Abstract
Human menopause is widely associated with impaired skeletal muscle quality and significant metabolic dysfunction. These observations pose significant challenges to the quality of life and mobility of the aging population, and are of relevance when considering the significantly greater losses in muscle mass and force-generating capacity of muscle from post-menopausal females relative to age-matched males. In this regard, the influence of estrogen on skeletal muscle has become evident across human, animal, and cell-based studies. Beneficial effects of estrogen have become apparent in mitigation of muscle injury and enhanced post-damage repair via various mechanisms, including prophylactic effects on muscle satellite cell number and function, as well as membrane stability and potential antioxidant influences following injury, exercise, and/or mitochondrial stress. In addition to estrogen replacement in otherwise deficient states, exercise has been found to serve as a means of augmenting and/or mimicking the effects of estrogen on skeletal muscle function in recent literature. Detailed mechanisms behind the estrogenic effect on muscle mass, strength, as well as the injury response are beginning to be elucidated and point to estrogen-mediated molecular cross talk amongst signalling pathways, such as apoptotic signaling, contractile protein modifications, including myosin regulatory light chain phosphorylation, and the maintenance of muscle satellite cells. This review discusses current understandings and highlights new insights regarding the role of estrogen in skeletal muscle, with particular regard to muscle mass, mitochondrial function, the response to muscle damage, and the potential implications for human physiology and mobility.
Similar content being viewed by others
References
Baltgalvis KA, Greising SM, Warren GL, Lowe DA. Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. PLoS ONE. 2010;5: e10164.
Ribas V, Drew BG, Zhou Z, Phun J, Kalajian NY, Soleymani T, et al. Skeletal muscle action of estrogen receptor a is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci Transl Med. 2016;8:334ra54.
Nagai S, Ikeda K, Horie-Inoue K, Shiba S, Nagasawa S, Takeda S, et al. Estrogen modulates exercise endurance along with mitochondrial uncoupling protein 3 downregulation in skeletal muscle of female mice. Biochem Biophys Res Commun. 2016;480:758–64.
Park Y-M, Keller AC, Runchey SS, Miller BF, Kohrt WM, van Pelt RE, et al. Acute estradiol treatment reduces skeletal muscle protein breakdown markers in early- but not late-postmenopausal women. Steroids. 2019;146:43–9.
Wiik A, Ekman M, Morgan G, Johansson O, Jansson E, Esbjörnsson M. Oestrogen receptor β is present in both muscle fibres and endothelial cells within human skeletal muscle tissue. Histochem Cell Biol. 2005;124:161–5.
Wiik A, Hellsten Y, Berthelson P, Lundholm L, Fischer H, Jansson E. Activation of estrogen response elements is mediated both via estrogen and muscle contractions in rat skeletal muscle myotubes. Am J Physiol Cell Physiol. 2009;296:215–20.
Le G, Novotny SA, Mader TL, Greising SM, Chan SSK, Kyba M, et al. A moderate oestradiol level enhances neutrophil number and activity in muscle after traumatic injury but strength recovery is accelerated. J Physiol. 2018;596:4665–80.
Liao ZH, Huang T, Xiao JW, Gu RC, Ouyang J, Wu G, et al. Estrogen signaling effects on muscle-specific immune responses through controlling the recruitment and function of macrophages and T cells. Skelet Muscle. 2019;9:20–20.
Sitnick M, Foley AM, Brown M, Spangenburg EE. Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. J Appl Physiol. 2006;100:286–93.
Cheema N, Herbst A, McKenzie D, Aiken JM. Apoptosis and necrosis mediate skeletal muscle fiber loss in age-induced mitochondrial enzymatic abnormalities. Aging Cell. 2015;14:1085–93.
Klinge CM. Estrogens regulate life and death in mitochondria. J Bioenergy Biomembr. 2017;49:307–24.
Landen S, Jacques M, Hiam D, Alvarez-Romero J, Harvey NR, Haupt LM, et al. Skeletal muscle methylome and transcriptome integration reveals profound sex differences related to muscle function and substrate metabolism. Clin Epigenet. 2021;13:1–202.
Lemoine S, Granier P, Tiffoche C, Berthon PM, Thieulant M-L, CarrE F, et al. Effect of endurance training on oestrogen receptor alpha expression in different rat skeletal muscle type. Acta Physiol Scand. 2002;175:211–7.
Collins BC, Arpke RW, Larson AA, Baumann CW, Xie N, Cabelka CA, et al. Estrogen regulates the satellite cell compartment in females. Cell Rep Camb. 2019;28:368-381.e6.
