Skip to main content
Log in

Effect of Pre-Exercise Caffeine Intake on Endurance Performance and Core Temperature Regulation During Exercise in the Heat: A Systematic Review with Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Heat is associated with physiological strain and endurance performance (EP) impairments. Studies have investigated the impact of caffeine intake upon EP and core temperature (CT) in the heat, but results are conflicting. There is a need to systematically determine the impact of pre-exercise caffeine intake in the heat.

Objective

To use a meta-analytical approach to determine the effect of pre-exercise caffeine intake on EP and CT in the heat.

Design

Systematic review with meta-analysis.

Data Sources

Four databases and cross-referencing.

Data Analysis

Weighted mean effect summaries using robust variance random-effects models for EP and CT, as well as robust variance meta-regressions to explore confounders.

Study Selection

Placebo-controlled, randomized studies in adults (≥ 18 years old) with caffeine intake at least 30 min before endurance exercise ≥ 30 min, performed in ambient conditions ≥ 27 °C.

Results

Respectively six and 12 studies examined caffeine’s impact on EP and CT, representing 52 and 205 endurance-trained individuals. On average, 6 mg/kg body mass of caffeine were taken 1 h before exercises of ~ 70 min conducted at 34 °C and 47% relative humidity. Caffeine supplementation non-significantly improved EP by 2.1 ± 0.8% (95% CI − 0.7 to 4.8) and significantly increased the rate of change in CT by 0.10 ± 0.03 °C/h (95% CI 0.02 to 0.19), compared with the ingestion of a placebo.

Conclusion

Caffeine ingestion of 6 mg/kg body mass ~ 1 h before exercise in the heat may provide a worthwhile improvement in EP, is unlikely to be deleterious to EP, and trivially increases the rate of change in CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnson IM, Prakash H, Prathiba J, Raghunathan R, Malathi R. Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine) binding with DNA. PLoS ONE. 2012;7(12): e50019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Southward K, Rutherfurd-Markwick KJ, Ali A. The effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sports Med. 2018;48(8):1913–28.

    Article  PubMed  Google Scholar 

  3. Aguilar-Navarro M, Muñoz G, Salinero J, Muñoz-Guerra J, Fernández-Álvarez M, Plata M, et al. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients. 2019;11(2):286.

    Article  CAS  PubMed Central  Google Scholar 

  4. Desbrow B, Leveritt M. Awareness and use of caffeine by athletes competing at the 2005 Ironman Triathlon World Championships. Int J Sport Nutr Exerc Metab. 2006;16(5):545–58.

    Article  CAS  PubMed  Google Scholar 

  5. Doherty M, Smith PM. Effects of caffeine ingestion on exercise testing: a meta-analysis. Int J Sport Nutr Exerc Metab. 2004;14(6):626–46.

    Article  CAS  PubMed  Google Scholar 

  6. Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM. Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res. 2009;23(1):315–24.

    Article  PubMed  Google Scholar 

  7. Gonçalves Ribeiro B, Pontes Morales A, Sampaio-Jorge F, Tinoco FS, Matos AA, Costa LT. Acute effects of caffeine intake on athletic performance: a systematic review and meta-analysis. Rev Chil Nutr. 2017;44:283–91.

    Article  Google Scholar 

  8. Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z. Wake up and smell the coffee: caffeine supplementation and exercise performance—an umbrella review of 21 published meta-analyses. Br J Sports Med. 2020;54(11):681–8.

    Article  PubMed  Google Scholar 

  9. Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021;18(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Franco-Alvarenga PE, Brietzke C, Canestri R, Goethel MF, Hettinga F, Santos TM, et al. Caffeine improved cycling trial performance in mentally fatigued cyclists, regardless of alterations in prefrontal cortex activation. Physiol Behav. 2019;204:41–8.

