Skip to main content
Log in

Effects of Endurance Training on Motor Signs of Parkinson’s Disease: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Evidence has demonstrated that endurance training (ET) reduces the motor signs of Parkinson’s disease (PD). However, there has not been a comprehensive meta-analysis of studies to date.

Objective

The aim of this study was to compare the effect of ET versus nonactive and active control conditions on motor signs as assessed by either the Unified Parkinson’s Disease Rating Scale part III (UPDRS-III) or Movement Disorder Society-UPDRS-III (MDS-UPDRS-III).

Methods

A random-effect meta-analysis model using standardized mean differences (Hedges’ g) determined treatment effects. Moderators (e.g., combined endurance and physical therapy training [CEPTT]) and meta-regressors (e.g., number of sessions) were used for sub-analyses. Methodological quality was assessed by the Physiotherapy Evidence Database.

Results

Twenty-seven randomized controlled trials (RCTs) met inclusion criteria (1152 participants). ET is effective in decreasing UPDRS-III scores when compared with nonactive and active control conditions (g =  − 0.68 and g =  − 0.33, respectively). This decrease was greater (within- and between-groups average of − 8.0 and − 6.8 point reduction on UPDRS-III scores, respectively) than the moderate range of clinically important changes to UPDRS-III scores (− 4.5 to − 6.7 points) suggested for PD. Although considerable heterogeneity was observed between RCTs (I2 = 74%), some moderators that increased the effect of ET on motor signs decreased the heterogeneity of the analyses, such as CEPTT (I2 = 21%), intensity based on treadmill speed (I2 = 0%), self-perceived exertion rate (I2 = 33%), and studies composed of individuals with PD and freezing of gait (I2 = 0%). Meta-regression did not produce significant relationships between ET dosage and UPDRS-III scores.

Conclusions

ET is effective in decreasing UPDRS-III scores. Questions remain about the dose–response relationship between ET and reduction in motor signs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dorsey ER, Sherer T, Okun MS, Bloem BR. The Emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018;8(s1):S3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fahn S, Elton R. UPDRS Program Members Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Goldstein M, Calne DB, editors. Recent developments in Parkinson’s disease, vol. 2. Florham Park: Macmillan Healthcare Information; 1987. p. 153–63 (293–304).

    Google Scholar 

  3. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.

    Article  PubMed  Google Scholar 

  4. Maetzler W, Liepelt I, Berg D. Progression of Parkinson’s disease in the clinical phase: potential markers. Lancet Neurol. 2009;8(12):1158–71.

    Article  CAS  PubMed  Google Scholar 

  5. Louis ED, Tang MX, Cote L, Alfaro B, Mejia H, Marder K. Progression of parkinsonian signs in Parkinson disease. Arch Neurol. 1999;56(3):334–7.

    Article  CAS  PubMed  Google Scholar 

  6. Mollenhauer B, Zimmermann J, Sixel-Doring F, Focke NK, Wicke T, Ebentheuer J, et al. Baseline predictors for progression 4 years after Parkinson’s disease diagnosis in the De Novo Parkinson Cohort (DeNoPa). Mov Disord. 2019;34(1):67–77.

    Article  PubMed  Google Scholar 

  7. Simuni T, Siderowf A, Lasch S, Coffey CS, Caspell-Garcia C, Jennings D, et al. Longitudinal change of clinical and biological measures in early Parkinson’s disease: parkinson’s progression markers initiative cohort. Mov Disord. 2018;33(5):771–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311(16):1670–83.

    Article  PubMed  CAS  Google Scholar 

  9. St George RJ, Nutt JG, Burchiel KJ, Horak FB. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology. 2010;75(14):1292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith AD, Zigmond MJ. Can the brain be protected through exercise? Lessons from an animal model of Parkinsonism. Exp Neurol. 2003;184(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  11. Koo JH, Jang YC, Hwang DJ, Um HS, Lee NH, Jung JH, et al. Treadmill exercise produces neuroprotective effects in a murine model of Parkinson’s disease by regulating the TLR2/MyD88/NF-kappaB signaling pathway. Neuroscience. 2017;25(356):102–13.

