Skip to main content

Identification of Non-Invasive Exercise Thresholds: Methods, Strategies, and an Online App

Abstract

During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood lactate accumulation (the lactate threshold, LT) and the second the onset of metabolic acidosis (the respiratory compensation point, RCP). The ability to explain why these thresholds occur and how they are identified, non-invasively, from pulmonary gas exchange and ventilatory variables is fundamental to the field of exercise physiology and requisite to the understanding of core concepts including exercise intensity, assessment, prescription, and performance. This review is intended as a unique and comprehensive theoretical and practical resource for instructors, clinicians, researchers, lab technicians, and students at both undergraduate and graduate levels to facilitate the teaching, comprehension, and proper non-invasive identification of exercise thresholds. Specific objectives are to: (1) explain the underlying physiology that produces the LT and RCP; (2) introduce the classic non-invasive measurements by which these thresholds are identified by connecting variable profiles to underlying physiological behaviour; (3) discuss common issues that can obscure threshold detection and strategies to identify and mitigate these challenges; and (4) introduce an online resource to facilitate learning and standard practices. Specific examples of exercise gas exchange and ventilatory data are provided throughout to illustrate these concepts and a novel online application tool designed specifically to identify the estimated LT (θLT) and RCP is introduced. This application is a unique platform for learners to practice skills on real exercise data and for anyone to analyze incremental exercise data for the purpose of identifying θLT and RCP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange A new method for detecting threshold by gas exchange anaerobic. J Appl Physiol. 1986;60:2020–7.

    CAS  PubMed  Google Scholar 

  2. Whipp BJ, Davis JA, Wasserman K. Ventilatory control of the “isocapnic buffering” region in rapidly-incremental exercise. Respir Physiol. 1989;76:357–67.

    CAS  PubMed  Google Scholar 

  3. Wasserman K, Whipp BJ, Koyl SN, Beaver WL, Koyal SK, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35:236–43.

    CAS  PubMed  Google Scholar 

  4. Beaver WL, Wasserman K, Whipp BJ. Bicarbonate buffering of lactic acid generated during exercise. J Appl Physiol. 1986;60:472–8.

    CAS  PubMed  Google Scholar 

  5. Iannetta D, Inglis EC, Mattu AT, Fontana FY, Pogliaghi S, Keir DA, et al. A critical evaluation of current methods for exercise prescription in women and men. Med Sci Sport Exerc. 2020;52:466–73.

    Google Scholar 

  6. Iannetta D, Fontana FY, Maturana FM, Inglis EC, Pogliaghi S, Murias JM, et al. An equation to predict the maximal lactate steady state from ramp-incremental exercise test data in cycling. J Sci Med Sport. 2018;21:1274–80.

    PubMed  Google Scholar 

  7. Iannetta D, Inglis EC, Pogliaghi S, Murias JM, Keir DA. A “step-ramp-step” protocol to identify the maximal metabolic steady state. Med Sci Sport Exerc. 2020;52:2011–9.

    CAS  Google Scholar 

  8. Mezzani A, Hamm LF, Jones AM, McBride PE, Moholdt T, Stone JA, et al. Aerobic exercise intensity assessment and prescription in cardiac rehabilitation. J Cardiopulm Rehabil Prev. 2012;32:327–50.

    PubMed  Google Scholar 

  9. Hansen D, Bonné K, Alders T, Hermans A, Copermans K, Swinnen H, et al. Exercise training intensity determination in cardiovascular rehabilitation: should the guidelines be reconsidered? Eur J Prev Cardiol. 2019;26:1921–8.

    PubMed  Google Scholar 

  10. Galán-Rioja MÁ, González-Mohíno F, Poole DC, González-Ravé JM. Relative proximity of critical power and metabolic/ventilatory thresholds: systematic review and meta-analysis. Sport Med. 2020;50:1771–83.

    Google Scholar 

  11. Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sport Med. 2020;50:1729–56.

    Google Scholar 

  12. Loe H, Steinshamn S, Wisløff U. Cardio-respiratory reference data in 4631 healthy men and women 20–90 years: the HUNT 3 fitness study. PLoS ONE. 2014;9:1–22.

    Google Scholar 

  13. Bossi AH, Lima P, de Lima JP, Hopker J. Laboratory predictors of uphill cycling performance in trained cyclists. J Sports Sci Routledge. 2017;35:1364–71.

    Google Scholar 

  14. Carriere C, Corrà U, Piepoli M, Bonomi A, Merlo M, Barbieri S, et al. Anaerobic threshold and respiratory compensation point identification during cardiopulmonary exercise tests in chronic heart failure. Chest. 2019;156:338–47.