    Article  CAS  PubMed  Google Scholar 

  11. Paluska SA. Caffeine and exercise. Curr Sports Med Rep. 2003;2(4):213–9.

    Article  PubMed  Google Scholar 

  12. Beaumont RE, James LJ. Effect of a moderate caffeine dose on endurance cycle performance and thermoregulation during prolonged exercise in the heat. J Sci Med Sport. 2017;20(11):1024–8.

    Article  PubMed  Google Scholar 

  13. Ping WC, Keong CC, Bandyopadhyay A. Effects of acute supplementation of caffeine on cardiorespiratory responses during endurance running in a hot & humid climate. Indian J Med Res. 2010;132:36–41.

    CAS  PubMed  Google Scholar 

  14. Suvi S, Timpmann S, Tamm M, Aedma M, Kreegipuu K, Ööpik V. Effects of caffeine on endurance capacity and psychological state in young females and males exercising in the heat. Appl Physiol Nutr Metab. 2017;42(1):68–76.

    Article  CAS  PubMed  Google Scholar 

  15. Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol. 2003;284(2):R399-404.

    Article  CAS  PubMed  Google Scholar 

  16. Nehlig A, Debry G. Caffeine and sports activity: a review. Int J Sports Med. 1994;15(5):215–23.

    Article  CAS  PubMed  Google Scholar 

  17. Fredholm BB. Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol. 1995;76(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  18. Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997;29(9):1240–9.

    Article  CAS  PubMed  Google Scholar 

  19. Tatterson AJ, Hahn AG, Martin DT, Febbraio MA. Effects of heat stress on physiological responses and exercise performance in elite cyclists. J Sci Med Sport. 2000;3(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  20. Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(S2):175–84.

    Article  PubMed Central  Google Scholar 

  21. Martins GL, Guilherme JPLF, Ferreira LHB, de Souza-Junior TP, Lancha AH. Caffeine and exercise performance: possible directions for definitive findings. Front Sports Act Living. 2020;2:202.

    Article  Google Scholar 

  22. Temple JL, Bernard C, Lipshultz SE, Czachor JD, Westphal JA, Mestre MA. The safety of ingested caffeine: a comprehensive review. Front Psychiatry. 2017;8:80.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ganio MS, Johnson EC, Klau JF, Anderson JM, Casa DJ, Maresh CM, et al. Effect of ambient temperature on caffeine ergogenicity during endurance exercise. Eur J Appl Physiol. 2011;111(6):1135–46.

    Article  CAS  PubMed  Google Scholar 

  24. Roti MW, Casa DJ, Pumerantz AC, Watson G, Judelson DA, Dias JC, et al. Thermoregulatory responses to exercise in the heat: chronic caffeine intake has no effect. Aviat Space Environ Med. 2006;77(2):124–9.

    CAS  PubMed  Google Scholar 

  25. Cheuvront SN, Ely BR, Kenefick RW, Michniak-Kohn BB, Rood JC, Sawka MN. No effect of nutritional adenosine receptor antagonists on exercise performance in the heat. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R394–401.

    Article  CAS  PubMed  Google Scholar 

  26. Cohen BS, Nelson AG, Prevost MC, Thompson GD, Marx BD, Morris GS. Effects of caffeine ingestion on endurance racing in heat and humidity. Eur J Appl Physiol. 1996;73(3–4):358–63.

    Article  CAS  Google Scholar 

  27. Hanson NJ, Martinez SC, Byl EN, Maceri RM, Miller MG. Increased rate of heat storage, and no performance benefits, with caffeine ingestion before a 10-km run in hot, humid conditions. Int J Sports Physiol Perform. 2019;14(2):196–202.

    Article  PubMed  Google Scholar 

  28. Pitchford NW, Fell JW, Leveritt MD, Desbrow B, Shing CM. Effect of caffeine on cycling time-trial performance in the heat. J Sci Med Sport. 2014;17(4):445–9.

    Article  PubMed  Google Scholar 

  29. Roelands B, Buyse L, Pauwels F, Delbeke F, Deventer K, Meeusen R. No effect of caffeine on exercise performance in high ambient temperature. Eur J Appl Physiol. 2011;111(12):3089–95.

