Gamberale F, Strindberg L, Wahlberg I. Female work capacity during the menstrual cycle: physiological and psychological reactions. Scand J Work Environ Health. 1975;1:120–7. https://doi.org/10.5271/sjweh.2855.
CAS
Article
PubMed
Google Scholar
McNulty KL, Elliott-Sale KJ, Dolan E, et al. The effects of menstrual cycle phase on exercise performance in eumenorrheic women: a systematic review and meta-analysis. Sports Med. 2020;50:1813–27. https://doi.org/10.1007/s40279-020-01319-3.
Article
PubMed
PubMed Central
Google Scholar
Hansen M. Female hormones: do they influence muscle and tendon protein metabolism? Proc Nutr Soc. 2017;77:32–41. https://doi.org/10.1017/S0029665117001951.
CAS
Article
PubMed
Google Scholar
Stricker R, Eberhart R, Chevailler MC, et al. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med. 2006;44:883–7. https://doi.org/10.1515/CCLM.2006.160.
CAS
Article
PubMed
Google Scholar
Phillips SK, Sanderson AG, Birch K, et al. Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J Physiol. 1996;496(Pt 2):551–7. https://doi.org/10.1113/jphysiol.1996.sp021706.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sarwar R, Niclos BB, Rutherford OM. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol. 1996;493(Pt 1):267–72. https://doi.org/10.1113/jphysiol.1996.sp021381.
CAS
Article
PubMed
PubMed Central
Google Scholar
Haines M, McKinley-Barnard SK, Andre TL, et al. Skeletal muscle estrogen receptor activation in response to eccentric exercise up-regulates myogenic-related gene expression independent of differing serum estradiol levels occurring during the human menstrual cycle. J Sports Sci Med. 2018;17:31–9.
PubMed
PubMed Central
Google Scholar
Ikeda K, Horie-Inoue K, Inoue S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J Steroid Biochem Mol Biol. 2019;191: 105375. https://doi.org/10.1016/j.jsbmb.2019.105375.
CAS
Article
PubMed
Google Scholar
Janse DEJX, Thompson B, Han A. Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exerc. 2019;51:2610–7. https://doi.org/10.1249/MSS.0000000000002073.
Article
Google Scholar
Thompson B, Almarjawi A, Sculley D, et al. The effect of the menstrual cycle and oral contraceptives on acute responses and chronic adaptations to resistance training: a systematic review of the literature. Sports Med. 2020;50:171–85. https://doi.org/10.1007/s40279-019-01219-1.
Article
PubMed
Google Scholar
Kraemer RR, Heleniak RJ, Tryniecki JL, et al. Follicular and luteal phase hormonal responses to low-volume resistive exercise. Med Sci Sports Exerc. 1995;27:809–17.
CAS
Article
Google Scholar
Nakamura Y, Aizawa K, Imai T, et al. Hormonal responses to resistance exercise during different menstrual cycle states. Med Sci Sports Exerc. 2011;43:967–73. https://doi.org/10.1249/MSS.0b013e3182019774.
CAS
Article
PubMed
Google Scholar
Hansen M, Kjaer M. Influence of sex and estrogen on musculotendinous protein turnover at rest and after exercise. Exerc Sport Sci Rev. 2014;42:183–92. https://doi.org/10.1249/JES.0000000000000026.
Article
PubMed
Google Scholar
Sung E, Han A, Hinrichs T, et al. Effects of follicular versus luteal phase-based strength training in young women. Springerplus. 2014;3:668. https://doi.org/10.1186/2193-1801-3-668.
Article
PubMed
PubMed Central
Google Scholar
Sakamaki-Sunaga M, Min S, Kamemoto K, et al. Effects of menstrual phase-dependent resistance training frequency on muscular hypertrophy and strength. J Strength Cond Res. 2016;30:1727–34. https://doi.org/10.1519/JSC.0000000000001250.
Article
PubMed
Google Scholar
Reis E, Frick U, Schmidtbleicher D. Frequency variations of strength training sessions triggered by the phases of the menstrual cycle. Int J Sports Med. 1995;16:545–50. https://doi.org/10.1055/s-2007-973052.
CAS
Article
PubMed
Google Scholar
Wikstrom-Frisen L, Boraxbekk CJ, Henriksson-Larsen K. Effects on power, strength and lean body mass of menstrual/oral contraceptive cycle based resistance training. J Sports Med Phys Fitness. 2017;57:43–52. https://doi.org/10.23736/S0022-4707.16.05848-5.
Article
PubMed
Google Scholar
Oosthuyse T, Bosch AN. Oestrogen’s regulation of fat metabolism during exercise and gender specific effects. Curr Opin Pharmacol. 2012;12:363–71. https://doi.org/10.1016/j.coph.2012.02.008.
CAS
Article
PubMed
Google Scholar
Enns DL, Tiidus PM. Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl Physiol. 1985;2008(104):347–53. https://doi.org/10.1152/japplphysiol.00128.2007.
Article
Google Scholar
Oosthuyse T, Bosch AN. The effect of the menstrual cycle on exercise metabolism: implications for exercise performance in eumenorrhoeic women. Sports Med. 2010;40:207–27. https://doi.org/10.2165/11317090-000000000-00000.