Laakkonen EK, Kulmala J, Aukee P, Hakonen H, Kujala UM, Lowe DA, et al. Female reproductive factors are associated with objectively measured physical activity in middle-aged women. PLoS ONE. 2017;12:e0172054–e0172054.
Larson AA, Baumann CW, Kyba M, Lowe DA. Oestradiol affects skeletal muscle mass, strength and satellite cells following repeated injuries. Exp Physiol. 2020;105:1700–7.
Mangan G, Iqbal S, Hubbard A, Hamilton V, Bombardier E, Tiidus PM. Delay in post-ovariectomy estrogen replacement negates estrogen-induced augmentation of post-exercise muscle satellite cell proliferation. Can J Physiol Pharmacol. 2015;93:945–51.
Roth SM, Martel GF, Ivey FM, Lemmer JT, Metter EJ, Hurley BF, et al. High-volume, heavy-resistance strength training and muscle damage in young and older women. J Appl Physiol. 2000;88:1112–8.
Stubbins RE, Najjar K, Holcomb VB, Hong J, Núñez NP. Oestrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance. Diabetes Obes Metab. 2012;14:58–66.
Phillips SK, Rook KM, Siddle NC, Bruce SA, Woledge RC. Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci. 1993;84:95–8.
Grodin JM, Siiteri PK, Macdonald PC. Source of estrogen production in postmenopausal women. J Clin Endocrinol Metab. 1973;36:207–14.
Simpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol. 2003;86:225–30.
Berkovitz GD, Brown TR, Fujimoto M. Aromatase activity in human skin fibroblasts grown in cell culture. Steroids. 1987;50:281–95.
Matsumine H, Hirato K, Yanaihara T, Tamada T, Yoshida M. Aromatization by skeletal muscle. J Clin Endocrinol Metab. 1986;63:717–20.
Pöllänen E, Sipilä S, Alen M, Ronkainen PHA, Ankarberg-Lindgren C, Puolakka J, et al. Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre and postmenopausal women. Aging Cell. 2011;10:650–60.
Ekenros L, Papoutsi Z, Fridén C, Dahlman Wright K, Lindén HA. Expression of sex steroid hormone receptors in human skeletal muscle during the menstrual cycle. Acta Physiol. 2017;219:486–93.
Wiik A, Ekman M, Johansson O, Jansson E, Esbjörnsson M. Expression of both oestrogen receptor alpha and beta in human skeletal muscle tissue. Histochem Cell Biol. 2008;131:181–9.
Seko D, Fujita R, Kitajima Y, Nakamura K, Imai Y, Ono Y. Estrogen receptor β controls muscle growth and regeneration in young female mice. Stem Cell Rep. 2020;15:577–86.
Ventura-Clapier R, Piquereau J, Veksler V, Garnier A. Estrogens, estrogen receptors effects on cardiac and skeletal muscle mitochondria. Front Endocrinol. 2019;10:557–557.
Velez LM, Van C, Moore T, Zhou Z, Johnson C, Hevener AL, et al. Genetic variation of putative myokine signaling is dominated by biological sex and sex hormones. Elife. 2022;11:e76887.
Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet (Br Ed). 2019;393:2636–46.
Rathnayake N, Alwis G, Lenora J, Lekamwasam S. Factors associated with measures of sarcopenia in pre and postmenopausal women. BMC Women’s Health. 2021;21:5–5.
Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. 2014;11:177–80.
Iwamura M, Kanauchi M. A cross-sectional study of the association between dynapenia and higher-level functional capacity in daily living in community-dwelling older adults in Japan. BMC Geriatr. 2017;17:1–1.
Dam TV, Dalgaard LB, Ringgaard S, Johansen FT, Bengtsen MB, Mose M, et al. Transdermal estrogen therapy improves gains in skeletal muscle mass after 12 weeks of resistance training in early postmenopausal women. Front Physiol. 2021;11:596130–596130.
Hansen M, Skovgaard D, Reitelseder S, Holm L, Langbjerg H, Kjaer M. Effects of estrogen replacement and lower androgen status on skeletal muscle collagen and myofibrillar protein synthesis in postmenopausal women. J Gerontol A Biol Sci Med Sci. 2012;67:1005–13.
Sipilä S, Törmäkangas T, Sillanpää E, Aukee P, Kujala UM, Kovanen V, et al. Muscle and bone mass in middle-aged women: role of menopausal status and physical activity. J Cachexia Sarcopenia Muscle. 2020;11:698–709.
Finni T, Noorkoiv M, Pöllänen E, Ronkainen PHA, Alén M, Kaprio J, et al. Muscle function in monozygotic female twin pairs discordant for hormone replacement therapy. Muscle Nerve. 2011;44:769–75.
Greising SM, Baltgalvis KA, Lowe DA, Warren GL. Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci. 2009;64A:1071–81.
