Skip to main content

Effects of and Response to Mechanical Loading on the Knee

Abstract

Mechanical loading to the knee joint results in a differential response based on the local capacity of the tissues (ligament, tendon, meniscus, cartilage, and bone) and how those tissues subsequently adapt to that load at the molecular and cellular level. Participation in cutting, pivoting, and jumping sports predisposes the knee to the risk of injury. In this narrative review, we describe different mechanisms of loading that can result in excessive loads to the knee, leading to ligamentous, musculotendinous, meniscal, and chondral injuries or maladaptations. Following injury (or surgery) to structures around the knee, the primary goal of rehabilitation is to maximize the patient’s response to exercise at the current level of function, while minimizing the risk of re-injury to the healing tissue. Clinicians should have a clear understanding of the specific injured tissue(s), and rehabilitation should be driven by knowledge of tissue-healing constraints, knee complex and lower extremity biomechanics, neuromuscular physiology, task-specific activities involving weight-bearing and non-weight-bearing conditions, and training principles. We provide a practical application for prescribing loading progressions of exercises, functional activities, and mobility tasks based on their mechanical load profile to knee-specific structures during the rehabilitation process. Various loading interventions can be used by clinicians to produce physical stress to address body function, physical impairments, activity limitations, and participation restrictions. By modifying the mechanical load elements, clinicians can alter the tissue adaptations, facilitate motor learning, and resolve corresponding physical impairments. Providing different loads that create variable tensile, compressive, and shear deformation on the tissue through mechanotransduction and specificity can promote the appropriate stress adaptations to increase tissue capacity and injury tolerance. Tools for monitoring rehabilitation training loads to the knee are proposed to assess the reactivity of the knee joint to mechanical loading to monitor excessive mechanical loads and facilitate optimal rehabilitation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. United States Bone and Joint Initiative. The burden of musculoskeletal diseases in the United States: prevalence, societal and economic costs (BMUS); 2014.

  2. Mihata LC, Beutler AI, Boden BP. Comparing the incidence of anterior cruciate ligament injury in collegiate lacrosse, soccer, and basketball players: implications for anterior cruciate ligament mechanism and prevention. Am J Sports Med. 2006;34(6):899–904.

    PubMed  Article  Google Scholar 

  3. Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: a 10-year study. Knee. 2006;13(3):184–8.

    CAS  PubMed  Article  Google Scholar 

  4. Nicolini AP, de Carvalho RT, Matsuda MM, Sayum JF, Cohen M. Common injuries in athletes’ knee: experience of a specialized center. Acta Ortop Bras. 2014;22(3):127–31.

    PubMed  PubMed Central  Article  Google Scholar 

  5. Hewett TE, Myer GD, Ford KR, Paterno MV, Quatman CE. Mechanisms, prediction, and prevention of ACL injuries: cut risk with three sharpened and validated tools. J Orthop Res. 2016;34(11):1843–55.

    PubMed  PubMed Central  Article  Google Scholar 

  6. Eckstein F, Tieschky M, Faber SC, Haubner M, Kolem H, Englmeier KH, et al. Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiology. 1998;207(1):243–8.

    CAS  PubMed  Article  Google Scholar 

  7. Lu TW, Chang CF. Biomechanics of human movement and its clinical applications. Kaohsiung J Med Sci. 2012;28(2 Suppl.):S13-25.

    PubMed  Article  Google Scholar 

  8. Verheul J, Nedergaard NJ, Vanrenterghem J, Robinson MA. Measuring biomechanical loads in team sports: from lab to field. Sci Med Football. 2020;4(3):246–52.

    Article  Google Scholar 

  9. Kalkhoven JT, Watsford ML, Impellizzeri FM. A conceptual model and detailed framework for stress-related, strain-related, and overuse athletic injury. J Sci Med Sport. 2020;23(8):726–34.

    PubMed  Article  Google Scholar 

  10. McIntosh AS. Risk compensation, motivation, injuries, and biomechanics in competitive sport. Br J Sports Med. 2005;39(1):2–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Payne T, Mitchell S, Halkon B, Bibb R. A systematic approach to the characterisation of human impact injury scenarios in sport. BMJ Open Sport Exerc Med. 2016;2(1):e000017.

    PubMed  PubMed Central  Article  Google Scholar 

  12. Agel J, Rockwood T, Klossner D. Collegiate ACL injury rates across 15 sports: National Collegiate Athletic Association Injury Surveillance System data update (2004–2005 through 2012–2013). Clin J Sport Med. 2016;26(6):518–23.

    PubMed  Article  Google Scholar 

  13. Montalvo AM, Schneider DK, Webster KE, Yut L, Galloway MT, Heidt RS Jr, et al. Anterior cruciate ligament injury risk in sport: a systematic review and meta-analysis of injury incidence by sex and sport classification. J Athl Train. 2019;54(5):472–82.

    PubMed  PubMed Central  Article  Google Scholar 

  14. Shimokochi Y, Shultz SJ. Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train. 2008;43(4):396–408.

    PubMed  PubMed Central  Article  Google Scholar 

  15. Koga H, Nakamae A, Shima Y, Bahr R, Krosshaug T. Hip and ankle kinematics in noncontact anterior cruciate ligament injury situations: video analysis using model-based image matching. Am J Sports Med. 2018;46(2):333–40.

    PubMed  Article  Google Scholar 

  16. Navacchia A, Bates NA, Schilaty ND, Krych AJ, Hewett TE. Knee abduction and internal rotation moments increase ACL force during landing through the posterior slope of the tibia. J Orthop Res. 2019;37(8):1730–42.

    PubMed  PubMed Central  Article  Google Scholar 

  17. Carlson VR, Sheehan FT, Boden BP. Video analysis of anterior cruciate ligament (ACL) injuries: a systematic review. JBJS Rev. 2016;4(11):e5.

    PubMed  PubMed Central  Article  Google Scholar 

  18. Walden M, Krosshaug T, Bjorneboe J, Andersen TE, Faul O, Hagglund M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Br J Sports Med. 2015;49(22):1452–60.

    PubMed  Article  Google Scholar 

  19. Bere T, Florenes TW, Krosshaug T, Koga H, Nordsletten L, Irving C, et al. Mechanisms of anterior cruciate ligament injury in World Cup alpine skiing: a systematic video analysis of 20 cases. Am J Sports Med. 2011;39(7):1421–9.

    PubMed  Article  Google Scholar 

  20. Pearson SJ, Hussain SR. Region-specific tendon properties and patellar tendinopathy: a wider understanding. Sports Med. 2014;44(8):1101–12.

    PubMed  Article  Google Scholar 

  21. Ferretti A, Papandrea P, Conteduca F. Knee injuries in volleyball. Sports Med. 1990;10(2):132–8.

    CAS  PubMed  Article  Google Scholar 

  22. Lian OB, Engebretsen L, Bahr R. Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study. Am J Sports Med. 2005;33(4):561–7.

    PubMed  Article  Google Scholar 

  23. Lavagnino M, Wall ME, Little D, Banes AJ, Guilak F, Arnoczky SP. Tendon mechanobiology: current knowledge and future research opportunities. J Orthop Res. 2015;33(6):813–22.

    PubMed  PubMed Central  Article  Google Scholar 

  24. Elvin N, Elvin A, Scheffer C, Arnoczky S, Dillon E, Erasmus PJ. A preliminary study of patellar tendon torques during jumping. J Appl Biomech. 2009;25(4):360–8.

    PubMed  Article  Google Scholar 

  25. Janssen I, Steele JR, Munro BJ, Brown NA. Predicting the patellar tendon force generated when landing from a jump. Med Sci Sports Exerc. 2013;45(5):927–34.

    PubMed  Article  Google Scholar 

  26. Richards DP, Ajemian SV, Wiley JP, Zernicke RF. Knee joint dynamics predict patellar tendinitis in elite volleyball players. Am J Sports Med. 1996;24(5):676–83.

    CAS  PubMed  Article  Google Scholar 

  27. Bowen L, Gross AS, Gimpel M, Li FX. Accumulated workloads and the acute:chronic workload ratio relate to injury risk in elite youth football players. Br J Sports Med. 2017;51(5):452–9.