    PubMed  Google Scholar 

  15. Whipp BJ, Ward SA. Determinants and control of breathing during muscular exercise. Br J Sports Med. 1998;32:199–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rossiter HB. Exercise: kinetic consideration for gas exchange. Compr Physiol. 2011;1:203–44.

    PubMed  Google Scholar 

  17. Forster HV, Haouzi P, Dempsey JA. Control of breathing during exercise. Compr Physiol. 2012;2012:743–77.

    Google Scholar 

  18. Poole DC, Rossiter HB, Brooks GA, Gladden LB. The anaerobic threshold: 50+ years of controversy. J Physiol. 2021;599:737–67.

    CAS  PubMed  Google Scholar 

  19. Whipp BJ. Domains of aerobic function and their limiting parameters. In: Steinacker J, Ward S, editors. Physiol Pathophysiol Exerc Toler. New York: Plenum Press; 1996. p. 83–9.

    Google Scholar 

  20. Whipp BJ, Mahler M. Dynamics of pulmonary gas exchange during exercise. In: West JB, editor. Pulm gas exch vol II, org environ. New York: Academic Press; 1980. p. 33–96.

    Google Scholar 

  21. Jones AM, Wilkerson DP, Fulford J. Muscle [phosphocreatine] dynamics following the onset of exercise in humans: the influence of baseline work-rate. J Physiol. 2008;586:889–98.

    CAS  PubMed  Google Scholar 

  22. Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31:1265–79.

    CAS  PubMed  Google Scholar 

  23. Roston WL, Whipp BJ, Davis JA, Cunningham DA, Effros RM, Wasserman K. Oxygen uptake kinetics and lactate concentration during exercise in humans. Am Rev Respir Dis. 1987;135:1080–4.

    CAS  PubMed  Google Scholar 

  24. Burnley M, Jones AM. Power–duration relationship: Physiology, fatigue, and the limits of human performance. Eur J Sport Sci. 2016;3:1–12.

    Google Scholar 

  25. Black MI, Bowtell JL, McDonagh STJ, Blackwell JR, Kelly J, Bailey SJ, et al. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol. 2016;122:446–59.

    PubMed  PubMed Central  Google Scholar 

  26. Scherr J, Wolfarth B, Christle JW, Pressler A, Wagenpfeil S, Halle M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur J Appl Physiol. 2013;113:147–55.

    PubMed  Google Scholar 

  27. Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Critical power testing or self-selected cycling: Which one is the best predictor of maximal metabolic steady-state? J Sci Med Sport. 2017;20:795–9.

    PubMed  Google Scholar 

  28. Murgatroyd SR, Ferguson C, Ward SA, Whipp BJ, Rossiter HB. Pulmonary O2 uptake kinetics as a determinant of high-intensity exercise tolerance in humans. J Appl Physiol. 2011;110:1598–606.

    PubMed  Google Scholar 

  29. Iannetta D, Inglis EC, Fullerton C, Passfield L, Murias JM. Metabolic and performance-related consequences of exercising at and slightly above MLSS. Scand J Med Sci Sport. 2018;28:2481–93.

    Google Scholar 

  30. Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2:933–96.

    PubMed  Google Scholar 

  31. Iannetta D, Keir DA, Fontana FY, Inglis EC, Mattu AT, Paterson DH, et al. Evaluating the accuracy of using fixed ranges of METs to categorize exertional intensity in a heterogeneous group of healthy individuals: implications for cardiorespiratory fitness and health outcomes. Sport Med: Springer International Publishing; 2021.

    Google Scholar 

  32. Whipp BJ, Ward SA, Wasserman K. Respiratory markers of the anaerobic threshold. Adv Cardiol. 1986;35:47–64.

    CAS  PubMed  Google Scholar 

  33. Keir DA, Pogliaghi S, Murias JM. The respiratory compensation point and the deoxygenation break point are valid surrogates for critical power and maximum lactate steady state. Med Sci Sport Exerc. 2018;50:2375–8.

    Google Scholar 

  34. Broxterman RM, Craig JC, Richardson RS. The respiratory compensation point and the deoxygenation break point are not valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50:2379–82.

    PubMed  Google Scholar 

  35. Murias JM, Pogliaghi S, Paterson DH. Measurement of a true \(\dot{V}\)O2max during a ramp incremental test is not confirmed by a verification phase. Front Physiol. 2018;9:1–8.