    Article  CAS  PubMed  Google Scholar 

  30. Hunter AM, St Clair Gibson A, Collins M, Lambert M, Noakes TD. Caffeine ingestion does not alter performance during a 100-km cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2002;12(4):438–52.

    Article  CAS  PubMed  Google Scholar 

  31. Wemple RD, Lamb DR, McKeever KH. Caffeine vs caffeine-free sports drinks: effects on urine production at rest and during prolonged exercise. Int J Sports Med. 1997;18(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  32. LeBlanc J, Jobin M, Côté J, Samson P, Labrie A. Enhanced metabolic response to caffeine in exercise-trained human subjects. J Appl Physiol (1985). 1985;59(3):832–7.

    Article  CAS  PubMed  Google Scholar 

  33. Ely BR, Ely MR, Cheuvront SN. Marginal effects of a large caffeine dose on heat balance during exercise-heat stress. Int J Sport Nutr Exerc Metab. 2011;21(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  34. Del Coso J, Estevez E, Mora-Rodriguez R. Caffeine during exercise in the heat: thermoregulation and fluid-electrolyte balance. Med Sci Sports Exerc. 2009;41(1):164–73.

    Article  PubMed  CAS  Google Scholar 

  35. Kazman JB, Attipoe S, Kupchak BR, Deuster PA. Caffeine and heat have additive but not interactive effects on physiologic strain: a factorial experiment. J Therm Biol. 2020;89: 102563.

    Article  CAS  PubMed  Google Scholar 

  36. Cureton KJ, Warren GL, Millard-Stafford ML, Wingo JE, Trilk J, Buyckx M. Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metab. 2007;17(1):35–55.

    Article  CAS  PubMed  Google Scholar 

  37. Daniels JW, Molé PA, Shaffrath JD, Stebbins CL. Effects of caffeine on blood pressure, heart rate, and forearm blood flow during dynamic leg exercise. J Appl Physiol (1985). 1998;85(1):154–9.

    Article  CAS  Google Scholar 

  38. Anderson DE, Hickey MS. Effects of caffeine on the metabolic and catecholamine responses to exercise in 5 and 28 degrees C. Med Sci Sports Exerc. 1994;26(4):453–8.

    Article  CAS  PubMed  Google Scholar 

  39. Fujii N, Fujimoto T, Yinhang C, Dobashi K, Matsutake R, Amano T, et al. Caffeine exacerbates hyperventilation and reductions in cerebral blood flow in physically fit men exercising in the heat. Med Sci Sports Exerc. 2021;53(4):845–52.

    Article  CAS  PubMed  Google Scholar 

  40. Stebbins CL, Daniels JW, Lewis W. Effects of caffeine and high ambient temperature on haemodynamic and body temperature responses to dynamic exercise: cardiovascular responses to caffeine and exercise in the heat. Clin Physiol. 2001;21(5):528–33.

    Article  CAS  PubMed  Google Scholar 

  41. Del Coso J, Estevez E, Mora-Rodriguez R. Caffeine effects on short-term performance during prolonged exercise in the heat. Med Sci Sports Exerc. 2008;40(4):744–51.

    Article  PubMed  CAS  Google Scholar 

  42. Hunt LA, Hospers L, Smallcombe JW, Mavros Y, Jay O. Caffeine alters thermoregulatory responses to exercise in the heat only in caffeine-habituated individuals: a double-blind placebo-controlled trial. J Appl Physiol. 2021;131(4):1300–10. https://doi.org/10.1152/japplphysiol.00172.2021.

    Article  CAS  PubMed  Google Scholar 

  43. Peel JS, McNarry MA, Heffernan SM, Nevola VR, Kilduff LP, Waldron M. The effect of dietary supplements on endurance exercise performance and core temperature in hot environments: a meta-analysis and meta-regression. Sports Med. 2021;51(11):2351–71. https://doi.org/10.1007/s40279-021-01500-2.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Conger SA, Warren GL, Hardy MA, Millard-Stafford ML. Does caffeine added to carbohydrate provide additional ergogenic benefit for endurance? Int J Sport Nutr Exerc Metab. 2011;21(1):71–84.