    Article  CAS  Google Scholar 

  12. Jang Y, Koo JH, Kwon I, Kang EB, Um HS, Soya H, et al. Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson’s disease mice. Brain Res. 2017;15(1655):186–93.

    Article  CAS  Google Scholar 

  13. Sacheli MA, Neva JL, Lakhani B, Murray DK, Vafai N, Shahinfard E, et al. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov Disord. 2019;34(12):1891–900.

    Article  CAS  PubMed  Google Scholar 

  14. Hirsch MA, Iyer SS, Sanjak M. Exercise-induced neuroplasticity in human Parkinson’s disease: what is the evidence telling us? Parkinsonism Relat Disord. 2016;22(Suppl 1):S78-81.

    Article  PubMed  Google Scholar 

  15. Altmann LJ, Stegemoller E, Hazamy AA, Wilson JP, Bowers D, Okun MS, et al. Aerobic exercise improves mood, cognition, and language function in Parkinson’s disease: results of a controlled study. J Int Neuropsychol Soc JINS. 2016;22(9):878–89.

    Article  PubMed  Google Scholar 

  16. Atan T, Ozyemisci Taskiran O, Bora Tokcaer A, Kaymak Karatas G, Karakus Caliskan A, Karaoglan B. Effects of different percentages of body weight-supported treadmill training in Parkinson’s disease: a double-blind randomized controlled trial. Turk J Med Sci. 2019;49(4):999–1007.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bang DH, Shin WS. Effects of an intensive Nordic walking intervention on the balance function and walking ability of individuals with Parkinson’s disease: a randomized controlled pilot trial. Aging Clin Exp Res. 2017;29(5):993–9.

    Article  PubMed  Google Scholar 

  18. Burini D, Farabollini B, Iacucci S, Rimatori C, Riccardi G, Capecci M, et al. A randomised controlled cross-over trial of aerobic training versus Qigong in advanced Parkinson’s disease. Eur Medicophys. 2006;42(3):231–8.

    CAS  Google Scholar 

  19. Canning CG, Allen NE, Dean CM, Goh L, Fung VS. Home-based treadmill training for individuals with Parkinson’s disease: a randomized controlled pilot trial. Clin Rehabil. 2012;26(9):817–26.

    Article  PubMed  Google Scholar 

  20. Carvalho A, Barbirato D, Araujo N, Martins JV, Cavalcanti JL, Santos TM, et al. Comparison of strength training, aerobic training, and additional physical therapy as supplementary treatments for Parkinson’s disease: pilot study. Clin Interv Aging. 2015;10:183–91.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cugusi L, Solla P, Serpe R, Carzedda T, Piras L, Oggianu M, et al. Effects of a Nordic Walking program on motor and non-motor symptoms, functional performance and body composition in patients with Parkinson’s disease. NeuroRehabilitation. 2015;37(2):245–54.

    Article  PubMed  Google Scholar 

  22. Frazzitta G, Maestri R, Uccellini D, Bertotti G, Abelli P. Rehabilitation treatment of gait in patients with Parkinson’s disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training. Mov Disord. 2009;24(8):1139–43.

    Article  PubMed  Google Scholar 

  23. Fisher BE, Wu AD, Salem GJ, Song J, Lin CH, Yip J, et al. The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson’s disease. Arch Phys Med Rehabil. 2008;89(7):1221–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gaßner H, Steib S, Klamroth S, Pasluosta CF, Adler W, Eskofier BM, et al. Perturbation treadmill training improves clinical characteristics of gait and balance in Parkinson’s disease. J Parkinsons Dis. 2019;9(2):413–26.

    Article  PubMed  Google Scholar 

  25. Ganesan M, Sathyaprabha TN, Gupta A, Pal PK. Effect of partial weight-supported treadmill gait training on balance in patients with Parkinson disease. PM R. 2014;6(1):22–33.