    Google Scholar 

  36. Wagner PD. Determinants of maximal oxygen transport and utilization. Annu Rev Physiol. 1996;58:21–50.

    CAS  PubMed  Google Scholar 

  37. Mitchell JH, Blomqvist G. Maximal oxygen uptake. N Engl J Med. 1971;1971:1018–22.

    Google Scholar 

  38. Bowen TS, Cannon DT, Begg G, Baliga V, Witte KK, Rossiter HB. A novel cardiopulmonary exercise test protocol and criterion to determine maximal oxygen uptake in chronic heart failure. J Appl Physiol. 2012;113:451–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Iannetta D, de Azevedo RA, Keir DA, Murias JM. Establishing the \(\dot{V}\)O2 versus constant-work rate relationship from ramp-incremental exercise: Simple strategies for an unsolved problem. J Appl Physiol. 2019;127:1519–27.

    PubMed  PubMed Central  Google Scholar 

  40. Scheuermann BW, Kowalchuk JM. Attenuated respiratory compensation during rapidly incremented ramp exercise. Respir Physiol. 1998;114:227–38.

    CAS  PubMed  Google Scholar 

  41. Leo JA, Sabapathy S, Simmonds MJ, Cross TJ. The respiratory compensation point is not a valid surrogate for critical power. Med Sci Sport Exerc. 2017;49:1452–60.

    Google Scholar 

  42. Keir DA, Paterson DH, Kowalchuk JM, Murias JM. Using ramp-incremental \(\dot{V}\)O2 responses for constant-intensity exercise selection. Appl Physiol Nutr Metab. 2018;43:882–92.

    PubMed  Google Scholar 

  43. Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB. Lactate is always the end product of glycolysis. Front Neurosci. 2015;9:1–7.

    Google Scholar 

  44. Garcia CK, Goldstein JL, Pathak RK, Anderson RGW, Brown MS. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 1994;76:865–73.

    CAS  PubMed  Google Scholar 

  45. Billat V, Sirvent P, Py G, Koralsztein J, Mercier J. The Concept of maximal lactate steady state. Sport Med. 2003;33:407–26.

    Google Scholar 

  46. Karlsson J, Diamant B, Saltin B. Muscle metabolites during submaximal and maximal exercise in man. Scand J Clin Lab Invest. 1970;26:385–94.

    CAS  PubMed  Google Scholar 

  47. Jorfeldt L, Juhlin-Dannfelt A, Karlsson J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978;44:350–2.

    CAS  PubMed  Google Scholar 

  48. Stanley WC, Gertz EW, Wisneski JA. Systemic lactate kinetics during graded exercise in man. Am J Physiol Endocrinol Metab. 1985;1985:249.

    Google Scholar 

  49. Duffin J. Role of acid-base balance in the chemoreflex control of breathing. J Appl Physiol. 2005;99:2255–65.

    CAS  PubMed  Google Scholar 

  50. Lindinger MI, Heigenhauser GJF. Effects of gas exchange on acid-base balance. Compr Physiol Compr Physiol. 2012;2:2203–54.

    PubMed  Google Scholar 

  51. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983;61:1444–61.

    CAS  PubMed  Google Scholar 

  52. Jamnick NA, Botella J, Pyne DB, Bishop DJ. Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2peak. PLoS ONE. 2018;13:1–21.

    Google Scholar 

  53. Casaburi R, Barstow TJ, Robinson T, Wasserman K. Influence of work rate on ventilatory and gas exchange kinetics. J Appl Physiol. 1989;67:547–55.

    CAS  PubMed  Google Scholar 

  54. Whipp BJ, Davis JA, Torres F, Wasserman K. A test to determine parameters of aerobic function during exercise. J Appl Physiol. 1981;50:217–21.

    CAS  PubMed  Google Scholar 

  55. Boone J, Bourgois J. The oxygen uptake response to incremental ramp exercise: methodogical and physiological issues. Sport Med. 2012;42:511–26.

    Google Scholar 

  56. Iannetta D, Murias JM, Keir DA. A simple method to quantify the VO2 mean response time of ramp-incremental exercise. Med Sci Sport Exerc. 2019;51:1080–6.

    Google Scholar 

  57. Meyer K, Schwaibold M, Hajric R, Westbrook S, Ebfeld D, Leyk D, et al. Delayed VO2 kinetics during ramp exercise: a criterion for cardiopulmonary exercise capacity in chronic heart failure. Med Sci Sports Exerc. 1998;30:643–8.

    CAS  PubMed  Google Scholar 

  58. Whipp BJ. Physiological mechanisms dissociating pulmonary CO2 and O2 exchange dynamics during exercise in humans. Exp Physiol. 2007;92:347–55.

    CAS  PubMed  Google Scholar 

  59. Ozcelik O, Ward SA, Whipp BJ. Effect of altered body CO2 stores on pulmonary gas exchange dynamics during incremental exercise in humans. Exp Physiol. 1999;84:999–1011.