    Article  CAS  PubMed  Google Scholar 

  45. Shen JG, Brooks MB, Cincotta J, Manjourides JD. Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: a systematic review and meta-analysis. J Sci Med Sport. 2019;22(2):232–8.

    Article  PubMed  Google Scholar 

  46. Armstrong LE, Casa DJ, Maresh CM, Ganio MS. Caffeine, fluid-electrolyte balance, temperature regulation, and exercise-heat tolerance. Exerc Sport Sci Rev. 2007;35(3):135–40.

    Article  PubMed  Google Scholar 

  47. Jüni P. The hazards of scoring the quality of clinical trials for meta-analysis. JAMA. 1999;282(11):1054.

    Article  PubMed  Google Scholar 

  48. Goulet ED. Effect of exercise-induced dehydration on time-trial exercise performance: a meta-analysis. Br J Sports Med. 2011;45(14):1149–56.

    Article  PubMed  Google Scholar 

  49. Goulet ED. Effect of exercise-induced dehydration on endurance performance: evaluating the impact of exercise protocols on outcomes using a meta-analytic procedure. Br J Sports Med. 2013;47(11):679–86.

    Article  PubMed  Google Scholar 

  50. Goulet EDB. Effect of exercise-induced dehydration on endurance performance: evaluating the impact of exercise protocols on outcomes using a meta-analytic procedure. Br J Sports Med. 2013;47(11):41–5.

    Article  Google Scholar 

  51. Follmann D, Elliott P, Suh I, Cutler J. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol. 1992;45(7):769–73.

    Article  CAS  PubMed  Google Scholar 

  52. Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM. Advances in the meta-analysis of heterogeneous clinical trials I: the inverse variance heterogeneity model. Contemp Clin Trials. 2015;45:130–8.

    Article  PubMed  Google Scholar 

  53. Tanner-Smith EE, Tipton E. Robust variance estimation with dependent effect sizes: practical considerations including a software tutorial in Stata and spss. Res Synth Methods. 2014;5(1):13–30.

    Article  PubMed  Google Scholar 

  54. Pelletier DM, Lacerte G, Goulet ED. Effects of quercetin supplementation on endurance performance and maximal oxygen consumption: a meta-analysis. Int J Sport Nutr Exerc Metab. 2013;23(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  55. Savoie FA, Kenefick RW, Ely BR, Cheuvront SN, Goulet ED. Effect of hypohydration on muscle endurance, strength, anaerobic power and capacity and vertical jumping ability: a meta-analysis. Sports Med (Auckland, NZ). 2015;45(8):1207–27.

    Article  Google Scholar 

  56. Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193–206.

    Article  PubMed  Google Scholar 

  57. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. ISBN 978-0-470-51845-8. Available from www.training.cochrane.org/handbook.

  58. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63.

    Article  CAS  PubMed  Google Scholar 

  59. Fisher Z, Tipton E. robumeta: an R-package for robust variance estimation in meta-analysis. 2015. http://arxiv.org/abs/ 1503.02220.

  60. Volkow ND, Wang GJ, Logan J, Alexoff D, Fowler JS, Thanos PK, et al. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl Psychiatry. 2015;5(4): e549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ferré S. An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem. 2008;105(4):1067–79.

    Article  PubMed  CAS  Google Scholar 

  62. Solinas M, Ferré S, You ZB, Karcz-Kubicha M, Popoli P, Goldberg SR. Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J Neurosci. 2002;22(15):6321–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Watson P, Hasegawa H, Roelands B, Piacentini MF, Looverie R, Meeusen R. Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. J Physiol. 2005;565(Pt 3):873–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meeusen R, Roelands B. Central fatigue and neurotransmitters, can thermoregulation be manipulated? Scand J Med Sci Sports. 2010;20(Suppl 3):19–28.