    Article  PubMed  Google Scholar 

  26. Monteiro EP, Franzoni LT, Cubillos DM, de Oliveira FA, Carvalho AR, Oliveira HB, et al. Effects of Nordic walking training on functional parameters in Parkinson’s disease: a randomized controlled clinical trial. Scand J Med Sci Sports. 2017;27(3):351–8.

    Article  CAS  PubMed  Google Scholar 

  27. Miyai I, Fujimoto Y, Yamamoto H, Ueda Y, Saito T, Nozaki S, et al. Long-term effect of body weight-supported treadmill training in Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil. 2002;83(10):1370–3.

    Article  PubMed  Google Scholar 

  28. Ridgel AL, Vitek JL, Alberts JL. Forced, not voluntary, exercise improves motor function in Parkinson’s disease patients. Neurorehabil Neural Repair. 2009;23(6):600–8.

    Article  PubMed  Google Scholar 

  29. Sage MD, Almeida QJ. Symptom and gait changes after sensory attention focused exercise vs aerobic training in Parkinson’s disease. Mov Disord. 2009;24(8):1132–8.

    Article  PubMed  Google Scholar 

  30. Shulman LM, Katzel LI, Ivey FM, Sorkin JD, Favors K, Anderson KE, et al. Randomized clinical trial of 3 types of physical exercise for patients with Parkinson disease. JAMA Neurol. 2013;70(2):183–90.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schenkman M, Moore CG, Kohrt WM, Hall DA, Delitto A, Comella CL, et al. Effect of high-intensity treadmill exercise on motor symptoms in patients with De Novo Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 2018;75(2):219–26.

    Article  PubMed  Google Scholar 

  32. Trigueiro LC, Gama GL, Ribeiro TS, Ferreira LG, Galvao ER, Silva EM, et al. Influence of treadmill gait training with additional load on motor function, postural instability and history of falls for individuals with Parkinson’s disease: a randomized clinical trial. J Bodyw Mov Ther. 2017;21(1):93–100.

    Article  PubMed  Google Scholar 

  33. Trigueiro LC, Gama GL, Simao CR, Sousa AV, Godeiro Junior CO, Lindquist AR. Effects of treadmill training with load on gait in Parkinson disease: a randomized controlled clinical trial. Am J Phys Med Rehabil. 2015;94(10 Suppl 1):830–7.

    Article  PubMed  Google Scholar 

  34. Nadeau A, Pourcher E, Corbeil P. Effects of 24 wk of treadmill training on gait performance in Parkinson’s disease. Med Sci Sports Exerc. 2014;46(4):645–55.

    Article  PubMed  Google Scholar 

  35. van der Kolk NM, de Vries NM, Kessels RPC, Joosten H, Zwinderman AH, Post B, et al. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: a double-blind, randomised controlled trial. Lancet Neurol. 2019;18(11):998–1008.

    Article  PubMed  Google Scholar 

  36. Lamotte G, Rafferty MR, Prodoehl J, Kohrt WM, Comella CL, Simuni T, et al. Effects of endurance exercise training on the motor and non-motor features of Parkinson’s disease: a review. J Parkinsons Dis. 2015;5(1):21–41.

    Article  PubMed  Google Scholar 

  37. Uhrbrand A, Stenager E, Pedersen MS, Dalgas U. Parkinson’s disease and intensive exercise therapy—a systematic review and meta-analysis of randomized controlled trials. J Neurol Sci. 2015;353(1–2):9–19.

    Article  PubMed  Google Scholar 

  38. Flach A, Jaegers L, Krieger M, Bixler E, Kelly P, Weiss EP, et al. Endurance exercise improves function in individuals with Parkinson’s disease: A meta-analysis. Neurosci Lett. 2017;17(659):115–9.