Article
PubMed
Google Scholar
McClung JM, Davis JM, Wilson MA, et al. Estrogen status and skeletal muscle recovery from disuse atrophy. J Appl Physiol. 1985;2006(100):2012–23. https://doi.org/10.1152/japplphysiol.01583.2005.
CAS
Article
Google Scholar
Sugiura T, Ito N, Goto K, et al. Estrogen administration attenuates immobilization-induced skeletal muscle atrophy in male rats. J Physiol Sci. 2006;56:393–9. https://doi.org/10.2170/physiolsci.RP006906.
CAS
Article
PubMed
Google Scholar
Hansen M, Skovgaard D, Reitelseder S, et al. Effects of estrogen replacement and lower androgen status on skeletal muscle collagen and myofibrillar protein synthesis in postmenopausal women. J Gerontol A Biol Sci Med Sci. 2012;67:1005–13. https://doi.org/10.1093/gerona/gls007.
CAS
Article
PubMed
Google Scholar
Kriengsinyos W, Wykes LJ, Goonewardene LA, et al. Phase of menstrual cycle affects lysine requirement in healthy women. Am J Physiol Endocrinol Metab. 2004;287:E489-496. https://doi.org/10.1152/ajpendo.00262.2003.
CAS
Article
PubMed
Google Scholar
Lamont LS, Lemon PW, Bruot BC. Menstrual cycle and exercise effects on protein catabolism. Med Sci Sports Exerc. 1987;19:106–10.
CAS
Article
Google Scholar
Schaumberg MA, Emmerton LM, Jenkins DG, et al. Use of oral contraceptives to manipulate menstruation in young, physically active women. Int J Sports Physiol Perform. 2018;13:82–7. https://doi.org/10.1123/ijspp.2016-0689.
Article
PubMed
Google Scholar
Burrows M, Peters CE. The influence of oral contraceptives on athletic performance in female athletes. Sports Med. 2007;37:557–74. https://doi.org/10.2165/00007256-200737070-00001.
Article
PubMed
Google Scholar
Stanczyk FZ. All progestins are not created equal. Steroids. 2003;68:879–90. https://doi.org/10.1016/j.steroids.2003.08.003.
CAS
Article
PubMed
Google Scholar
Oxfeldt M, Dalgaard LB, Jorgensen EB, et al. Molecular markers of skeletal muscle hypertrophy following 10 wk of resistance training in oral contraceptive users and nonusers. J Appl Physiol. 1985;2020(129):1355–64. https://doi.org/10.1152/japplphysiol.00562.2020.
CAS
Article
Google Scholar
Dalgaard LB, Dalgas U, Andersen JL, et al. Influence of oral contraceptive use on adaptations to resistance training. Front Physiol. 2019;10:824. https://doi.org/10.3389/fphys.2019.00824.
Article
PubMed
PubMed Central
Google Scholar
Dalgaard LB, Jorgensen EB, Oxfeldt M, et al. Influence of second generation oral contraceptive use on adaptations to resistance training in young untrained women. J Strength Cond Res. 2020. https://doi.org/10.1519/JSC.0000000000003735.
Article
PubMed
Google Scholar
Elliott-Sale KJ, McNulty KL, Ansdell P, et al. The effects of oral contraceptives on exercise performance in women: a systematic review and meta-analysis. Sports Med. 2020;50:1785–812. https://doi.org/10.1007/s40279-020-01317-5.
Article
PubMed
PubMed Central
Google Scholar
Hostrup M, Bangsbo J. Limitations in intense exercise performance of athletes—effect of speed endurance training on ion handling and fatigue development. J Physiol. 2017;595:2897–913. https://doi.org/10.1113/JP273218.
CAS
Article
PubMed
Google Scholar
Hostrup M, Cairns SP, Bangsbo J. Muscle ionic shifts during exercise: implications for fatigue and exercise performance. Compr Physiol. 2021;11:1895–959. https://doi.org/10.1002/cphy.c190024.
Article
PubMed
Google Scholar
Meignie A, Duclos M, Carling C, et al. The effects of menstrual cycle phase on elite athlete performance: a critical and systematic review. Front Physiol. 2021;12: 654585. https://doi.org/10.3389/fphys.2021.654585.
Article
PubMed
PubMed Central
Google Scholar
Scheid JL, De Souza MJ. Menstrual irregularities and energy deficiency in physically active women: the role of ghrelin, PYY and adipocytokines. Med Sport Sci. 2010;55:82–102. https://doi.org/10.1159/000321974.
CAS
Article
PubMed
Google Scholar
De Souza MJ, Toombs RJ, Scheid JL, et al. High prevalence of subtle and severe menstrual disturbances in exercising women: confirmation using daily hormone measures. Hum Reprod. 2010;25:491–503. https://doi.org/10.1093/humrep/dep411.
CAS
Article
PubMed
Google Scholar
Burden RJ, Shill AL, Bishop NC. Elite female athlete research: stop searching for the “magic P.” Exp Physiol. 2021;106:2029–30. https://doi.org/10.1113/EP089884.
Article
PubMed
Google Scholar