Ronkainen PHA, Kovanen V, Alen M, Pollanen E, Palonen E-M, Ankarberg-Lindgren C, et al. Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: a study with monozygotic twin pairs. J Appl Physiol. 2009;107:25–33.
Qaisar R, Renaud G, Hedstrom Y, Pöllänen E, Ronkainen P, Kaprio J, et al. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs. J Physiol. 2013;591:2333–44.
Javed AA, Mayhew AJ, Shea AK, Raina P. Association between hormone therapy and muscle mass in postmenopausal women: a systematic review and meta-analysis. JAMA Netw open. 2019;2:e1910154–e1910154.
Onambele-Pearson GL, Tomlinson DJ, Morse CI, Degens H. A prolonged hiatus in postmenopausal HRT, does not nullify the therapy’s positive impact on ageing related sarcopenia. PLoS ONE. 2021;16:e0250813–e0250813.
Pöllänen E, Kangas R, Horttanainen M, Niskala P, Kaprio J, Butler-Browne G, et al. Intramuscular sex steroid hormones are associated with skeletal muscle strength and power in women with different hormonal status. Aging Cell. 2015;14:236–48.
Tiidus P, Bombardier E, Bloemberg D, Vigna C, Quadrilatero J, Tupling R. Estrogen receptor-α partially mediates estrogen effect on muscle Hsp70 levels. FASEB J. 2011;25:1060.2.
Goldbohm RA, van den Brandt P. Type and timing of menopausal hormone therapy and breast cancer risk: individual participant meta-analysis of the worldwide epidemiological evidence. Lancet. 2019;394:1159–68.
Genazzani AR, Monteleone P, Giannini A, Simoncini T. Hormone therapy in the postmenopausal years: considering benefits and risks in clinical practice. Hum Reprod Update. 2021;27:1115–50.
Vigneswaran K, Hamoda H. Hormone replacement therapy—current recommendations. Best Pract Res Clin Obstet Gynaecol. 2022;81:8–21.
Park Y-M, Pereira RI, Erickson CB, Swibas TA, Kang C, Van Pelt RE. Time since menopause and skeletal muscle estrogen receptors, pgc-1α, and AMPK. Menopause. 2017;24:815–23.
Toth MJ, Poehlman ET, Matthews DE, Tchernof A, MacCoss MJ. Effects of estradiol and progesterone on body composition, protein synthesis, and lipoprotein lipase in rats. Am J Physiol Endocrinol Metab. 2001;280:496–501.
Juppi H-K, Sipilä S, Cronin NJ, Karvinen S, Karppinen JE, Tammelin TH, et al. Role of menopausal transition and physical activity in loss of lean and muscle mass: a follow-up study in middle-aged finnish women. J Clin Med. 2020;9:1588.
Cho E-J, Choi Y, Jung S-J, Kwak H-B. Role of exercise in estrogen deficiency-induced sarcopenia. J Exerc Rehabil. 2022;18:2–9.
Luk HY, Kraemer WJ, Szivak TK, Flanagan SD, Hooper DR, Kupchak BR, et al. Acute resistance exercise stimulates sex-specific dimeric immunoreactive growth hormone responses. Growth Horm IGF Res. 2015;25:136–40.
Cho E-J, Choi Y, Kim J, Bae JH, Cho J, Park D-H, et al. Exercise training attenuates ovariectomy-induced alterations in skeletal muscle remodeling, apoptotic signaling, and atrophy signaling in rat skeletal muscle. Int Neurourol J. 2021;25:S47–54.
Haines M, McKinley-Barnard SK, Andre TL, Gann JJ, Hwang PS, Willoughby DS. Skeletal muscle estrogen receptor activation in response to eccentric exercise up-regulates myogenic-related gene expression independent of differing serum estradiol levels occurring during the human menstrual cycle. J Sports Sci Med. 2018;17:31–9.
Cho E-J, Choi Y, Kim J, Bae JH, Cho J, Park D-H, et al. Exercise training attenuates ovariectomy-induced alterations in skeletal muscle remodeling, apoptotic signaling, and atrophy signaling in rat skeletal muscle. Int Neurourol J. 2021;25(Suppl 2):S47-54.
Shi R, Tian X, Feng Y, Cheng Z, Lu J, Brann DW, et al. Expression of aromatase and synthesis of sex steroid hormones in skeletal muscle following exercise training in ovariectomized rats. Steroids. 2019;143:91–6.
Pöllänen E, Fey V, Törmäkangas T, Ronkainen PHA, Taaffe DR, Takala T, et al. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle. Age. 2010;32:347–63.