    Article  PubMed  Google Scholar 

  65. Diamond A, Lye CT, Prasad D, Abbott D. One size does not fit all: assuming the same normal body temperature for everyone is not justified. PLoS ONE. 2021;16(2): e0245257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zheng X, Hasegawa H. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise. Eur J Sport Sci. 2016;16(7):818–28.

    Article  PubMed  Google Scholar 

  67. Millard-Stafford ML, Cureton KJ, Wingo JE, Trilk J, Warren GL, Buyckx M. Hydration during exercise in warm, humid conditions: effect of a caffeinated sports drink. Int J Sport Nutr Exerc Metab. 2007;17(2):163–77.

    Article  CAS  PubMed  Google Scholar 

  68. Thornley S, Russell B, Kydd R. Carbohydrate reward and psychosis: an explanation for neuroleptic induced weight gain and path to improved mental health? Curr Neuropharmacol. 2011;9(2):370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Van Nieuwenhoven MA, Brummer RM, Brouns F. Gastrointestinal function during exercise: comparison of water, sports drink, and sports drink with caffeine. J Appl Physiol (1985). 2000;89(3):1079–85.

    Article  Google Scholar 

  70. Rehrer NJ, Goes E, DuGardeyn C, Reynaert H, DeMeirleir K. Effect of carbohydrate on portal vein blood flow during exercise. Int J Sports Med. 2005;26(3):171–6.

    Article  CAS  PubMed  Google Scholar 

  71. Crandall CG, Wilson TE. Human cardiovascular responses to passive heat stress. Compr Physiol. 2015;5(1):17–43.

    PubMed  PubMed Central  Google Scholar 

  72. Lei TH, Cotter JD, Schlader ZJ, Stannard SR, Perry BG, Barnes MJ, et al. On exercise thermoregulation in females: interaction of endogenous and exogenous ovarian hormones. J Physiol. 2019;597(1):71–88.

    Article  CAS  PubMed  Google Scholar 

  73. Saunders AG, Dugas JP, Tucker R, Lambert MI, Noakes TD. The effects of different air velocities on heat storage and body temperature in humans cycling in a hot, humid environment. Acta Physiol Scand. 2005;183(3):241–55.

    Article  CAS  PubMed  Google Scholar 

  74. Otani H, Kaya M, Tamaki A, Watson P, Maughan RJ. Effects of solar radiation on endurance exercise capacity in a hot environment. Eur J Appl Physiol. 2016;116(4):769–79.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thomas A. Deshayes is financially supported by the Fonds de Recherche du Québec—Santé (FRQS). The authors wish to thank the researchers who shared experimental data and provided further information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. B. Goulet.

Ethics declarations

Funding

No funding was received for the conduct of the work or preparation of the manuscript.

Conflict of interest

Catherine Naulleau, David Jeker, Timothée Pancrate, Pascale Claveau, Thomas A. Deshayes, Louise M. Burke, and Eric D.B. Goulet declare that they have no potential conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Author contributions

CN, DJ, TP, PC, TAD, and EDBG designed the research and performed the literature search. TP, TAD and EDBG performed the data extraction. TAD and EDBG performed the statistical analyses. TP, TAD, and EDBG designed the tables and figures. CN, DJ, TP, PC, TAD, LMB, and EDBG interpreted data, and drafted and revised the manuscript. All authors approved the final version of the manuscript.

Code availability

Not applicable.

Data availability statement

All the data presented in the article will be made available from the corresponding author upon reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naulleau, C., Jeker, D., Pancrate, T. et al. Effect of Pre-Exercise Caffeine Intake on Endurance Performance and Core Temperature Regulation During Exercise in the Heat: A Systematic Review with Meta-Analysis. Sports Med 52, 2431–2445 (2022). https://doi.org/10.1007/s40279-022-01692-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01692-1

Navigation