    Article  CAS  Google Scholar 

  39. Schootemeijer S, van der Kolk NM, Bloem BR, de Vries NM. Current perspectives on aerobic exercise in people with Parkinson’s disease. Neurotherapeutics. 2020;17(4):1418–33.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cheng FY, Yang YR, Wu YR, Cheng SJ, Wang RY. Effects of curved-walking training on curved-walking performance and freezing of gait in individuals with Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disord. 2017;43:20–6.

    Article  PubMed  Google Scholar 

  41. Schenkman M, Hall DA, Baron AE, Schwartz RS, Mettler P, Kohrt WM. Exercise for people in early- or mid-stage Parkinson disease: a 16-month randomized controlled trial. Phys Ther. 2012;92(11):1395–410.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ganesan M, Sathyaprabha TN, Pal PK, Gupta A. Partial body weight-supported treadmill training in patients with parkinson disease: impact on gait and clinical manifestation. Arch Phys Med Rehabil. 2015;96(9):1557–65.

    Article  PubMed  Google Scholar 

  43. Schlick C, Ernst A, Botzel K, Plate A, Pelykh O, Ilmberger J. Visual cues combined with treadmill training to improve gait performance in Parkinson’s disease: a pilot randomized controlled trial. Clin Rehabil. 2016;30(5):463–71.

    Article  PubMed  Google Scholar 

  44. Berra E, De Icco R, Avenali M, Dagna C, Cristina S, Pacchetti C, et al. Body weight support combined with treadmill in the rehabilitation of parkinsonian gait: a review of literature and new data from a controlled study. Front Neurol. 2018;9:1066.

    Article  PubMed  Google Scholar 

  45. Miyai I, Fujimoto Y, Ueda Y, Yamamoto H, Nozaki S, Saito T, et al. Treadmill training with body weight support: its effect on Parkinson’s disease. Arch Phys Med Rehabil. 2000;81(7):849–52.

    Article  CAS  PubMed  Google Scholar 

  46. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;21(339):b2535.

    Article  Google Scholar 

  47. ACSM. ACSM’s guidelines for exercise testing and prescription. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  48. ACSM. ACSM’s guidelines for exercise testing and prescription. 11th ed. Philadelphia: Lippincott; 2021.

    Google Scholar 

  49. Hecksteden A, Faude O, Meyer T, Donath L. How to construct, conduct and analyze an exercise training study? Front Physiol. 2018;9:1007.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sibbald B, Roberts C. Understanding controlled trials crossover trials. BMJ. 1998;316(7146):1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. ACSM. American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30(6):975–91.

    Google Scholar 

  52. Riebe D, Franklin BA, Thompson PD, Garber CE, Whitfield GP, Magal M, et al. Updating ACSM’s recommendations for exercise preparticipation health screening. Med Sci Sports Exerc. 2015;47(11):2473–9.

    Article  CAS  PubMed  Google Scholar 

  53. Ekkekakis P. Let them roam free? Physiological and psychological evidence for the potential of self-selected exercise intensity in public health. Sports Med. 2009;39(10):857–88.

    Article  PubMed  Google Scholar 

  54. Pohl M, Rockstroh G, Ruckriem S, Mrass G, Mehrholz J. Immediate effects of speed-dependent treadmill training on gait parameters in early Parkinson’s disease. Arch Phys Med Rehabil. 2003;84(12):1760–6.

    Article  PubMed  Google Scholar 

  55. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.

    Article  PubMed  Google Scholar 

  56. Gremeaux M, Hannequin A, Laurent Y, Laroche D, Casillas JM, Gremeaux V. Usefulness of the 6-minute walk test and the 200-metre fast walk test to individualize high intensity interval and continuous exercise training in coronary artery disease patients after acute coronary syndrome: a pilot controlled clinical study. Clin Rehabil. 2011;25(9):844–55.

    Article  CAS  PubMed  Google Scholar 

  57. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.

    Article  PubMed  Google Scholar 

  58. Lixandrao ME, Ugrinowitsch C, Berton R, Vechin FC, Conceicao MS, Damas F, et al. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Med. 2018;48(2):361–78.