Wei Z, Ge F, Che Y, Wu S, Dong X, Song D. Metabolomics coupled with pathway analysis provides insights into sarco-osteoporosis metabolic alterations and estrogen therapeutic effects in mice. Biomolecules. 2021;12:41.
Jaiswal N, Gavin MG, Quinn WJ, Luongo TS, Gelfer RG, Baur JA, et al. The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis. Mol Metab. 2019;28:1–13.
Yu J, Hu Y, Li Y, Han T, Zhu R, Fu P. Resistance training relieves skeletal muscle atrophy induced by hypoxia via the AKT–FOXO1–MURF1/atrogin-1 signaling pathway. Preprint [Internet]. 2022. https://doi.org/10.21203/rs.3.rs-1601629/v1.
Dieli-Conwright CM, Spektor TM, Rice JC, Schroeder ET. Hormone therapy attenuates exercise-induced skeletal muscle damage in postmenopausal women. J Appl Physiol. 2009;107:853–8.
Olivieri F, Ahtiainen M, Lazzarini R, Pöllänen E, Capri M, Lorenzi M, et al. Hormone replacement therapy enhances IGF-1 signaling in skeletal muscle by diminishing miR-182 and miR-223 expressions: a study on postmenopausal monozygotic twin pairs. Aging Cell. 2014;13:850–61.
Ronda AC, Boland RL. Intracellular distribution and involvement of GPR30 in the actions of E2 on C2C12 cells. J Cell Biochem. 2016;117:793–805.
Wang Y, Li B, Zhang W, Liu Y, Xue P, Ma J, et al. Impaired PI3 K Akt expression in liver and skeletal muscle of ovariectomized rats. Endocrine. 2013;44:659–65.
Wang Z, Grange M, Wagner T, Kho AL, Gautel M, Raunser S. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell. 2021;184:2135-2150.e13.
Liu Q, Li R, Chen G, Wang J, Hu B, Li C, et al. Inhibitory effect of 17 beta-estradiol on triglyceride synthesis in skeletal muscle cells is dependent on ESR1 and not ESR2. Mol Med Rep. 2019;19:5087–96.
Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, et al. Critical role of FOXO3a in carcinogenesis. Mol Cancer. 2018;17:104–104.
Montalvo RN, Counts BR, Carson JA. Understanding sex differences in the regulation of cancer-induced muscle wasting. Curr Opin Support Palliat Care. 2018;12:394–403.
Counts BR, Fix DK, Hetzler KL, Carson JA. The effect of estradiol administration on muscle mass loss and cachexia progression in female Apc(Min/+) mice. Front Endocrinol. 2019;10:720.
Tang L, Cao W, Zhao T, Yu K, Sun L, Guo J, et al. Weight-bearing exercise prevents skeletal muscle atrophy in ovariectomized rats. J Physiol Biochem. 2021;77:273–81.
Park K-S, Kim H, Kim HJ, Lee K-I, Lee S-Y, Kim J. Paeoniflorin alleviates skeletal muscle atrophy in ovariectomized mice through the ERΑ/NRF1 mitochondrial biogenesis pathway. Pharmaceuticals. 2022;15:390.
Moran AL, Nelson SA, Landisch RM, Warren GL, Lowe DA. Estradiol replacement reverses ovariectomy-induced muscle contractile and myosin dysfunction in mature female mice. J Appl Physiol. 2007;102:1387–93.
Lai S, Collins BC, Colson BA, Kararigas G, Lowe DA. Estradiol modulates myosin regulatory light chain phosphorylation and contractility in skeletal muscle of female mice. Am J Physiol Endocrinol Metab. 2016;310:E724–33.
Cabelka CA, Baumann CW, Collins BC, Nash N, Le G, Lindsay A, et al. Effects of ovarian hormones and estrogen receptor α on physical activity and skeletal muscle fatigue in female mice. Exp Gerontol. 2019;115:155–64.
Colson BA, Petersen KJ, Collins BC, Lowe DA, Thomas DD. The myosin super-relaxed state is disrupted by estradiol deficiency. Biochem Biophys Res Commun. 2015;456:151–5.
Phung LA, Karvinen SM, Colson BA, Thomas DD, Lowe DA. Age affects myosin relaxation states in skeletal muscle fibers of female but not male mice. PLoS ONE. 2018;13: e0199062.
Collins BC, Mader TL, Cabelka CA, Iñigo MR, Spangenburg EE, Lowe DA. Deletion of estrogen receptor α in skeletal muscle results in impaired contractility in female mice. J Appl Physiol. 2018;124:980–92.
Schneider BSP, Fine JP, Nadolski T, Tiidus PM. The effects of estradiol and progesterone on plantarflexor muscle fatigue in ovariectomized mice. Biol Res Nurs. 2004;5:265–75.