    CAS  PubMed  Google Scholar 

  60. Bruce RM. The control of ventilation during exercise: a lesson in critical thinking. Adv Physiol Educ. 2017;41:539–47.

    PubMed  Google Scholar 

  61. Calvo JL, Xu H, Mon-López D, Pareja-Galeano H, Jiménez SL. Effect of sodium bicarbonate contribution on energy metabolism during exercise: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2021;18:1–17.

    Google Scholar 

  62. Stringer W, Casaburi R, Wasserman K. Acid-base regulation during exercise and recovery in humans. J Appl Physiol. 1992;72:954–61.

    CAS  PubMed  Google Scholar 

  63. Wasserman K, Beaver WL, Sun X-G, Stringer WW. Arterial H(+) regulation during exercise in humans. Respir Physiol Neurobiol. 2011;178:191–5.

    PubMed  Google Scholar 

  64. Caen K, Pogliaghi S, Lievens M, Vermeire K, Bourgois JG, Boone J. Ramp vs. step tests: valid alternatives to determine the maximal lactate steady-state intensity? Eur J Appl Physiol. 2021;121:1899–907.

    CAS  PubMed  Google Scholar 

  65. Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, et al. Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47:1932–40.

    PubMed  Google Scholar 

  66. Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sport Exerc. 2016;48:2320–34.

    CAS  Google Scholar 

  67. Beneke R, Leithäuser RM, Ochentel O. Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform. 2011;6:8–24.

    PubMed  Google Scholar 

  68. Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P. Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol. 2003;89:281–8.

    CAS  PubMed  Google Scholar 

  69. Broxterman RM, Ade CJ, Craig JC, Wilcox SL, Schlup SJ, Barstow TJ. The relationship between critical speed and the respiratory compensation point: coincidence or equivalence. Eur J Sport Sci. 2015;15:631–9.

    CAS  PubMed  Google Scholar 

  70. Agostoni P, Sciomer S, Palermo P, Contini M, Pezzuto B, Farina S, et al. Minute ventilation/carbon dioxide production in chronic heart failure. Eur Respir Rev. 2021;30:200141.

    PubMed  Google Scholar 

  71. O’Donnell DE, Webb KA. The major limitation to exercise performance in COPD is dynamic hyperinflation. J Appl Physiol. 2008;105:755–7.

    Google Scholar 

  72. Binder RK, Wonisch M, Corra U, Cohen-Solal A, Vanhees L, Saner H, et al. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabil. 2008;15:726–34.

    PubMed  Google Scholar 

  73. Lamarra N, Whipp BJ, Ward SA, Wasserman K. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol. 1987;62:2003–12.

    CAS  PubMed  Google Scholar 

  74. Keir DA, Murias JM, Paterson DH, Kowalchuk JM. Breath-by-breath pulmonary O2 uptake kinetics: effect of data processing on confidence in estimating model parameters. Exp Physiol. 2014;99:1511–22.

    PubMed  Google Scholar 

  75. Agostoni P, Dumitrescu D. How to perform and report a cardiopulmonary exercise test in patients with chronic heart failure. Int J Cardiol. 2019;288:107–13.

    PubMed  Google Scholar 

  76. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:1558–64.

    CAS  PubMed  Google Scholar 

  77. Keir DA, Benson AP, Love LK, Robertson TC, Rossiter HB, Kowalchuk JM. Influence of muscle metabolic heterogeneity in determining the VO2p kinetic response to ramp-incremental exercise. J Appl Physiol. 2016;120:503–13.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Keir.

Ethics declarations

Authors’ contributions

D.A.K. and J.M.M. contributed to conception and design of the article. D.A.K prepared the figures and drafted and revised the manuscript. Exemplary data were collected and analysed by D.A.K. and D.I. The online application was designed by F.M.M. with input from D.A.K., J.M.M., and D.I. All authors contributed to the drafting and revising of the manuscript. All authors approved the final manuscript and agree to be accountable for all aspects of the work.

Funding

The representative data assembled in the figures are the product of a research and equipment grant awarded to J.M.K by the Natural Science and Engineering Research Council of Canada (NSERC; RGP-2015-00084) and to J.M.M by the NSERC (RGPIN-2016-03698) and the Heart and Stroke Foundation of Canada (1047725).

Conflict of interest

Daniel A. Keir, Danilo Iannetta, Felipe Mattioni Maturana, John M. Kowalchuk, and Juan M. Murias declare that they have no conflicts of interest relevant to the content of this review.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 47 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keir, D.A., Iannetta, D., Mattioni Maturana, F. et al. Identification of Non-Invasive Exercise Thresholds: Methods, Strategies, and an Online App. Sports Med 52, 237–255 (2022). https://doi.org/10.1007/s40279-021-01581-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01581-z