, Proenza AM, García-Palmer FJ, Gianotti M. Opposite effects of 17-β estradiol and testosterone on mitochondrial biogenesis and adiponectin synthesis in white adipocytes. J Mol Endocrinol. 2014;52:203–14.

    CAS  PubMed  Google Scholar 

  111. Iñigo MR, Amorese AJ, Tarpey MD, Balestrieri NP, Jones KG, Patteson DJ, et al. Estrogen receptor-α in female skeletal muscle is not required for regulation of muscle insulin sensitivity and mitochondrial regulation. Mol Metab. 2020;34:1–15.

    PubMed  Google Scholar 

  112. Bonds DE, Lasser N, Qi L, Brzyski R, Caan B, Heiss G, et al. The effect of conjugated equine oestrogen on diabetes incidence: the Women’s Health Initiative randomised trial. Diabetologia. 2006;49:459–68.

    CAS  PubMed  Google Scholar 

  113. Margolis KL, Bonds DE, Rodabough RJ, Tinker L, Phillips LS, Allen C, et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s Health Initiative Hormone Trial. Diabetologia. 2004;47:1175–87.

    CAS  PubMed  Google Scholar 

  114. Szmuilowicz ED, Seely EW. Menopause and diabetes mellitus. In: Agathocles T, Wyckoff J, Brown FM, editors. Diabetes in women. Totowa: Humana Press; 2009. p. 25–33.

    Google Scholar 

  115. Miotto PM, McGlory C, Holloway TM, Phillips SM, Holloway GP. Sex differences in mitochondrial respiratory function in human skeletal muscle. Am J Physiol Regulat Integr Comp Physiol. 2018;314:R909–15.

    CAS  Google Scholar 

  116. Møller AB, Vendelbo MH, Schjerling P, Couppé C, Møller N, Kjær M, et al. Immobilization decreases FOXO3a phosphorylation and increases autophagy-related gene and protein expression in human skeletal muscle. Front Physiol. 2019;10:736–736.

    PubMed  PubMed Central  Google Scholar 

  117. Masiero E, Sandri M. Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles. Autophagy. 2010;6:307–9.

    CAS  PubMed  Google Scholar 

  118. Zhong W, Shi X, Yuan H, Bu H, Wu L, Wang R. Effects of exercise training on the autophagy-related muscular proteins expression in ovariectomized rats. Front Physiol. 2019;10:735–735.

    PubMed  PubMed Central  Google Scholar 

  119. Dieli-Conwright CM, Spektor TM, Rice JC, Sattler FR, Schroeder ET. Hormone therapy and maximal eccentric exercise alters myostatin-related gene expression in postmenopausal women. J Strength Cond Res. 2012;26:1374–82.

    PubMed  Google Scholar 

  120. Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin C-T, Buddo KA, et al. 17β-Estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. Cell Metab. 2018;27:167-179.e7.

    CAS  PubMed  Google Scholar 

  121. Zhao Z, Xue F, Gu Y, Han J, Jia Y, Ye K, et al. Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7,8-dihydroxyflavone in female mice. Mol Metab. 2021;45: 101149.

    CAS  PubMed  Google Scholar 

  122. Ahuja P, Ng CF, Pang BP, Chan WS, Tse MC, Bi X, et al. Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy. 2021;18:1367–84.

    PubMed  PubMed Central  Google Scholar 

  123. Riley CL, Dao C, Kenaston MA, Muto L, Kohno S, Nowinski SM, et al. The complementary and divergent roles of uncoupling proteins 1 and 3 in thermoregulation. J Physiol. 2016;594:7455–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Beckett T, Tchernof A, Toth MJ. Effect of ovariectomy and estradiol replacement on skeletal muscle enzyme activity in female rats. Metab Clin Exp. 2002;51:1397–401.

    CAS  PubMed  Google Scholar 

  125. Meng Z, Jing H, Gan L, Li H, Luo B. Resveratrol attenuated estrogen-deficient-induced cardiac dysfunction: role of AMPK, SIRT1, and mitochondrial function. Am J Transl Res. 2016;8:2641–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cavalcanti-de-Albuquerque JPA, Salvador IC, Martins EL, Jardim-Messeder D, Werneck-de-Castro JPS, Galina A, et al. Role of estrogen on skeletal muscle mitochondrial function in ovariectomized rats: a time course study in different fiber types. J Appl Physiol. 2014;116:779–89.

    CAS  PubMed  Google Scholar 

  127. Tiidus PM, Deller M, Liu XL. Oestrogen influence on myogenic satellite cells following downhill running in male rats: a preliminary study. Acta Physiol Scand. 2005;184:67–72.