Mandelli A, Tacconi E, Levinger I, Duque G, Hayes A. The role of estrogens in osteosarcopenia: from biology to potential dual therapeutic effects. Climacteric. 2021;25:81–7.
Miller MS, Bedrin NG, Callahan DM, Previs MJ, Jennings ME, Ades PA, et al. Age-related slowing of myosin actin cross-bridge kinetics is sex specific and predicts decrements in whole skeletal muscle performance in humans. J Appl Physiol. 2013;115:1004–14.
Nag S, Trivedi DV. To lie or not to lie: super-relaxing with myosins. Elife. 2021;10:e63703
Vandenboom R. Modulation of skeletal muscle contraction by myosin phosphorylation. In: Comprehensive physiology. 2016. p. 171–212.
Peyton MP, Yang T, Higgins L, et al. Global phosphoproteomic profiling of skeletal muscle in ovarian-hormone deficient mice. Res Square. 2022. https://doi.org/10.21203/rs.3.rs-1386846/v1.
Jiao L, Machuki JO, Wu Q, Shi M, Fu L, Adekunle AO, et al. Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2020;318:H820–9.
Colson BA, Petersen KJ, Bunch TA, Collins BC, Thomas DD, Lowe DA. The super-relaxed state of myosin is altered by estradiol in skeletal muscle of aged female mice. Biophys J. 2016;110:303a–4a.
Dirks AJ, Leeuwenburgh C. The role of apoptosis in age-related skeletal muscle atrophy. Sport Med. 2005;35:473–83.
Kangas R, Pöllänen E, Rippo MR, Lanzarini C, Prattichizzo F, Niskala P, et al. Circulating miR-21, miR-146a and Fas ligand respond to postmenopausal estrogen-based hormone replacement therapy—a study with monozygotic twin pairs. Mech Ageing Dev. 2014;143–144:1–8.
Karvinen S, Juppi H-K, Le G, Cabelka CA, Mader TL, Lowe DA, et al. Estradiol deficiency and skeletal muscle apoptosis: Possible contribution of microRNAs. Exp Gerontol. 2021;147:111267–111267.
Ronda AC, Vasconsuelo A, Boland R. Extracellular-regulated kinase and p38 mitogen-activated protein kinases are involved in the antiapoptotic action of 17β-estradiol in skeletal muscle cells. J Endocrinol. 2010;206:235–46.
Vasconsuelo AA, Ronda AC, Milanesi LM, Boland R. 17beta-estradiol as pro-survival agent: HSP27 a new target in the regulation of apoptosis in muscle cells? Bone. 2008;43:S133–S133.
Ronda AC, Vasconsuelo A, Boland R. 17—Estradiol protects mitochondrial functions through extracellular-signal-regulated kinase in C2C12 muscle cells. Cell Physiol Biochem. 2013;32:1011–23.
La Colla A, Boland R, Vasconsuelo A. 17-estradiol abrogates apoptosis inhibiting PKC, JNK, and p66Shc activation in C2C12 cells. J Cell Biochem. 2015;116:1454–65.
Bombardier E, Vigna C, Bloemberg D, Quadrilatero J, Tiidus PM, Tupling AR. The role of estrogen receptor-α in estrogen-mediated regulation of basal and exercise-induced Hsp70 and Hsp27 expression in rat soleus. Can J Physiol Pharmacol. 2013;91:823–9.
Rathor M, Suryakumar G, Singh SN, Kumar B. Heat shock protein 60 (HSP60): skeletal muscle diseases and novel prospects for therapy. HESP. 2019;18:277–93.
Locke M, Salerno SA. Ovariectomy alters lengthening contraction induced heat shock protein expression. Appl Physiol Nutr Metab. 2020;45:530–8.
Romani WA, Russ DW. Acute effects of sex-specific sex hormones on heat shock proteins in fast muscle of male and female rats. Eur J Appl Physiol. 2013;113:2503–10.
Wang H, Alencar A, Lin M, Sun X, Sudo RT, Zapata-Sudo G, et al. Activation of GPR30 improves exercise capacity and skeletal muscle strength in senescent female Fischer344 × Brown Norway rats. Biochem Biophys Res Commun. 2016;475:81–6.
Stupka N, Lowther S, Chorneyko K, Bourgeois JM, Hogben C, Tarnopolsky MA. Gender differences in muscle inflammation after eccentric exercise. J Appl Physiol. 2000;89:2325–32.
Kerksick C, Taylor L, Harvey A, Willoughby D. Gender-related differences in muscle injury, oxidative stress, and apoptosis. Med Sci Sports Exerc. 2008;40:1772–80.