    Article  PubMed  Google Scholar 

  59. Grissom RJ, Kim JJ. Effect sizes for research: a broad practical approach. Mahwah: Lawrence Erlbaum; 2005.

    Google Scholar 

  60. Altman DG, Bland JM. Standard deviations and standard errors. BMJ. 2005;331(7521):903.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Faraone SV. Interpreting estimates of treatment effects: implications for managed care. P & T. 2008;33(12):700–11.

    Google Scholar 

  62. Higgins JP, Green S, editors. Cochrane handbook for systematic reviews of interventions. The Cochrane database of systematic reviews. Wiley; 2008. p. 51–79.

    Google Scholar 

  63. Rose MH, Lokkegaard A, Sonne-Holm S, Jensen BR. Improved clinical status, quality of life, and walking capacity in Parkinson’s disease after body weight-supported high-intensity locomotor training. Arch Phys Med Rehabil. 2013;94(4):687–92.

    Article  PubMed  Google Scholar 

  64. Skidmore FM, Patterson SL, Shulman LM, Sorkin JD, Macko RF. Pilot safety and feasibility study of treadmill aerobic exercise in Parkinson disease with gait impairment. J Rehabil Res Dev. 2008;45(1):117–24.

    Article  PubMed  Google Scholar 

  65. Herman T, Giladi N, Gruendlinger L, Hausdorff JM. Six weeks of intensive treadmill training improves gait and quality of life in patients with Parkinson’s disease: a pilot study. Arch Phys Med Rehabil. 2007;88(9):1154–8.

    Article  PubMed  Google Scholar 

  66. Toole T, Maitland CG, Warren E, Hubmann MF, Panton L. The effects of loading and unloading treadmill walking on balance, gait, fall risk, and daily function in Parkinsonism. NeuroRehabilitation. 2005;20(4):307–22.

    Article  PubMed  Google Scholar 

  67. Marusiak J, Fisher BE, Jaskolska A, Slotwinski K, Budrewicz S, Koszewicz M, et al. Eight weeks of aerobic interval training improves psychomotor function in patients with Parkinson’s disease-randomized controlled trial. Int J Environ Res Public Health. 2019;16(5):880.

    Article  PubMed Central  Google Scholar 

  68. Reuter I, Mehnert S, Leone P, Kaps M, Oechsner M, Engelhardt M. Effects of a flexibility and relaxation programme, walking, and nordic walking on Parkinson’s disease. J Aging Res. 2011;2011:232473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Uc EY, Doerschug KC, Magnotta V, Dawson JD, Thomsen TR, Kline JN, et al. Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting. Neurology. 2014;83(5):413–25.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shulman LM, Gruber-Baldini AL, Anderson KE, Fishman PS, Reich SG, Weiner WJ. The clinically important difference on the unified Parkinson’s disease rating scale. Arch Neurol. 2010;67(1):64–70.

    Article  PubMed  Google Scholar 

  71. Vinkers CH, Lamberink HJ, Tijdink JK, Heus P, Bouter L, Glasziou P, et al. The methodological quality of 176,620 randomized controlled trials published between 1966 and 2018 reveals a positive trend but also an urgent need for improvement. PLoS Biol. 2021;19(4):e3001162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Armijo-Olivo S, Dennett L, Arienti C, Dahchi M, Arokoski J, Heinemann AW, et al. Blinding in rehabilitation research: empirical evidence on the association between blinding and treatment effect estimates. Am J Phys Med Rehabil. 2020;99(3):198–209.

    Article  PubMed  Google Scholar 

  73. Boutron I, Tubach F, Giraudeau B, Ravaud P. Methodological differences in clinical trials evaluating nonpharmacological and pharmacological treatments of hip and knee osteoarthritis. JAMA. 2003;290(8):1062–70.

    Article  PubMed  Google Scholar 

  74. Moustgaard H, Clayton GL, Jones HE, Boutron I, Jorgensen L, Laursen DRT, et al. Impact of blinding on estimated treatment effects in randomised clinical trials: meta-epidemiological study. BMJ. 2020;21(368):I6802.