    PubMed  Article  Google Scholar 

  28. Gabbett TJ. How much? How fast? How soon? Three simple concepts for progressing training loads to minimize injury risk and enhance performance. J Orthop Sports Phys Ther. 2020;50(10):570–3.

    PubMed  Article  Google Scholar 

  29. O’Connor DP, Laughlin MS, Woods GW. Factors related to additional knee injuries after anterior cruciate ligament injury. Arthroscopy. 2005;21(4):431–8.

    PubMed  Article  Google Scholar 

  30. Englund M, Guermazi A, Lohmander SL. The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin North Am. 2009;47(4):703–12.

    PubMed  Article  Google Scholar 

  31. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. McDermott ID. (ii) Meniscal tears. Curr Orthop. 2006;20(2):85–94.

    Article  Google Scholar 

  33. Johnson-Nurse C, Dandy DJ. Fracture-separation of articular cartilage in the adult knee. J Bone Jt Surg Br. 1985;67(1):42–3.

    CAS  Article  Google Scholar 

  34. Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee. 2007;14(3):177–82.

    CAS  PubMed  Article  Google Scholar 

  35. Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther. 1998;28(4):192–202.

    CAS  PubMed  Article  Google Scholar 

  36. Clements KM, Bee ZC, Crossingham GV, Adams MA, Sharif M. How severe must repetitive loading be to kill chondrocytes in articular cartilage? Osteoarthr Cartil. 2001;9(5):499–507.

    CAS  Article  Google Scholar 

  37. D’Lima DD, Hashimoto S, Chen PC, Colwell CW Jr, Lotz MK. Human chondrocyte apoptosis in response to mechanical injury. Osteoarthr Cartil. 2001;9(8):712–9.

    CAS  Article  Google Scholar 

  38. Loening AM, James IE, Levenston ME, Badger AM, Frank EH, Kurz B, et al. Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis. Arch Biochem Biophys. 2000;381(2):205–12.

    CAS  PubMed  Article  Google Scholar 

  39. Buckwalter JA, Anderson DD, Brown TD, Tochigi Y, Martin JA. The roles of mechanical stresses in the pathogenesis of osteoarthritis: implications for treatment of joint injuries. Cartilage. 2013;4(4):286–94.

    PubMed  PubMed Central  Article  Google Scholar 

  40. Nielsen RO, Bertelsen ML, Moller M, Hulme A, Windt J, Verhagen E, et al. Training load and structure-specific load: applications for sport injury causality and data analyses. Br J Sports Med. 2018;52(16):1016–7.

    PubMed  Article  Google Scholar 

  41. McCarthy MM, Hannafin JA. The mature athlete: aging tendon and ligament. Sports Health. 2014;6(1):41–8.

    PubMed  PubMed Central  Article  Google Scholar 

  42. Dye SF. The knee as a biologic transmission with an envelope of function: a theory. Clin Orthop Relat Res. 1996;325:10–8.

    Article  Google Scholar 

  43. Gabbett T, Sancho I, Dingenen B, Willy RW. When progressing training loads, what are the considerations for healthy and injured athletes? Br J Sports Med. 2021;55(17):947–8.

    PubMed  Article  Google Scholar 

  44. Mueller MJ, Maluf KS. Tissue adaptation to physical stress: a proposed “Physical Stress Theory” to guide physical therapist practice, education, and research. Phys Ther. 2002;82(4):383–403.

    PubMed  Article  Google Scholar 

  45. Cunanan AJ, DeWeese BH, Wagle JP, Carroll KM, Sausaman R, Hornsby WG 3rd, et al. The general adaptation syndrome: a foundation for the concept of periodization. Sports Med. 2018;48(4):787–97.

    PubMed  Article  Google Scholar 

  46. Sasso JP, Eves ND, Christensen JF, Koelwyn GJ, Scott J, Jones LW. A framework for prescription in exercise-oncology research. J Cachexia Sarcopenia Muscle. 2015;6(2):115–24.

    PubMed  PubMed Central  Google Scholar 

  47. Cook JL, Docking SI. Rehabilitation will increase the 'capacity' of your ... insert musculoskeletal tissue here ...." Defining 'tissue capacity': a core concept for clinicians. Br J Sports Med. 2015;49(23):1484–5.

  48. Bittencourt NFN, Meeuwisse WH, Mendonca LD, Nettel-Aguirre A, Ocarino JM, Fonseca ST. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition-narrative review and new concept. Br J Sports Med. 2016;50(21):1309–14.

    CAS  PubMed  Article  Google Scholar 

  49. Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273–80.

    PubMed  Article  Google Scholar 

  50. Glasgow P. Exercise prescription: bridging the gap to clinical practice. Br J Sports Med. 2015;49(5):277.

    PubMed  Article  Google Scholar 

  51. Meeuwisse WH, Tyreman H, Hagel B, Emery C. A dynamic model of etiology in sport injury: the recursive nature of risk and causation. Clin J Sport Med. 2007;17(3):215–9.

    PubMed  Article  Google Scholar 

  52. Huang C, Holfeld J, Schaden W, Orgill D, Ogawa R. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol Med. 2013;19(9):555–64.

    PubMed  Article  Google Scholar 

  53. Thompson WR, Scott A, Loghmani MT, Ward SR, Warden SJ. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys Ther. 2016;96(4):560–9.

    PubMed  Article  Google Scholar 

  54. Khan KM, Scott A. Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br J Sports Med. 2009;43(4):247–52.

    CAS  PubMed  Article  Google Scholar 

  55. Chen JH, Liu C, You L, Simmons CA. Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone. J Biomech. 2010;43(1):108–18.

    PubMed  Article  Google Scholar 

  56. McNulty AL, Guilak F. Mechanobiology of the meniscus. J Biomech. 2015;48(8):1469–78.

    PubMed  PubMed Central  Article  Google Scholar 

  57. Musumeci G. The effect of mechanical loading on articular cartilage. J Funct Morphol Kinesiol. 2016;1(2):154–61.

    Article  Google Scholar 

  58. Selye H. Stress and the general adaptation syndrome. Br Med J. 1950;1(4667):1383–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Frank CB. Ligament structure, physiology and function. J Musculoskelet Neuronal Interact. 2004;4(2):199–201.

    CAS  PubMed  Google Scholar 

  60. Vereeke EA. Orthopaedic knowledge update 8. Rosemont (IL): American Academy of Orthopaedic Surgeons; 2005.

  61. Amiel DEA. Repetitive motion disorders of the upper extremity: effect of loading on metabolism and repair of tendons and ligaments. Rosemont (IL): American Academy of Orthopaedic Surgeons; 1995.

  62. DE Hauser RA. Ligament injury and healing: an overview of current clinical concepts. J Prolotherapy. 2011;3(4):836–46.

    Google Scholar 

  63. Thornton GM, Leask GP, Shrive NG, Frank CB. Early medial collateral ligament scars have inferior creep behaviour. J Orthop Res. 2000;18(2):238–46.

    CAS  PubMed  Article  Google Scholar 

  64. Frank C, Shrive N, Hiraoka H, Nakamura N, Kaneda Y, Hart D. Optimisation of the biology of soft tissue repair. J Sci Med Sport. 1999;2(3):190–210.

    CAS  PubMed  Article  Google Scholar 

  65. Jack EA. Experimental rupture of the medial collateral ligament of the knee. J Bone Jt Surg Br. 1950;32-B(3):396–402.

    CAS  Article  Google Scholar 

  66. Plaas AH, Wong-Palms S, Koob T, Hernandez D, Marchuk L, Frank CB. Proteoglycan metabolism during repair of the ruptured medial collateral ligament in skeletally mature rabbits. Arch Biochem Biophys. 2000;374(1):35–41.

    CAS  PubMed  Article  Google Scholar 

  67. Woo SL, Abramowitch SD, Kilger R, Liang R. Biomechanics of knee ligaments: injury, healing, and repair. J Biomech. 2006;39(1):1–20.

    PubMed  Article  Google Scholar 

  68. Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S. Where tendons and ligaments meet bone: attachment sites ('entheses’) in relation to exercise and/or mechanical load. J Anat. 2006;208(4):471–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Woo SL, Debski RE, Zeminski J, Abramowitch SD, Saw SS, Fenwick JA. Injury and repair of ligaments and tendons. Annu Rev Biomed Eng. 2000;2:83–118.