Collins BC, Laakkonen EK, Lowe DA. Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone. 2019;123:137–44.
Hevener AL, Ribas V, Moore TM, Zhou Z. The impact of skeletal muscle ER alpha on mitochondrial function and metabolic health. Endocrinology (Philadelphia). 2020;161:bqz017.
Mauvais-Jarvis F, Manson JE, Stevenson JC, Fonseca VA. Menopausal hormone therapy and type 2 diabetes prevention: evidence, mechanisms and clinical implications. Endocr Rev. 2017;38:173–88.
Romero-Aleshire MJ, Diamond-Stanic MK, Hasty AH, Hoyer PB, Brooks HL. Loss of ovarian function in the VCD mouse-model of menopause leads to insulin resistance and a rapid progression into the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol. 2009;297:587–92.
Adeyanju OA, Soetan OA, Soladoye AO, Olatunji LA. Oral hormonal therapy with ethinylestradiol–levonorgestrel improves insulin resistance, obesity, and glycogen synthase kinase-3 independent of circulating mineralocorticoid in estrogen-deficient rats. Can J Physiol Pharmacol. 2018;96:577–86.
Robeva R, Mladenović D, Vesković M, Hrnčić D, Bjekić-Macut J, Stanojlović O, et al. The interplay between metabolic dysregulations and non-alcoholic fatty liver disease in women after menopause. Maturitas. 2021;151:22–30.
Bryzgalova G, Gao H, Ahren B, Zierath JR, Galuska D, Steiler TL, et al. Evidence that oestrogen receptor-α plays an important role in the regulation of glucose homeostasis in mice: insulin sensitivity in the liver. Diabetologia. 2006;49:588–97.
Sligar J, DeBruin DA, Saner NJ, Philp AM, Philp A. The importance of mitochondrial quality control for maintaining skeletal muscle function across health span. Am J Physiol Cell Physiol. 2022;322:C461–7.
Lee H, Kim YI, Nirmala FS, Kim J-S, Seo H-D, Ha TY, et al. MiR-141-3p promotes mitochondrial dysfunction in ovariectomy- induced sarcopenia via targeting Fkbp5 and Fibin. Aging. 2021;13:4881–94.
Capllonch-Amer G, Lladó I, Proenza AM, García-Palmer FJ, Gianotti M. Opposite effects of 17-β estradiol and testosterone on mitochondrial biogenesis and adiponectin synthesis in white adipocytes. J Mol Endocrinol. 2014;52:203–14.
Iñigo MR, Amorese AJ, Tarpey MD, Balestrieri NP, Jones KG, Patteson DJ, et al. Estrogen receptor-α in female skeletal muscle is not required for regulation of muscle insulin sensitivity and mitochondrial regulation. Mol Metab. 2020;34:1–15.
Bonds DE, Lasser N, Qi L, Brzyski R, Caan B, Heiss G, et al. The effect of conjugated equine oestrogen on diabetes incidence: the Women’s Health Initiative randomised trial. Diabetologia. 2006;49:459–68.
Margolis KL, Bonds DE, Rodabough RJ, Tinker L, Phillips LS, Allen C, et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s Health Initiative Hormone Trial. Diabetologia. 2004;47:1175–87.
Szmuilowicz ED, Seely EW. Menopause and diabetes mellitus. In: Agathocles T, Wyckoff J, Brown FM, editors. Diabetes in women. Totowa: Humana Press; 2009. p. 25–33.
Miotto PM, McGlory C, Holloway TM, Phillips SM, Holloway GP. Sex differences in mitochondrial respiratory function in human skeletal muscle. Am J Physiol Regulat Integr Comp Physiol. 2018;314:R909–15.
Møller AB, Vendelbo MH, Schjerling P, Couppé C, Møller N, Kjær M, et al. Immobilization decreases FOXO3a phosphorylation and increases autophagy-related gene and protein expression in human skeletal muscle. Front Physiol. 2019;10:736–736.
Masiero E, Sandri M. Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles. Autophagy. 2010;6:307–9.
Zhong W, Shi X, Yuan H, Bu H, Wu L, Wang R. Effects of exercise training on the autophagy-related muscular proteins expression in ovariectomized rats. Front Physiol. 2019;10:735–735.
Dieli-Conwright CM, Spektor TM, Rice JC, Sattler FR, Schroeder ET. Hormone therapy and maximal eccentric exercise alters myostatin-related gene expression in postmenopausal women. J Strength Cond Res. 2012;26:1374–82.
Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin C-T, Buddo KA, et al. 17β-Estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. Cell Metab. 2018;27:167-179.e7.
Zhao Z, Xue F, Gu Y, Han J, Jia Y, Ye K, et al. Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7,8-dihydroxyflavone in female mice. Mol Metab. 2021;45: 101149.