    CAS  PubMed  Google Scholar 

  128. Enns DL, Tiidus PM. The influence of estrogen on skeletal muscle: sex matters. Sports Med. 2010;40:41–58.

    PubMed  Google Scholar 

  129. MacIntyre DL, Reid WD, Lyster DM, McKenzie DC. Different effects of strenuous eccentric exercise on the accumulation of neutrophils in muscle in women and men. Eur J Appl Physiol. 2000;81:47–53.

    CAS  PubMed  Google Scholar 

  130. Aragón-Vela J, Fontana L, Casuso RA, Plaza-Díaz J, Huertas JR. Differential inflammatory response of men and women subjected to an acute resistance exercise. Biomed J. 2021;44:338–45.

    PubMed  PubMed Central  Google Scholar 

  131. Bergens O, Nilsson A, Kadi F. Associations between circulating inflammatory biomarkers and indicators of muscle health in older men and women. J Clin Med. 2021;10:5316.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Custodero C, Anton SD, Beavers DP, Mankowski RT, Lee SA, McDermott MM, Fielding RA, Newman AB, Tracy RP, Kritchevsky SB, et al. The relationship between interleukin-6 levels and physical performance in mobility-limited older adults with chronic low-grade inflammation: the ENRGISE Pilot study. Arch Gerontol Geriatr. 2020;90: 104131.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Dutra MT, Avelar BP, Souza VC, Bottaro M, Oliveira RJ, Nobrega OT, Moreno LR. Relationship between sarcopenic obesity-related phenotypes and inflammatory markers in postmenopausal women. Clin Physiol Funct Imaging. 2017;37:205–10.

    CAS  PubMed  Google Scholar 

  134. Lassale C, Batty GD, Steptoe A, Cadar D, Akbaraly TN, Kivimaki M, Zaninotto P. Association of 10-year C-reactive protein trajectories with markers of healthy aging: findings from the english longitudinal study of aging. J Gerontol A Biol Sci Med Sci. 2019;74:195–203.

    PubMed  Google Scholar 

  135. Ahtiainen M, Pöllänen E, Ronkainen PH, Alen M, Puolakka J, Kaprio J, et al. Age and estrogen-based hormone therapy affect systemic and local IL-6 and IGF-1 pathways in women. Age. 2011;34:1249–60.

    PubMed  PubMed Central  Google Scholar 

  136. Tiidus PM, Bombardier E. Oestrogen attenuates post-exercise myeloperoxidase activity in skeletal muscle of male rats. Acta Physiol Scand. 1999;166:85–90.

    CAS  PubMed  Google Scholar 

  137. de Hermes T, Kido LA, Macedo AB, Mizobuti DS, Moraes LH, Somazz MC, et al. Sex influences diaphragm muscle response in exercised mdx mice. Cell Biol Int. 2018;42:1611–21.

    CAS  PubMed  Google Scholar 

  138. Tiidus PM, Holden D, Bombardier E, Zajchowski S, Enns D, Belcastro A. Estrogen effect on post-exercise skeletal muscle neutrophil infiltration and calpain activity. Can J Physiol Pharmacol. 2001;79:400–6.

    CAS  PubMed  Google Scholar 

  139. Silva SB, Honorato-Sampaio K, Costa SP, et al. The superior beneficial effects of exercise training versus hormone replacement therapy on skeletal muscle of ovariectomized rats. Sci Rep. 2022;12:8764.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kim JS, Jeon J, An JJ, Yi HK. Interval running training improves age-related skeletal muscle wasting and bone loss: experiments with ovariectomized rats. Exp Physiol. 2019;104:691–703. https://doi.org/10.1113/EP087458.

    Article  CAS  PubMed  Google Scholar 

  141. Iqbal S, Thomas A, Bunyan K, Tiidus PM. Progesterone and estrogen influence postexercise leukocyte infiltration in overiectomized female rats. Appl Physiol Nutr Metab. 2008;33:1207–12.

    CAS  PubMed  Google Scholar 

  142. St. Pierre Schneider B, Vigil SA, Moonie S. Body weight and leukocyte infiltration after an acute exercise-related muscle injury in ovariectomized mice treated with estrogen and progesterone. Gen Comp Endocrinol. 2011;176:144–50.