    CAS  PubMed  Article  Google Scholar 

  70. Bray RC, Shrive NG, Frank CB, Chimich DD. The early effects of joint immobilization on medial collateral ligament healing in an ACL-deficient knee: a gross anatomic and biomechanical investigation in the adult rabbit model. J Orthop Res. 1992;10(2):157–66.

    CAS  PubMed  Article  Google Scholar 

  71. Hart DP, Dahners LE. Healing of the medial collateral ligament in rats: the effects of repair, motion, and secondary stabilizing ligaments. J Bone Jt Surg Am. 1987;69(8):1194–9.

    CAS  Article  Google Scholar 

  72. Inoue M, McGurk-Burleson E, Hollis JM, Woo SL. Treatment of the medial collateral ligament injury. I. The importance of anterior cruciate ligament on the varus-valgus knee laxity. Am J Sports Med. 1987;15(1):15–21.

    CAS  PubMed  Article  Google Scholar 

  73. Ogata K, Whiteside LA, Andersen DA. The intra-articular effect of various postoperative managements following knee ligament repair: an experimental study in dogs. Clin Orthop Relat Res. 1980;150:271–6.

    Article  Google Scholar 

  74. Piper TL, Whiteside LA. Early mobilization after knee ligament repair in dogs: an experimental study. Clin Orthop Relat Res. 1980;150:277–82.

    Article  Google Scholar 

  75. Scheffler SU, Clineff TD, Papageorgiou CD, Debski RE, Ma CB, Woo SL. Structure and function of the healing medial collateral ligament in a goat model. Ann Biomed Eng. 2001;29(2):173–80.

    CAS  PubMed  Article  Google Scholar 

  76. Yamaji T, Levine RE, Woo SL, Niyibizi C, Kavalkovich KW, Weaver-Green CM. Medial collateral ligament healing one year after a concurrent medial collateral ligament and anterior cruciate ligament injury: an interdisciplinary study in rabbits. J Orthop Res. 1996;14(2):223–7.

    CAS  PubMed  Article  Google Scholar 

  77. Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR Jr. What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review. Clin Orthop Relat Res. 2017;475(10):2412–26.

    PubMed  PubMed Central  Article  Google Scholar 

  78. Race A, Amis AA. The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech. 1994;27(1):13–24.

    CAS  PubMed  Article  Google Scholar 

  79. Magnusson SP, Narici MV, Maganaris CN, Kjaer M. Human tendon behaviour and adaptation, in vivo. J Physiol. 2008;586(1):71–81.

    CAS  PubMed  Article  Google Scholar 

  80. Wang JH. Mechanobiology of tendon. J Biomech. 2006;39(9):1563–82.

    PubMed  Article  Google Scholar 

  81. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84(2):649–98.

    CAS  PubMed  Article  Google Scholar 

  82. Wang JH, Komatsu I. Tendon stem cells: mechanobiology and development of tendinopathy. Adv Exp Med Biol. 2016;920:53–62.

    CAS  PubMed  Article  Google Scholar 

  83. Scott A, Cook JL, Hart DA, Walker DC, Duronio V, Khan KM. Tenocyte responses to mechanical loading in vivo: a role for local insulin-like growth factor 1 signaling in early tendinosis in rats. Arthritis Rheum. 2007;56(3):871–81.

    CAS  PubMed  Article  Google Scholar 

  84. Miller BF, Olesen JL, Hansen M, Dossing S, Crameri RM, Welling RJ, et al. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol. 2005;567(Pt 3):1021–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, et al. From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports. 2009;19(4):500–10.

    CAS  PubMed  Article  Google Scholar 

  86. Heinemeier KM, Olesen JL, Haddad F, Langberg H, Kjaer M, Baldwin KM, et al. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types. J Physiol. 2007;582(Pt 3):1303–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Eyre DR, Paz MA, Gallop PM. Cross-linking in collagen and elastin. Annu Rev Biochem. 1984;53:717–48.

    CAS  PubMed  Article  Google Scholar 

  88. Arampatzis A, Karamanidis K, Albracht K. Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol. 2007;210(Pt 15):2743–53.

    PubMed  Article  Google Scholar 

  89. Kongsgaard M, Reitelseder S, Pedersen TG, Holm L, Aagaard P, Kjaer M, et al. Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol (Oxf). 2007;191(2):111–21.

    CAS  Article  Google Scholar 

  90. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219(1):1–9.

    CAS  PubMed  Article  Google Scholar 

  91. Docking SI, Cook J. How do tendons adapt? Going beyond tissue responses to understand positive adaptation and pathology development: a narrative review. J Musculoskelet Neuronal Interact. 2019;19(3):300–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang J, Wang JH. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res. 2010;28(5):639–43.

    PubMed  Article  Google Scholar 

  93. de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV. Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol. 2007;583(Pt 3):1079–91.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Herwig J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis. 1984;43(4):635–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res. 1990;252:19–31.

    Article  Google Scholar 

  96. McDevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res. 1990;252:8–18.

    Article  Google Scholar 

  97. Vaben C, Heinemeier KM, Schjerling P, Olsen J, Petersen MM, Kjaer M, et al. No detectable remodelling in adult human menisci: an analysis based on the C(14) bomb pulse. Br J Sports Med. 2020;54(23):1433–7.

    PubMed  Article  Google Scholar 

  98. Subburaj K, Kumar D, Souza RB, Alizai H, Li X, Link TM, et al. The acute effect of running on knee articular cartilage and meniscus magnetic resonance relaxation times in young healthy adults. Am J Sports Med. 2012;40(9):2134–41.

    PubMed  PubMed Central  Article  Google Scholar 

  99. Diermeier T, Beitzel K, Bachmann L, Petersen W, Esefeld K, Wortler K, et al. Mountain ultramarathon results in temporary meniscus extrusion in healthy athletes. Knee Surg Sports Traumatol Arthrosc. 2019;27(8):2691–7.

    PubMed  Article  Google Scholar 

  100. Willinger L, Lang JJ, von Deimling C, Diermeier T, Petersen W, Imhoff AB, et al. Varus alignment increases medial meniscus extrusion and peak contact pressure: a biomechanical study. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1092–8.

    PubMed  Article  Google Scholar 

  101. Willinger L, Lang JJ, Berthold D, Muench LN, Achtnich A, Forkel P, et al. Varus alignment aggravates tibiofemoral contact pressure rise after sequential medial meniscus resection. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1055–63.

    PubMed  Article  Google Scholar 

  102. Bick F, Iffland Y, Zimmermann E, Welsch F, Hoffmann R, Stein T. The medial open-wegde osteotomy generates progressive intrameniscal integrity changes in the lateral knee compartment: a prospective MR-assessment after valgic osteotomy in the varus gonarthritic knee. Knee Surg Sports Traumatol Arthrosc. 2019;27(4):1339–46.

    CAS  PubMed  Article  Google Scholar 

  103. Liu B, Lad NK, Collins AT, Ganapathy PK, Utturkar GM, McNulty AL, et al. In vivo tibial cartilage strains in regions of cartilage-to-cartilage contact and cartilage-to-meniscus contact in response to walking. Am J Sports Med. 2017;45(12):2817–23.

    PubMed  PubMed Central  Article  Google Scholar 

  104. Sanchez-Adams J, Willard VP, Athanasiou KA. Regional variation in the mechanical role of knee meniscus glycosaminoglycans. J Appl Physiol (1985). 2011;111(6):1590–6.

    CAS  Article  Google Scholar 

  105. Parkkinen JJ, Ikonen J, Lammi MJ, Laakkonen J, Tammi M, Helminen HJ. Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys. 1993;300(1):458–65.

    CAS  PubMed  Article  Google Scholar 

  106. Roos EM, Dahlberg L. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum. 2005;52(11):3507–14.

    CAS  PubMed  Article  Google Scholar 

  107. Lu XL, Sun DD, Guo XE, Chen FH, Lai WM, Mow VC. Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage. Ann Biomed Eng. 2004;32(3):370–9.

    PubMed  Article  Google Scholar 

  108. Pangborn CA, Athanasiou KA. Effects of growth factors on meniscal fibrochondrocytes. Tissue Eng. 2005;11(7–8):1141–8.