Ahuja P, Ng CF, Pang BP, Chan WS, Tse MC, Bi X, et al. Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy. 2021;18:1367–84.
Riley CL, Dao C, Kenaston MA, Muto L, Kohno S, Nowinski SM, et al. The complementary and divergent roles of uncoupling proteins 1 and 3 in thermoregulation. J Physiol. 2016;594:7455–64.
Beckett T, Tchernof A, Toth MJ. Effect of ovariectomy and estradiol replacement on skeletal muscle enzyme activity in female rats. Metab Clin Exp. 2002;51:1397–401.
Meng Z, Jing H, Gan L, Li H, Luo B. Resveratrol attenuated estrogen-deficient-induced cardiac dysfunction: role of AMPK, SIRT1, and mitochondrial function. Am J Transl Res. 2016;8:2641–9.
Cavalcanti-de-Albuquerque JPA, Salvador IC, Martins EL, Jardim-Messeder D, Werneck-de-Castro JPS, Galina A, et al. Role of estrogen on skeletal muscle mitochondrial function in ovariectomized rats: a time course study in different fiber types. J Appl Physiol. 2014;116:779–89.
Tiidus PM, Deller M, Liu XL. Oestrogen influence on myogenic satellite cells following downhill running in male rats: a preliminary study. Acta Physiol Scand. 2005;184:67–72.
Enns DL, Tiidus PM. The influence of estrogen on skeletal muscle: sex matters. Sports Med. 2010;40:41–58.
MacIntyre DL, Reid WD, Lyster DM, McKenzie DC. Different effects of strenuous eccentric exercise on the accumulation of neutrophils in muscle in women and men. Eur J Appl Physiol. 2000;81:47–53.
Aragón-Vela J, Fontana L, Casuso RA, Plaza-Díaz J, Huertas JR. Differential inflammatory response of men and women subjected to an acute resistance exercise. Biomed J. 2021;44:338–45.
Bergens O, Nilsson A, Kadi F. Associations between circulating inflammatory biomarkers and indicators of muscle health in older men and women. J Clin Med. 2021;10:5316.
Custodero C, Anton SD, Beavers DP, Mankowski RT, Lee SA, McDermott MM, Fielding RA, Newman AB, Tracy RP, Kritchevsky SB, et al. The relationship between interleukin-6 levels and physical performance in mobility-limited older adults with chronic low-grade inflammation: the ENRGISE Pilot study. Arch Gerontol Geriatr. 2020;90: 104131.
Dutra MT, Avelar BP, Souza VC, Bottaro M, Oliveira RJ, Nobrega OT, Moreno LR. Relationship between sarcopenic obesity-related phenotypes and inflammatory markers in postmenopausal women. Clin Physiol Funct Imaging. 2017;37:205–10.
Lassale C, Batty GD, Steptoe A, Cadar D, Akbaraly TN, Kivimaki M, Zaninotto P. Association of 10-year C-reactive protein trajectories with markers of healthy aging: findings from the english longitudinal study of aging. J Gerontol A Biol Sci Med Sci. 2019;74:195–203.
Ahtiainen M, Pöllänen E, Ronkainen PH, Alen M, Puolakka J, Kaprio J, et al. Age and estrogen-based hormone therapy affect systemic and local IL-6 and IGF-1 pathways in women. Age. 2011;34:1249–60.
Tiidus PM, Bombardier E. Oestrogen attenuates post-exercise myeloperoxidase activity in skeletal muscle of male rats. Acta Physiol Scand. 1999;166:85–90.
de Hermes T, Kido LA, Macedo AB, Mizobuti DS, Moraes LH, Somazz MC, et al. Sex influences diaphragm muscle response in exercised mdx mice. Cell Biol Int. 2018;42:1611–21.
Tiidus PM, Holden D, Bombardier E, Zajchowski S, Enns D, Belcastro A. Estrogen effect on post-exercise skeletal muscle neutrophil infiltration and calpain activity. Can J Physiol Pharmacol. 2001;79:400–6.
Silva SB, Honorato-Sampaio K, Costa SP, et al. The superior beneficial effects of exercise training versus hormone replacement therapy on skeletal muscle of ovariectomized rats. Sci Rep. 2022;12:8764.
Kim JS, Jeon J, An JJ, Yi HK. Interval running training improves age-related skeletal muscle wasting and bone loss: experiments with ovariectomized rats. Exp Physiol. 2019;104:691–703. https://doi.org/10.1113/EP087458.
Iqbal S, Thomas A, Bunyan K, Tiidus PM. Progesterone and estrogen influence postexercise leukocyte infiltration in overiectomized female rats. Appl Physiol Nutr Metab. 2008;33:1207–12.