    Article  Google Scholar 

  75. Shu HF, Yang T, Yu SX, Huang HD, Jiang LL, Gu JW, et al. Aerobic exercise for Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2014;9(7):e100503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rossi P, Colosimo C, Moro E, Tonali P, Albanese A. Acute challenge with apomorphine and levodopa in Parkinsonism. Eur Neurol. 2000;43(2):95–101.

    Article  CAS  PubMed  Google Scholar 

  77. Goetz CG, Thelen JA, MacLeod CM, Carvey PM, Bartley EA, Stebbins GT. Blood levodopa levels and unified Parkinson’s disease rating scale function: with and without exercise. Neurology. 1993;43(5):1040–2.

    Article  CAS  PubMed  Google Scholar 

  78. Rascol O. Physical exercise in Parkinson disease: moving toward more robust evidence? Mov Disord. 2013;28(9):1173–5.

    Article  PubMed  Google Scholar 

  79. Cosentino C, Baccini M, Putzolu M, Ristori D, Avanzino L, Pelosin E. Effectiveness of physiotherapy on freezing of gait in Parkinson’s disease: a systematic review and meta-analyses. Mov Disord. 2020;35(4):523–36.

    Article  PubMed  Google Scholar 

  80. Bayona NA, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil. 2005;12(3):58–65.

    Article  PubMed  Google Scholar 

  81. Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task-specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009;16(3–4):175–89.

    Article  PubMed  Google Scholar 

  82. Mackay-Lyons M, McDonald A, Matheson J, Eskes G, Klus MA. Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2013;27(7):644–53.

    Article  PubMed  Google Scholar 

  83. Danielsson A, Sunnerhagen KS. Oxygen consumption during treadmill walking with and without body weight support in patients with hemiparesis after stroke and in healthy subjects. Arch Phys Med Rehabil. 2000;81(7):953–7.

    Article  CAS  PubMed  Google Scholar 

  84. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10(8):734–44.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nutt JG, Horak FB, Bloem BR. Milestones in gait, balance, and falling. Mov Disord. 2011;26(6):1166–74.

    Article  PubMed  Google Scholar 

  86. Kwakkel G, de Goede CJ, van Wegen EE. Impact of physical therapy for Parkinson’s disease: a critical review of the literature. Parkinsonism Relat Disord. 2007;13(Suppl 3):S478–87.

    Article  PubMed  Google Scholar 

  87. Tomlinson CL, Patel S, Meek C, Herd CP, Clarke CE, Stowe R, et al. Physiotherapy versus placebo or no intervention in Parkinson’s disease. Cochrane Database Syst Rev. 2013;9:CD002817.

    Google Scholar 

  88. Frenkel-Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L, Hausdorff JM. Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Mov Disord. 2005;20(9):1109–14.

    Article  PubMed  Google Scholar 

  89. Zanardi APJ, da Silva ES, Costa RR, Passos-Monteiro E, Dos Santos IO, Kruel LFM, et al. Gait parameters of Parkinson’s disease compared with healthy controls: a systematic review and meta-analysis. Sci Rep. 2021;11(1):752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Protas EJ, Mitchell K, Williams A, Qureshy H, Caroline K, Lai EC. Gait and step training to reduce falls in Parkinson’s disease. NeuroRehabilitation. 2005;20(3):183–90.

    Article  PubMed  Google Scholar 

  91. Zanetti C, Schieppati M. Quiet stance control is affected by prior treadmill but not overground locomotion. Eur J Appl Physiol. 2007;100(3):331–9.

    Article  PubMed  Google Scholar 

  92. De Nunzio AM, Zanetti C, Schieppati M. Post-effect of forward and backward locomotion on body orientation in space during quiet stance. Eur J Appl Physiol. 2009;105(2):297–307.