    CAS  PubMed  Article  Google Scholar 

  109. Pangborn CA, Athanasiou KA. Growth factors and fibrochondrocytes in scaffolds. J Orthop Res. 2005;23(5):1184–90.

    CAS  PubMed  Article  Google Scholar 

  110. Collier S, Ghosh P. Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthr Cartil. 1995;3(2):127–38.

    CAS  Article  Google Scholar 

  111. Pedrini-Mille A, Pedrini VA, Maynard JA, Vailas AC. Response of immature chicken meniscus to strenuous exercise: biochemical studies of proteoglycan and collagen. J Orthop Res. 1988;6(2):196–204.

    CAS  PubMed  Article  Google Scholar 

  112. Videman T, Eronen I, Friman C, Langenskiold A. Glycosaminoglycan metabolism of the medial meniscus, the medial collateral ligament and the hip joint capsule in experimental osteoarthritis caused by immobilization of the rabbit knee. Acta Orthop Scand. 1979;50(4):465–70.

    CAS  PubMed  Article  Google Scholar 

  113. Djurasovic M, Aldridge JW, Grumbles R, Rosenwasser MP, Howell D, Ratcliffe A. Knee joint immobilization decreases aggrecan gene expression in the meniscus. Am J Sports Med. 1998;26(3):460–6.

    CAS  PubMed  Article  Google Scholar 

  114. Dowdy PA, Miniaci A, Arnoczky SP, Fowler PJ, Boughner DR. The effect of cast immobilization on meniscal healing: an experimental study in the dog. Am J Sports Med. 1995;23(6):721–8.

    CAS  PubMed  Article  Google Scholar 

  115. Ferretti M, Srinivasan A, Deschner J, Gassner R, Baliko F, Piesco N, et al. Anti-inflammatory effects of continuous passive motion on meniscal fibrocartilage. J Orthop Res. 2005;23(5):1165–71.

    PubMed  PubMed Central  Article  Google Scholar 

  116. Rodeo SA, Monibi F, Dehghani B, Maher S. Biological and mechanical predictors of meniscus function: basic science to clinical translation. J Orthop Res. 2020;38(5):937–45.

    PubMed  Article  Google Scholar 

  117. Loprinzi PD, Cardinal BJ, Loprinzi KL, Lee H. Benefits and environmental determinants of physical activity in children and adolescents. Obes Facts. 2012;5(4):597–610.

    PubMed  Article  Google Scholar 

  118. Hunter CJ, Imler SM, Malaviya P, Nerem RM, Levenston ME. Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials. 2002;23(4):1249–59.

    CAS  PubMed  Article  Google Scholar 

  119. Vanwanseele B, Eckstein F, Knecht H, Stussi E, Spaepen A. Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum. 2002;46(8):2073–8.

    CAS  PubMed  Article  Google Scholar 

  120. Palmoski MJ, Brandt KD. Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheumatol. 1984;27(6):675–81.

    CAS  Article  Google Scholar 

  121. Urban JP, Hall AC, Gehl KA. Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J Cell Physiol. 1993;154(2):262–70.

    CAS  PubMed  Article  Google Scholar 

  122. Hall AC, Urban JP, Gehl KA. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res. 1991;9(1):1–10.

    CAS  PubMed  Article  Google Scholar 

  123. Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD. Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res. 1989;7(5):619–36.

    CAS  PubMed  Article  Google Scholar 

  124. Guilak F, Meyer BC, Ratcliffe A, Mow VC. The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthr Cartil. 1994;2(2):91–101.

    CAS  Article  Google Scholar 

  125. Wong M, Siegrist M, Cao X. Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol. 1999;18(4):391–9.

    CAS  PubMed  Article  Google Scholar 

  126. Elder SH, Kimura JH, Soslowsky LJ, Lavagnino M, Goldstein SA. Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells. J Orthop Res. 2000;18(1):78–86.

    CAS  PubMed  Article  Google Scholar 

  127. Burton-Wurster N, Vernier-Singer M, Farquhar T, Lust G. Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J Orthop Res. 1993;11(5):717–29.

    CAS  PubMed  Article  Google Scholar 

  128. Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci. 1998;111(Pt 5):573–83.

  129. Buschmann MD, Kim YJ, Wong M, Frank E, Hunziker EB, Grodzinsky AJ. Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch Biochem Biophys. 1999;366(1):1–7.

    CAS  PubMed  Article  Google Scholar 

  130. Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res. 1999;17(1):130–8.

    CAS  PubMed  Article  Google Scholar 

  131. Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE, et al. Modulation of the mechanical properties of tissue engineered cartilage. Biorheology. 2000;37(1–2):141–7.

    CAS  PubMed  Google Scholar 

  132. Gooch KJ, Blunk T, Courter DL, Sieminski AL, Bursac PM, Vunjak-Novakovic G, et al. IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem Biophys Res Commun. 2001;286(5):909–15.

    CAS  PubMed  Article  Google Scholar 

  133. Torzilli PA, Grigiene R, Huang C, Friedman SM, Doty SB, Boskey AL, et al. Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J Biomech. 1997;30(1):1–9.

    CAS  PubMed  Article  Google Scholar 

  134. Fitzgerald JB, Jin M, Dean D, Wood DJ, Zheng MH, Grodzinsky AJ. Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. J Biol Chem. 2004;279(19):19502–11.

    CAS  PubMed  Article  Google Scholar 

  135. Ragan PM, Chin VI, Hung HH, Masuda K, Thonar EJ, Arner EC, et al. Chondrocyte extracellular matrix synthesis and turnover are influenced by static compression in a new alginate disk culture system. Arch Biochem Biophys. 2000;383(2):256–64.

    CAS  PubMed  Article  Google Scholar 

  136. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995;108(Pt 4):1497–508.

    CAS  PubMed  Article  Google Scholar 

  137. Lee DA, Bader DL. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res. 1997;15(2):181–8.

    PubMed  Article  Google Scholar 

  138. Grumbles RM, Howell DS, Howard GA, Roos BA, Setton LA, Mow VC, et al. Cartilage metalloproteases in disuse atrophy. J Rheumatol Suppl. 1995;43:146–8.

    CAS  PubMed  Google Scholar 

  139. Kim YJ, Bonassar LJ, Grodzinsky AJ. The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J Biomech. 1995;28(9):1055–66.

    CAS  PubMed  Article  Google Scholar 

  140. Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J Orthop Res. 2003;21(4):590–6.

    CAS  PubMed  Article  Google Scholar 

  141. Urban JP. The chondrocyte: a cell under pressure. Br J Rheumatol. 1994;33(10):901–8.

    CAS  PubMed  Article  Google Scholar 

  142. Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM. Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng. 2001;29(6):476–82.

    CAS  PubMed  Article  Google Scholar 

  143. Newton PM, Mow VC, Gardner TR, Buckwalter JA, Albright JP. Winner of the 1996 Cabaud Award: the effect of lifelong exercise on canine articular cartilage. Am J Sports Med. 1997;25(3):282–7.

    CAS  PubMed  Article  Google Scholar 

  144. Kiviranta I, Tammi M, Jurvelin J, Arokoski J, Saamanen AM, Helminen HJ. Articular cartilage thickness and glycosaminoglycan distribution in the canine knee joint after strenuous running exercise. Clin Orthop Relat Res. 1992;283:302–8.

    Article  Google Scholar 

  145. Kiviranta I, Tammi M, Jurvelin J, Saamanen AM, Helminen HJ. Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J Orthop Res. 1988;6(2):188–95.

    CAS  PubMed  Article  Google Scholar 

  146. Kiviranta I, Jurvelin J, Tammi M, Saamanen AM, Helminen HJ. Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheumatol. 1987;30(7):801–9.

    CAS  Article  Google Scholar 

  147. Gratzke C, Hudelmaier M, Hitzl W, Glaser C, Eckstein F. Knee cartilage morphologic characteristics and muscle status of professional weight lifters and sprinters: a magnetic resonance imaging study. Am J Sports Med. 2007;35(8):1346–53.

    PubMed  Article  Google Scholar 

  148. Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, et al. In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis. 2005;64(2):291–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. Mosher TJ, Liu Y, Torok CM. Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running. Osteoarthr Cartil. 2010;18(3):358–64.