St. Pierre Schneider B, Vigil SA, Moonie S. Body weight and leukocyte infiltration after an acute exercise-related muscle injury in ovariectomized mice treated with estrogen and progesterone. Gen Comp Endocrinol. 2011;176:144–50.
Fulkerson N, Nicholas J, St. Pierre Schneider B. Estrogen modulates 7/4 antigen distribution within eccentrically contracted injured skeletal muscle. Biotech Histochem. 2015;90:294–301.
Fearing CM, Melton DW, Lei X, Hancock H, Wang H, Sarwar ZU, et al. Increased adipocyte area in injured muscle with aging and impaired remodeling in female mice. J Gerentol A Biol Sci Med Sci. 2016;71:992–1004.
Mangan G, Bombardier E, Mitchell AS, Quadrilatero J, Tiidus PM. Oestrogen-dependent satellite cell activation and proliferation following a running exercise occurs via the PI3K signalling pathway and IGF-1. Acta Physiol (Oxf). 2014;212:75–85.
Tiidus PM. Oestrogen and a goldilocks zone for post-damage muscle inflammation and repair? J Physiol. 2018;596:4563–4.
Oosthuyse T, Bosch AN. The effect of gender and menstrual phase on serum creatine kinase activity and muscle soreness following downhill running. Antioxidants. 2017;6:16.
McKinley-Barnard SK, Andre TL, Gann JJ, Hwang PS, Willoughby DS. Effectiveness of fish oil supplementation in attenuating exercise-induced muscle damage in women during midfollicular and midluteal menstrual phases. J Strength Cond Res. 2018;32:1601–12.
Williams T, Walz E, Lane AR, Pebole M, Hackney AC. The effect of estrogen on muscle damage biomarkers following prolonged aerobic exercise in eumenorrheic women. Biol Sport. 2015;32:193–8.
Snijders T, Parise G. Role of muscle stem cells in sarcopenia. Curr Opin Clin Nutr Metab Care. 2017;20:186–90.
Enns DL, Tiidus PM. Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl Physiol. 2008;104:347–53.
Fry CS, Porter C, Sidossis LS, Nieten C, Reidy PT, Hundeshagen G, et al. Satellite cell activation and apoptosis in skeletal muscle from severely burned children. J Physiol. 2016;594:5223–36.
Kamanga-Sollo E, Thornton KJ, White ME, Dayton WR. Role of G protein-coupled estrogen receptor-1 in estradiol 17β-induced alterations in protein synthesis and protein degradation rates in fused bovine satellite cell cultures. Domest Anim Endocrinol. 2017;58:90–6.
Horwath O, Moberg M, Larsen FJ, Philp A, Apró W, Ekblom B. Influence of sex and fiber type on the satellite cell pool in human skeletal muscle. Scand J Med Sci Sports. 2021;31:303–12.
Larson AA, Shams AS, McMillin SL, Sullivan BP, Vue C, Roloff ZA, et al. Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. Am J Physiol Cell Physiol. 2022;322:C1123–37.
Chaiyasing R, Sugiura A, Ishikawa T, Ojima K, Warita K, Hosaka YZ. Estrogen modulates the skeletal muscle regeneration process and myotube morphogenesis: morphological analysis in mice with a low estrogen status. J Vet Med Sci. 2021;83:1812–9.
García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature (London). 2016;529:37–42.
Moosmann B, Behl C. The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. PNAS. 1999;96:8867–72.
Wang H, Sun X, Lin MS, Ferrario CM, van Remmen H, Groban L. G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Transl Res. 2018;199:39–51.
Fortino SA, Wageh M, Pontello R, McGlory C, Kumbhare D, Phillips SM, et al. Sex-based differences in the myogenic response and inflammatory gene expression following eccentric contractions in humans. Front Physiol. 2022;13: 880625.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
Not applicable.
Conflicts of interest
The authors declare no conflicts of interest.
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Availability of data and materials
Not applicable.
Code availability
Not applicable.
Author contributions
AP participated in manuscript writing and revision, organization, interpretation, and collection of relevant literature, figure creation and design. PT participated in the conception, organization, critical revision, collection of relevant literature, and writing the manuscript. RV participated in the conception, organization, and revision of the manuscript. All authors read and approved the final version.
Rights and permissions
About this article
Cite this article
Pellegrino, A., Tiidus, P.M. & Vandenboom, R. Mechanisms of Estrogen Influence on Skeletal Muscle: Mass, Regeneration, and Mitochondrial Function. Sports Med 52, 2853–2869 (2022). https://doi.org/10.1007/s40279-022-01733-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40279-022-01733-9