    Article  PubMed  Google Scholar 

  93. Kim A, Schweighofer N, Finley JM. Locomotor skill acquisition in virtual reality shows sustained transfer to the real world. J Neuroeng Rehabil. 2019;16(1):113.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kawashima S, Ueki Y, Kato T, Ito K, Matsukawa N. Reduced striatal dopamine release during motor skill acquisition in Parkinson’s disease. PLoS ONE. 2018;13(5):e0196661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Silva-Batista C, Corcos DM, Barroso R, David FJ, Kanegusuku H, Forjaz C, et al. Instability resistance training improves neuromuscular outcome in Parkinson’s disease. Med Sci Sports Exerc. 2017;49(4):652–60.

    Article  PubMed  Google Scholar 

  96. Hurley BF, Roth SM. Strength training in the elderly: effects on risk factors for age-related diseases. Sports Med. 2000;30(4):249–68.

    Article  CAS  PubMed  Google Scholar 

  97. Shen X, Wong-Yu IS, Mak MK. Effects of exercise on falls, balance, and gait ability in Parkinson’s disease: a meta-analysis. Neurorehabil Neural Repair. 2016;30(6):512–27.

    Article  PubMed  Google Scholar 

  98. Edwards AM, Dutton-Challis L, Cottrell D, Guy JH, Hettinga FJ. Impact of active and passive social facilitation on self-paced endurance and sprint exercise: encouragement augments performance and motivation to exercise. BMJ Open Sport Exerc Med. 2018;4(1):e000368.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Passos-Monteiro E, Peyre-Tartaruga LA, Zanardi APJ, da Silva ES, Jimenez-Reyes P, Morin JB, et al. Sprint exercise for subjects with mild-to-moderate Parkinson’s disease: feasibility and biomechanical outputs. Clin Biomech. 2020;72:69–76.

    Article  Google Scholar 

  100. Schrag A, Dodel R, Spottke A, Bornschein B, Siebert U, Quinn NP. Rate of clinical progression in Parkinson’s disease. A prospective study. Mov Disord. 2007;22(7):938–45.

    Article  PubMed  Google Scholar 

  101. Kanegusuku H, Correia MA, Longano P, Okamoto E, Piemonte MEP, Cucato GG, et al. Cardiovascular, perceived exertion and affective responses during aerobic exercise performed with imposed and a self-selected intensity in patients with Parkinson’s disease. NeuroRehabilitation. 2021;48(3):267–72.

    Article  PubMed  Google Scholar 

  102. Parfitt G, Rose EA, Burgess WM. The psychological and physiological responses of sedentary individuals to prescribed and preferred intensity exercise. Br J Health Psychol. 2006;11(Pt 1):39–53.

    Article  PubMed  Google Scholar 

  103. Madhavan S, Lim H, Sivaramakrishnan A, Iyer P. Effects of high intensity speed-based treadmill training on ambulatory function in people with chronic stroke: a preliminary study with long-term follow-up. Sci Rep. 2019;9(1):1985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Boyne P, Dunning K, Carl D, Gerson M, Khoury J, Rockwell B, et al. High-intensity interval training and moderate-intensity continuous training in ambulatory chronic stroke: feasibility study. Phys Ther. 2016;96(10):1533–44.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pohl M, Mehrholz J, Ritschel C, Ruckriem S. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke. 2002;33(2):553–8.

    Article  PubMed  Google Scholar 

  106. Lau KW, Mak MK. Speed-dependent treadmill training is effective to improve gait and balance performance in patients with sub-acute stroke. J Rehabil Med. 2011;43(8):709–13.

    Article  PubMed  Google Scholar 

  107. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.

    Article  CAS  PubMed  Google Scholar 

  108. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92–8.

    CAS  PubMed  Google Scholar 

  109. Penko AL, Barkley JE, Koop MM, Alberts JL. Borg scale is valid for ratings of perceived exertion for individuals with Parkinson’s disease. Int J Exerc Sci. 2017;10(1):76–86.

    PubMed  PubMed Central  Google Scholar 

  110. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1435–45.