    CAS  Article  Google Scholar 

  150. Kessler MA, Glaser C, Tittel S, Reiser M, Imhoff AB. Recovery of the menisci and articular cartilage of runners after cessation of exercise: additional aspects of in vivo investigation based on 3-dimensional magnetic resonance imaging. Am J Sports Med. 2008;36(5):966–70.

    PubMed  Article  Google Scholar 

  151. Kessler MA, Glaser C, Tittel S, Reiser M, Imhoff AB. Volume changes in the menisci and articular cartilage of runners: an in vivo investigation based on 3-D magnetic resonance imaging. Am J Sports Med. 2006;34(5):832–6.

    PubMed  Article  Google Scholar 

  152. Harkey MS, Blackburn JT, Hackney AC, Lewek MD, Schmitz RJ, Nissman D, et al. Comprehensively assessing the acute femoral cartilage response and recovery after walking and drop-landing: an ultrasonographic study. Ultrasound Med Biol. 2018;44(2):311–20.

    PubMed  Article  Google Scholar 

  153. Gatti AA, Noseworthy MD, Stratford PW, Brenneman EC, Totterman S, Tamez-Pena J, et al. Acute changes in knee cartilage transverse relaxation time after running and bicycling. J Biomech. 2017;28(53):171–7.

    Article  Google Scholar 

  154. Hoessly ML, Wildi LM. Magnetic resonance imaging findings in the knee before and after long-distance running: documentation of irreversible structural damage? A systematic review. Am J Sports Med. 2017;45(5):1206–17.

    PubMed  Article  Google Scholar 

  155. Eckstein F, Tieschky M, Faber S, Englmeier KH, Reiser M. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anat Embryol (Berl). 1999;200(4):419–24.

    CAS  Article  Google Scholar 

  156. Eckstein F, Lemberger B, Stammberger T, Englmeier KH, Reiser M. Patellar cartilage deformation in vivo after static versus dynamic loading. J Biomech. 2000;33(7):819–25.

    CAS  PubMed  Article  Google Scholar 

  157. Palmoski MJ, Colyer RA, Brandt KD. Joint motion in the absence of normal loading does not maintain normal articular cartilage. Arthritis Rheumatol. 1980;23(3):325–34.

    CAS  Article  Google Scholar 

  158. Arokoski JP, Jurvelin JS, Vaatainen U, Helminen HJ. Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports. 2000;10(4):186–98.

    CAS  PubMed  Article  Google Scholar 

  159. Williams JM, Moran M, Thonar EJ, Salter RB. Continuous passive motion stimulates repair of rabbit knee articular cartilage after matrix proteoglycan loss. Clin Orthop Relat Res. 1994;304:252–62.

    Article  Google Scholar 

  160. Mukherjee N, Saris DB, Schultz FM, Berglund LJ, An KN, SW OD. The enhancement of periosteal chondrogenesis in organ culture by dynamic fluid pressure. J Orthop Res. 2001;19(4):524–30.

  161. Shimizu T, Videman T, Shimazaki K, Mooney V. Experimental study on the repair of full thickness articular cartilage defects: effects of varying periods of continuous passive motion, cage activity, and immobilization. J Orthop Res. 1987;5(2):187–97.

    CAS  PubMed  Article  Google Scholar 

  162. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage: an experimental investigation in the rabbit. J Bone Jt Surg Am. 1980;62(8):1232–51.

    CAS  Article  Google Scholar 

  163. O’Driscoll SW, Keeley FW, Salter RB. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion: an experimental investigation in the rabbit. J Bone Jt Surg Am. 1986;68(7):1017–35.

    CAS  Article  Google Scholar 

  164. Nugent-Derfus GE, Takara T, O’Neill JK, Cahill SB, Gortz S, Pong T, et al. Continuous passive motion applied to whole joints stimulates chondrocyte biosynthesis of PRG4. Osteoarthr Cartil. 2007;15(5):566–74.

    CAS  Article  Google Scholar 

  165. Eckstein F, Faber S, Muhlbauer R, Hohe J, Englmeier KH, Reiser M, et al. Functional adaptation of human joints to mechanical stimuli. Osteoarthr Cartil. 2002;10(1):44–50.

    CAS  Article  Google Scholar 

  166. Racunica TL, Teichtahl AJ, Wang Y, Wluka AE, English DR, Giles GG, et al. Effect of physical activity on articular knee joint structures in community-based adults. Arthritis Rheumatol. 2007;57(7):1261–8.

    Article  Google Scholar 

  167. Hohmann E, Wortler K, Imhoff AB. MR imaging of the hip and knee before and after marathon running. Am J Sports Med. 2004;32(1):55–9.

    PubMed  Article  Google Scholar 

  168. Krampla W, Mayrhofer R, Malcher J, Kristen KH, Urban M, Hruby W. MR imaging of the knee in marathon runners before and after competition. Skelet Radiol. 2001;30(2):72–6.

    CAS  Article  Google Scholar 

  169. Krampla WW, Newrkla SP, Kroener AH, Hruby WF. Changes on magnetic resonance tomography in the knee joints of marathon runners: a 10-year longitudinal study. Skelet Radiol. 2008;37(7):619–26.

    Article  Google Scholar 

  170. Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthr Cartil. 2010;18(6):776–86.

    CAS  Article  Google Scholar 

  171. Hovis KK, Stehling C, Souza RB, Haughom BD, Baum T, Nevitt M, et al. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheumatol. 2011;63(8):2248–56.

    Article  Google Scholar 

  172. Sun HB. Mechanical loading, cartilage degradation, and arthritis. Ann N Y Acad Sci. 2010;1211:37–50.

    CAS  PubMed  Article  Google Scholar 

  173. Campbell TM, Reilly K, Laneuville O, Uhthoff H, Trudel G. Bone replaces articular cartilage in the rat knee joint after prolonged immobilization. Bone. 2018;106:42–51.

    CAS  PubMed  Article  Google Scholar 

  174. Nomura M, Sakitani N, Iwasawa H, Kohara Y, Takano S, Wakimoto Y, et al. Thinning of articular cartilage after joint unloading or immobilization: an experimental investigation of the pathogenesis in mice. Osteoarthr Cartil. 2017;25(5):727–36.

    CAS  Article  Google Scholar 

  175. Leong DJ, Gu XI, Li Y, Lee JY, Laudier DM, Majeska RJ, et al. Matrix metalloproteinase-3 in articular cartilage is upregulated by joint immobilization and suppressed by passive joint motion. Matrix Biol. 2010;29(5):420–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. Martel-Pelletier J. Pathophysiology of osteoarthritis. Osteoarthr Cartil. 2004;12(Suppl. A):S31–3.

  177. Eckstein F, Hudelmaier M, Putz R. The effects of exercise on human articular cartilage. J Anat. 2006;208(4):491–512.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  178. Hinterwimmer S, Krammer M, Krotz M, Glaser C, Baumgart R, Reiser M, et al. Cartilage atrophy in the knees of patients after seven weeks of partial load bearing. Arthritis Rheumatol. 2004;50(8):2516–20.

    CAS  Article  Google Scholar 

  179. Vanwanseele B, Eckstein F, Knecht H, Spaepen A, Stussi E. Longitudinal analysis of cartilage atrophy in the knees of patients with spinal cord injury. Arthritis Rheumatol. 2003;48(12):3377–81.

    CAS  Article  Google Scholar 

  180. Palmoski M, Perricone E, Brandt KD. Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis Rheumatol. 1979;22(5):508–17.

    CAS  Article  Google Scholar 

  181. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.

    CAS  PubMed  Google Scholar 

  182. Haapala J, Arokoski JP, Hyttinen MM, Lammi M, Tammi M, Kovanen V, et al. Remobilization does not fully restore immobilization induced articular cartilage atrophy. Clin Orthop Relat Res. 1999;362:218–29.

    Article  Google Scholar 

  183. Ruberti JW, Hallab NJ. Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem Biophys Res Commun. 2005;336(2):483–9.

    CAS  PubMed  Article  Google Scholar 

  184. Haapala J, Lammi MJ, Inkinen R, Parkkinen JJ, Agren UM, Arokoski J, et al. Coordinated regulation of hyaluronan and aggrecan content in the articular cartilage of immobilized and exercised dogs. J Rheumatol. 1996;23(9):1586–93.