    Google Scholar 

  143. Fulkerson N, Nicholas J, St. Pierre Schneider B. Estrogen modulates 7/4 antigen distribution within eccentrically contracted injured skeletal muscle. Biotech Histochem. 2015;90:294–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Fearing CM, Melton DW, Lei X, Hancock H, Wang H, Sarwar ZU, et al. Increased adipocyte area in injured muscle with aging and impaired remodeling in female mice. J Gerentol A Biol Sci Med Sci. 2016;71:992–1004.

    CAS  Google Scholar 

  145. Mangan G, Bombardier E, Mitchell AS, Quadrilatero J, Tiidus PM. Oestrogen-dependent satellite cell activation and proliferation following a running exercise occurs via the PI3K signalling pathway and IGF-1. Acta Physiol (Oxf). 2014;212:75–85.

    CAS  PubMed  Google Scholar 

  146. Tiidus PM. Oestrogen and a goldilocks zone for post-damage muscle inflammation and repair? J Physiol. 2018;596:4563–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Oosthuyse T, Bosch AN. The effect of gender and menstrual phase on serum creatine kinase activity and muscle soreness following downhill running. Antioxidants. 2017;6:16.

    PubMed  PubMed Central  Google Scholar 

  148. McKinley-Barnard SK, Andre TL, Gann JJ, Hwang PS, Willoughby DS. Effectiveness of fish oil supplementation in attenuating exercise-induced muscle damage in women during midfollicular and midluteal menstrual phases. J Strength Cond Res. 2018;32:1601–12.

    PubMed  Google Scholar 

  149. Williams T, Walz E, Lane AR, Pebole M, Hackney AC. The effect of estrogen on muscle damage biomarkers following prolonged aerobic exercise in eumenorrheic women. Biol Sport. 2015;32:193–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Snijders T, Parise G. Role of muscle stem cells in sarcopenia. Curr Opin Clin Nutr Metab Care. 2017;20:186–90.

    CAS  PubMed  Google Scholar 

  151. Enns DL, Tiidus PM. Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl Physiol. 2008;104:347–53.

    PubMed  Google Scholar 

  152. Fry CS, Porter C, Sidossis LS, Nieten C, Reidy PT, Hundeshagen G, et al. Satellite cell activation and apoptosis in skeletal muscle from severely burned children. J Physiol. 2016;594:5223–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kamanga-Sollo E, Thornton KJ, White ME, Dayton WR. Role of G protein-coupled estrogen receptor-1 in estradiol 17β-induced alterations in protein synthesis and protein degradation rates in fused bovine satellite cell cultures. Domest Anim Endocrinol. 2017;58:90–6.

    CAS  PubMed  Google Scholar 

  154. Horwath O, Moberg M, Larsen FJ, Philp A, Apró W, Ekblom B. Influence of sex and fiber type on the satellite cell pool in human skeletal muscle. Scand J Med Sci Sports. 2021;31:303–12.

    PubMed  Google Scholar 

  155. Larson AA, Shams AS, McMillin SL, Sullivan BP, Vue C, Roloff ZA, et al. Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. Am J Physiol Cell Physiol. 2022;322:C1123–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Chaiyasing R, Sugiura A, Ishikawa T, Ojima K, Warita K, Hosaka YZ. Estrogen modulates the skeletal muscle regeneration process and myotube morphogenesis: morphological analysis in mice with a low estrogen status. J Vet Med Sci. 2021;83:1812–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature (London). 2016;529:37–42.

    PubMed  Google Scholar 

  158. Moosmann B, Behl C. The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. PNAS. 1999;96:8867–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang H, Sun X, Lin MS, Ferrario CM, van Remmen H, Groban L. G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Transl Res. 2018;199:39–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Fortino SA, Wageh M, Pontello R, McGlory C, Kumbhare D, Phillips SM, et al. Sex-based differences in the myogenic response and inflammatory gene expression following eccentric contractions in humans. Front Physiol. 2022;13: 880625.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Vandenboom.

Ethics declarations

Funding

Not applicable.

Conflicts of interest

The authors declare no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contributions

AP participated in manuscript writing and revision, organization, interpretation, and collection of relevant literature, figure creation and design. PT participated in the conception, organization, critical revision, collection of relevant literature, and writing the manuscript. RV participated in the conception, organization, and revision of the manuscript. All authors read and approved the final version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellegrino, A., Tiidus, P.M. & Vandenboom, R. Mechanisms of Estrogen Influence on Skeletal Muscle: Mass, Regeneration, and Mitochondrial Function. Sports Med 52, 2853–2869 (2022). https://doi.org/10.1007/s40279-022-01733-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01733-9

Navigation