    Article  PubMed  Google Scholar 

  111. O’Callaghan A, Harvey M, Houghton D, Gray WK, Weston KL, Oates LL, et al. Comparing the influence of exercise intensity on brain-derived neurotrophic factor serum levels in people with Parkinson’s disease: a pilot study. Aging Clin Exp Res. 2020;32(9):1731–8.

    Article  PubMed  Google Scholar 

  112. Duchesne C, Gheysen F, Bore A, Albouy G, Nadeau A, Robillard ME, et al. Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson’s disease individuals. NeuroImage Clinical. 2016;12:559–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Duchesne C, Lungu O, Nadeau A, Robillard ME, Bore A, Bobeuf F, et al. Enhancing both motor and cognitive functioning in Parkinson’s disease: aerobic exercise as a rehabilitative intervention. Brain Cogn. 2015;99:68–77.

    Article  CAS  PubMed  Google Scholar 

  114. Kanegusuku H, Silva-Batista C, Pecanha T, Nieuwboer A, Silva ND Jr, Costa LA, et al. Effects of progressive resistance training on cardiovascular autonomic regulation in patients with Parkinson disease: a randomized controlled trial. Arch Phys Med Rehabil. 2017;98(11):2134–41.

    Article  PubMed  Google Scholar 

  115. Kanegusuku H, Silva-Batista C, Pecanha T, Silva-Junior N, Queiroz A, Costa L, et al. Patients with Parkinson disease present high ambulatory blood pressure variability. Clin Physiol Funct Imaging. 2017;37(5):530–5.

    Article  PubMed  Google Scholar 

  116. Espay AJ, Hausdorff JM, Sanchez-Ferro A, Klucken J, Merola A, Bonato P, et al. A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease obtained using mobile health technologies. Mov Disord. 2019;34(5):657–63.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Christiansen C, Moore C, Schenkman M, Kluger B, Kohrt W, Delitto A, et al. Factors associated with ambulatory activity in De Novo Parkinson disease. J Neurol Phys Ther JNPT. 2017;41(2):93–100.

    Article  PubMed  Google Scholar 

  118. Safarpour D, Dale ML, Shah VV, Talman L, Carlson-Kuhta P, Horak FB, et al. Surrogates for rigidity and PIGD MDS-UPDRS subscores using wearable sensors. Gait Posture. 2021;26(91):186–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Silva-Batista.

Ethics declarations

Data availability statement

All data supporting the results of this study are available as Electronic Supplementary Material.

Funding

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa (FAPESP) for financial support. FAPESP under award number 2018/16909–1 for Carla Silva-Batista and CNPq under award numbers 406609/2015–2 and 03085/2015–0 for Carlos Ugrinowitsch. Research reported in this publication was also supported by the Neurological Institute of the Neurological Disorders and Stroke of the National Institutes of Health under award number U01NS11385.

Conflict of interest

Filipe Oliveira de Almeida, Vagner Santana, Daniel M. Corcos, Carlos Ugrinowitsch, and Carla Silva-Batista declare that they have no conflicts of interest relevant to the content of this review.

Author Contributors

FOA and VS conceived the idea. FOA, VS, and CSB led the research team in undertaking the systematic review and meta-analysis. FOA, VS, CU, and CSB selected, extracted and analyzed data. FOA, VS, and CSB were involved in quality appraisal. FOA and VS elaborated the first draft. FOA, VS, DMC, CU, and CSB also drafted the paper, discussed results, and made final edits. All authors provided an important intellectual contribution, approved the final version and agreed on all aspects of the work, ensuring that questions related to the accuracy or integrity of any part of the work were appropriately investigated and resolved.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, F.O., Santana, V., Corcos, D.M. et al. Effects of Endurance Training on Motor Signs of Parkinson’s Disease: A Systematic Review and Meta-Analysis. Sports Med 52, 1789–1815 (2022). https://doi.org/10.1007/s40279-022-01650-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01650-x

Navigation