    CAS  PubMed  Google Scholar 

  185. Jurvelin J, Kiviranta I, Tammi M, Helminen JH. Softening of canine articular cartilage after immobilization of the knee joint. Clin Orthop Relat Res. 1986;207:246–52.

    Article  Google Scholar 

  186. Haapala J, Arokoski J, Pirttimaki J, Lyyra T, Jurvelin J, Tammi M, et al. Incomplete restoration of immobilization induced softening of young beagle knee articular cartilage after 50-week remobilization. Int J Sports Med. 2000;21(1):76–81.

    CAS  PubMed  Article  Google Scholar 

  187. Kiviranta I, Tammi M, Jurvelin J, Arokoski J, Saamanen AM, Helminen HJ. Articular cartilage thickness and glycosaminoglycan distribution in the young canine knee joint after remobilization of the immobilized limb. J Orthop Res. 1994;12(2):161–7.

    CAS  PubMed  Article  Google Scholar 

  188. Mosekilde L. Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner. 1990;10(1):13–35.

    CAS  PubMed  Article  Google Scholar 

  189. el Haj AJ, Minter SL, Rawlinson SC, Suswillo R, Lanyon LE. Cellular responses to mechanical loading in vitro. J Bone Miner Res. 1990;5(9):923–32.

    PubMed  Article  Google Scholar 

  190. Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone. Gene. 2006;15(367):1–16.

    Article  CAS  Google Scholar 

  191. Woo SL, Kuei SC, Amiel D, Gomez MA, Hayes WC, White FC, et al. The effect of prolonged physical training on the properties of long bone: a study of Wolff’s Law. J Bone Jt Surg Am. 1981;63(5):780–7.

    CAS  Article  Google Scholar 

  192. O’Connor JA, Lanyon LE, MacFie H. The influence of strain rate on adaptive bone remodelling. J Biomech. 1982;15(10):767–81.

    CAS  PubMed  Article  Google Scholar 

  193. Mosley JR, Lanyon LE. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone. 1998;23(4):313–8.

    CAS  PubMed  Article  Google Scholar 

  194. Jee WS, Li XJ, Schaffler MB. Adaptation of diaphyseal structure with aging and increased mechanical usage in the adult rat: a histomorphometrical and biomechanical study. Anat Rec. 1991;230(3):332–8.

    CAS  PubMed  Article  Google Scholar 

  195. Forwood MR, Turner CH. Skeletal adaptations to mechanical usage: results from tibial loading studies in rats. Bone. 1995;17(4 Suppl.):197S-205S.

    CAS  PubMed  Google Scholar 

  196. Carter DR. Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int. 1984;36(Suppl. 1):S19-24.

    PubMed  Article  Google Scholar 

  197. Teegarden D, Proulx WR, Kern M, Sedlock D, Weaver CM, Johnston CC, et al. Previous physical activity relates to bone mineral measures in young women. Med Sci Sports Exerc. 1996;28(1):105–13.

    CAS  PubMed  Article  Google Scholar 

  198. Nilsson BE, Westlin NE. Bone density in athletes. Clin Orthop Relat Res. 1971;77:179–82.

    CAS  PubMed  Google Scholar 

  199. Smith EL, Gilligan C. Physical activity effects on bone metabolism. Calcif Tissue Int. 1991;49(Suppl.):S50–4.

    PubMed  Article  Google Scholar 

  200. Dalen N, Olsson KE. Bone mineral content and physical activity. Acta Orthop Scand. 1974;45(2):170–4.

    CAS  PubMed  Article  Google Scholar 

  201. Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL. Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int. 1998;8(2):152–8.

    CAS  PubMed  Article  Google Scholar 

  202. Lima F, De Falco V, Baima J, Carazzato JG, Pereira RM. Effect of impact load and active load on bone metabolism and body composition of adolescent athletes. Med Sci Sports Exerc. 2001;33(8):1318–23.

    CAS  PubMed  Article  Google Scholar 

  203. Duncan CS, Blimkie CJ, Cowell CT, Burke ST, Briody JN, Howman-Giles R. Bone mineral density in adolescent female athletes: relationship to exercise type and muscle strength. Med Sci Sports Exerc. 2002;34(2):286–94.

    PubMed  Article  Google Scholar 

  204. Andreoli A, Monteleone M, Van Loan M, Promenzio L, Tarantino U, De Lorenzo A. Effects of different sports on bone density and muscle mass in highly trained athletes. Med Sci Sports Exerc. 2001;33(4):507–11.

    CAS  PubMed  Article  Google Scholar 

  205. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Serrano-Sanchez JA, Dorado C, Calbet JA. High femoral bone mineral density accretion in prepubertal soccer players. Med Sci Sports Exerc. 2004;36(10):1789–95.

    PubMed  Article  Google Scholar 

  206. Soderman K, Bergstrom E, Lorentzon R, Alfredson H. Bone mass and muscle strength in young female soccer players. Calcif Tissue Int. 2000;67(4):297–303.

    CAS  PubMed  Article  Google Scholar 

  207. Magnusson H, Linden C, Karlsson C, Obrant KJ, Karlsson MK. Exercise may induce reversible low bone mass in unloaded and high bone mass in weight-loaded skeletal regions. Osteoporos Int. 2001;12(11):950–5.

    CAS  PubMed  Article  Google Scholar 

  208. Calbet JA, Dorado C, Diaz-Herrera P, Rodriguez-Rodriguez LP. High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Exerc. 2001;33(10):1682–7.

    CAS  PubMed  Article  Google Scholar 

  209. Jones HH, Priest JD, Hayes WC, Tichenor CC, Nagel DA. Humeral hypertrophy in response to exercise. J Bone Jt Surg Am. 1977;59(2):204–8.

    CAS  Article  Google Scholar 

  210. Mazess RB, Whedon GD. Immobilization and bone. Calcif Tissue Int. 1983;35(3):265–7.

    CAS  PubMed  Article  Google Scholar 

  211. Zerwekh JE, Ruml LA, Gottschalk F, Pak CY. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res. 1998;13(10):1594–601.

    CAS  PubMed  Article  Google Scholar 

  212. Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010;1192:230–7.

    CAS  PubMed  Article  Google Scholar 

  213. Barr AJ, Campbell TM, Hopkinson D, Kingsbury SR, Bowes MA, Conaghan PG. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis. Arthritis Res Ther. 2015;25(17):228.

    Article  CAS  Google Scholar 

  214. Donell S. Subchondral bone remodelling in osteoarthritis. EFORT Open Rev. 2019;4(6):221–9.

    PubMed  PubMed Central  Article  Google Scholar 

  215. Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013;15(6):223.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  216. Castaneda S, Roman-Blas JA, Largo R, Herrero-Beaumont G. Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol. 2012;83(3):315–23.

    CAS  PubMed  Article  Google Scholar 

  217. Suri S, Walsh DA. Osteochondral alterations in osteoarthritis. Bone. 2012;51(2):204–11.

    PubMed  Article  Google Scholar 

  218. Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res. 2009;27(10):1347–52.

    PubMed  PubMed Central  Article  Google Scholar 

  219. Holopainen JT, Brama PA, Halmesmaki E, Harjula T, Tuukkanen J, van Weeren PR, et al. Changes in subchondral bone mineral density and collagen matrix organization in growing horses. Bone. 2008;43(6):1108–14.

    CAS  PubMed  Article  Google Scholar 

  220. Oettmeier R, Arokoski J, Roth AJ, Helminen HJ, Tammi M, Abendroth K. Quantitative study of articular cartilage and subchondral bone remodeling in the knee joint of dogs after strenuous running training. J Bone Miner Res. 1992;7(Suppl. 2):S419–24.

    PubMed  Article  Google Scholar 

  221. Wilks DC, Winwood K, Gilliver SF, Kwiet A, Chatfield M, Michaelis I, et al. Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: a pQCT study. Bone. 2009;45(1):91–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  222. Vener MJ, Thompson RC Jr, Lewis JL, Oegema TR Jr. Subchondral damage after acute transarticular loading: an in vitro model of joint injury. J Orthop Res. 1992;10(6):759–65.

    CAS  PubMed  Article  Google Scholar 

  223. Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone. 2010;47(4):766–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  224. Burr DB, Radin EL. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin N Am. 2003;29(4):675–85.

    Article  Google Scholar 

  225. Radin EL, Paul IL, Rose RM. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972;1(7749):519–22.

    CAS  PubMed  Article  Google Scholar 

  226. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986;213:34–40.

    Google Scholar 

  227. Hunter DJ, Gerstenfeld L, Bishop G, Davis AD, Mason ZD, Einhorn TA, et al. Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized. Arthritis Res Ther. 2009;11(1):R11.

    PubMed  PubMed Central  Article  Google Scholar 

  228. Bennell KL, Creaby MW, Wrigley TV, Bowles KA, Hinman RS, Cicuttini F, et al. Bone marrow lesions are related to dynamic knee loading in medial knee osteoarthritis. Ann Rheum Dis. 2010;69(6):1151–4.

    PubMed  Article  Google Scholar 

  229. MacKay JW, Murray PJ, Kasmai B, Johnson G, Donell ST, Toms AP. Subchondral bone in osteoarthritis: association between MRI texture analysis and histomorphometry. Osteoarthr Cartil. 2017;25(5):700–7.

    CAS  Article  Google Scholar 

  230. Englund M, Guermazi A, Roemer FW, Yang M, Zhang Y, Nevitt MC, et al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann Rheum Dis. 2010;69(10):1796–802.

    PubMed  Article  Google Scholar 

  231. Beckwee D, Vaes P, Shahabpour M, Muyldermans R, Rommers N, Bautmans I. The influence of joint loading on bone marrow lesions in the knee: a systematic review with meta-analysis. Am J Sports Med. 2015;43(12):3093–107.

    PubMed  Article  Google Scholar 

  232. Adams D, Logerstedt DS, Hunter-Giordano A, Axe MJ, Snyder-Mackler L. Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther. 2012;42(7):601–14.

    PubMed  PubMed Central  Article  Google Scholar 

  233. Kibler WB, Chandler TJ, Stracener ES. Musculoskeletal adaptations and injuries due to overtraining. Exerc Sport Sci Rev. 1992;20:99–126.

    CAS  PubMed  Article  Google Scholar 

  234. Verhagen E, Gabbett T. Load, capacity and health: critical pieces of the holistic performance puzzle. Br J Sports Med. 2019;53(1):5–6.

    PubMed  Article  Google Scholar 

  235. Windt J, Gabbett TJ. How do training and competition workloads relate to injury? The workload-injury aetiology model. Br J Sports Med. 2017;51(5):428–35.

    PubMed  Article  Google Scholar 

  236. Banister EW, Calvert TW, Savage MV, Bach TM. A systems model of training for athletic performance. Aust J Sports Med. 1975;7:57–61.

    Google Scholar 

  237. Andrade R, Wik EH, Rebelo-Marques A, Blanch P, Whiteley R, Espregueira-Mendes J, et al. Is the acute:chronic workload ratio (ACWR) associated with risk of time-loss injury in professional team sports? A systematic review of methodology, variables and injury risk in practical situations. Sports Med. 2020;50(9):1613–35.

    PubMed  Article  Google Scholar 

  238. Foster C, Daines E, Hector L, Snyder AC, Welsh R. Athletic performance in relation to training load. Wis Med J. 1996;95(6):370–4.

    CAS  PubMed  Google Scholar 

  239. Gabbett TJ. Debunking the myths about training load, injury and performance: empirical evidence, hot topics and recommendations for practitioners. Br J Sports Med. 2020;54(1):58–66.

    PubMed  Article  Google Scholar 

  240. Chambers R, Gabbett TJ, Cole MH, Beard A. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2015;45(7):1065–81.

    PubMed  Article  Google Scholar 

  241. Soligard T, Schwellnus M, Alonso JM, Bahr R, Clarsen B, Dijkstra HP, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):1030–41.

    PubMed  Article  Google Scholar 

  242. Vanrenterghem J, Nedergaard NJ, Robinson MA, Drust B. Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017;47(11):2135–42.

    PubMed  Article  Google Scholar 

  243. Fox JL, Stanton R, Sargent C, Wintour SA, Scanlan AT. The association between training load and performance in team sports: a systematic review. Sports Med. 2018;48(12):2743–74.

    PubMed  Article  Google Scholar 

  244. McLaren SJ, Smith A, Spears IR, Weston M. A detailed quantification of differential ratings of perceived exertion during team-sport training. J Sci Med Sport. 2017;20(3):290–5.

    PubMed  Article  Google Scholar 

  245. Chmielewski TL, Myer GD, Kauffman D, Tillman SM. Plyometric exercise in the rehabilitation of athletes: physiological responses and clinical application. J Orthop Sports Phys Ther. 2006;36(5):308–19.

    PubMed  Article  Google Scholar 

  246. Fees M, Decker T, Snyder-Mackler L, Axe MJ. Upper extremity weight-training modifications for the injured athlete: a clinical perspective. Am J Sports Med. 1998;26(5):732–42.

    CAS  PubMed  Article  Google Scholar 

  247. Sturgill LP, Snyder-Mackler L, Manal TJ, Axe MJ. Interrater reliability of a clinical scale to assess knee joint effusion. J Orthop Sports Phys Ther. 2009;39(12):845–9.

    PubMed  Article  Google Scholar 

  248. Hildebrand KA, Gallant-Behm CL, Kydd AS, Hart DA. The basics of soft tissue healing and general factors that influence such healing. Sports Med Arthrosc Rev. 2005;13(3):136–44.

    Article  Google Scholar 

  249. Malone S, Hughes B, Doran DA, Collins K, Gabbett TJ. Can the workload-injury relationship be moderated by improved strength, speed and repeated-sprint qualities? J Sci Med Sport. 2019;22(1):29–34.

    PubMed  Article  Google Scholar 

  250. Glasgow P, Phillips N, Bleakley C. Optimal loading: key variables and mechanisms. Br J Sports Med. 2015;49(5):278–9.

    PubMed  Article  Google Scholar 

  251. Buckthorpe M. Optimising the late-stage rehabilitation and return-to-sport training and testing process after ACL reconstruction. Sports Med. 2019;49(7):1043–58.

    PubMed  Article  Google Scholar 

  252. Buckthorpe M, Della Villa F, Della Villa S, Roi GS. On-field rehabilitation part 2: a 5-stage program for the soccer player focused on linear movements, multidirectional movements, soccer-specific skills, soccer-specific movements, and modified practice. J Orthop Sports Phys Ther. 2019;49(8):570–5.

    PubMed  Article  Google Scholar 

  253. Creighton RA, Spang JT, Dahners LE. Basic science of ligament healing. Sports Med Arthrosc Rev. 2005;13(3):145–50.

    Article  Google Scholar 

  254. Jurvelin J, Kiviranta I, Saamanen AM, Tammi M, Helminen HJ. Partial restoration of immobilization-induced softening of canine articular cartilage after remobilization of the knee (stifle) joint. J Orthop Res. 1989;7(3):352–8.

    CAS  PubMed  Article  Google Scholar 

  255. Bleakley CM, Glasgow P, MacAuley DC. PRICE needs updating, should we call the POLICE? Br J Sports Med. 2012;46(4):220–1.

    CAS  PubMed  Article  Google Scholar 

  256. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand: quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.

    PubMed  Article  Google Scholar 

  257. Schwellnus M, Soligard T, Alonso JM, Bahr R, Clarsen B, Dijkstra HP, et al. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br J Sports Med. 2016;50(17):1043–52.

    PubMed  Article  Google Scholar 

  258. Reiman MP, Lorenz DS. Integration of strength and conditioning principles into a rehabilitation program. Int J Sports Phys Ther. 2011;6(3):241–53.

    PubMed  PubMed Central  Google Scholar 

  259. Escamilla RF, Macleod TD, Wilk KE, Paulos L, Andrews JR. Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. J Orthop Sports Phys Ther. 2012;42(3):208–20.

    PubMed  Article  Google Scholar 

  260. Berruto M, Howe JG, Beynnon BD, Johnson RJ, Nichols CE, Pope MH. ACL reconstruction: in vivo measurement of patellar tendon graft elongation. Ital J Orthop Traumatol. 1991;17(2):157–64.

    CAS  PubMed  Google Scholar 

  261. Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstrom PA, Pope MH. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med. 1995;23(1):24–34.

    CAS  PubMed  Article  Google Scholar 

  262. Beynnon BD, Johnson RJ, Fleming BC, Stankewich CJ, Renstrom PA, Nichols CE. The strain behavior of the anterior cruciate ligament during squatting and active flexion-extension: a comparison of an open and a closed kinetic chain exercise. Am J Sports Med. 1997;25(6):823–9.

    CAS  PubMed  Article  Google Scholar 

  263. Beynnon BD, Uh BS, Johnson RJ, Fleming BC, Renstrom PA, Nichols CE. The elongation behavior of the anterior cruciate ligament graft in vivo: a long-term follow-up study. Am J Sports Med. 2001;29(2):161–6.

    CAS  PubMed  Article  Google Scholar 

  264. Beynnon BD, Amis AA. In vitro testing protocols for the cruciate ligaments and ligament reconstructions. Knee Surg Sports Traumatol Arthrosc. 1998;6(Suppl. 1):S70–6.

    PubMed  Article  Google Scholar 

  265. Beynnon BD, Fleming BC. Anterior cruciate ligament strain in-vivo: a review of previous work. J Biomech. 1998;31(6):519–25.

    CAS  PubMed  Article  Google Scholar 

  266. Beynnon BD, Johnson RJ, Fleming BC, Renstrom PA, Nichols CE, Pope MH, et al. The measurement of elongation of anterior cruciate-ligament grafts in vivo. J Bone Jt Surg Am. 1994;76(4):520–31.

    CAS  Article  Google Scholar 

  267. Beynnon BD, Johnson RJ, Fleming BC, Peura GD, Renstrom PA, Nichols CE, et al. The effect of functional knee bracing on the anterior cruciate ligament in the weightbearing and nonweightbearing knee. Am J Sports Med. 1997;25(3):353–9.

    CAS  PubMed  Article  Google Scholar 

  268. Beynnon BD, Pope MH, Wertheimer CM, Johnson RJ, Fleming BC, Nichols CE, et al. The effect of functional knee-braces on strain on the anterior cruciate ligament in vivo. J Bone Jt Surg Am. 1992;74(9):1298–312.

    CAS  Article  Google Scholar 

  269. Fleming BC, Beynnon BD, Renstrom PA, Johnson RJ, Nichols CE, Peura GD, et al. The strain behavior of the anterior cruciate ligament during stair climbing: an in vivo study. Arthroscopy. 1999;15(2):185–91.

    CAS  PubMed  Article  Google Scholar 

  270. Fleming BC, Beynnon BD, Renstrom PA, Peura GD, Nichols CE, Johnson RJ. The strain behavior of the anterior cruciate ligament during bicycling: an in vivo study. Am J Sports Med. 1998;26(1):109–18.

    CAS  PubMed  Article  Google Scholar 

  271. Fleming BC, Oksendahl H, Beynnon BD. Open- or closed-kinetic chain exercises after anterior cruciate ligament reconstruction? Exerc Sport Sci Rev. 2005;33(3):134–40.

    PubMed  Article  Google Scholar 

  272. Fleming BC, Renstrom PA, Beynnon BD, Engstrom B, Peura G. The influence of functional knee bracing on the anterior cruciate ligament strain biomechanics in weightbearing and nonweightbearing knees. Am J Sports Med. 2000;28(6):815–24.

    CAS  PubMed  Article  Google Scholar 

  273. Fleming BCRP, Ohlen G, Johnson RJ, Peura GD, Beynnon BD, Badger GJ. The gastrocnemius muscle is an antagonist of the anterior cruciate ligament. J Orthop Res. 2001;9(6):1178–84.

    Article  Google Scholar 

  274. Fleming BC, Renstrom PA, Beynnon BD, Engstrom B, Peura GD, Badger GJ, et al. The effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech. 2001;34(2):163–70.

    CAS  PubMed  Article  Google Scholar 

  275. Fujiya H, Kousa P, Fleming BC, Churchill DL, Beynnon BD. Effect of muscle loads and torque applied to the tibia on the strain behavior of the anterior cruciate ligament: an in vitro investigation. Clin Biomech (Bristol, Avon). 2011;26(10):1005–11.

    Article  Google Scholar 

  276. Heijne A, Fleming BC, Renstrom PA, Peura GD, Beynnon BD, Werner S. Strain on the anterior cruciate ligament during closed kinetic chain exercises. Med Sci Sports Exerc. 2004;36(6):935–41.

    PubMed  Article  Google Scholar 

  277. Howe JG, Wertheimer C, Johnson RJ, Nichols CE, Pope MH, Beynnon B. Arthroscopic strain gauge measurement of the normal anterior cruciate ligament. Arthroscopy. 1990;6(3):198–204.

    CAS  PubMed  Article  Google Scholar 

  278. Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc. 1998;30(4):556–69.

    CAS  PubMed  Article  Google Scholar 

  279. Escamilla RF, Fleisig GS, Zheng N, Lander JE, Barrentine SW, Andrews JR, et al. Effects of technique variations on knee biomechanics during the squat and leg press. Med Sci Sports Exerc. 2001;33(9):1552–66.

    CAS  PubMed  Article  Google Scholar 

  280. Escamilla RF, Zheng N, Macleod TD, Imamura R, Edwards WB, Hreljac A, et al. Cruciate ligament forces between short-step and long-step forward lunge. Med Sci Sports Exerc. 2010;42(10):1932–42.

    PubMed  Article  Google Scholar 

  281. Escamilla RF, Macleod TD, Wilk KE, Paulos L, Andrews JR. Cruciate ligament loading during common knee rehabilitation exercises. Proc Inst Mech Eng H. 2012;226(9):670–80.

    PubMed  Article  Google Scholar 

  282. Escamilla RF, Zheng N, Imamura R, Macleod TD, Edwards WB, Hreljac A, et al. Cruciate ligament force during the wall squat and the one-leg squat. Med Sci Sports Exerc. 2009;41(2):408–17.

    PubMed  Article  Google Scholar 

  283. Zheng N, Fleisig GS, Escamilla RF, Barrentine SW. An analytical model of the knee for estimation of internal forces during exercise. J Biomech. 1998;31(10):963–7.

    CAS  PubMed  Article  Google Scholar 

  284. Glass R, Waddell J, Hoogenboom B. The effects of open versus closed kinetic chain exercises on patients with ACL deficient or reconstructed knees: a systematic review. N Am J Sports Phys Ther. 2010;5(2):74–84.

    PubMed  PubMed Central  Google Scholar 

  285. Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee: a biomechanical study. J Bone Jt Surg Am. 1980;62(2):259–70.

    CAS  Article  Google Scholar 

  286. Herzog W, Read LJ. Lines of action and moment arms of the major force-carrying structures crossing the human knee joint. J Anat. 1993;182(Pt 2):213–30.

    PubMed  PubMed Central  Google Scholar 

  287. Bach JM, Hull ML, Patterson HA. Direct measurement of strain in the posterolateral bundle of the anterior cruciate ligament. J Biomech. 1997;30(3):281–3.

    CAS  PubMed  Article  Google Scholar 

  288. Shelburne KB, Pandy MG. A dynamic model of the knee and lower limb for simulating rising movements. Comput Methods Biomech Biomed Eng. 2002;5(2):149–59.

    Article  Google Scholar 

  289. Toutoungi DE, Lu TW, Leardini A, Catani F, O’Connor JJ. Cruciate ligament forces in the human knee during rehabilitation exercises. Clin Biomech (Bristol, Avon). 2000;15(3):176–87.

    CAS  Article  Google Scholar 

  290. Kulas AS, Hortobagyi T, DeVita P. Trunk position modulates anterior cruciate ligament forces and strains during a single-leg squat. Clin Biomech (Bristol, Avon). 2012;27(1):16–21.

    Article  Google Scholar 

  291. Pflum MA, Shelburne KB, Torry MR, Decker MJ, Pandy MG. Model prediction of anterior cruciate ligament force during drop-landings. Med Sci Sports Exerc. 2004;36(11):1949–58.

    PubMed  Article  Google Scholar 

  292. Shelburne KB, Pandy MG, Anderson FC, Torry MR. Pattern of anterior cruciate ligament force in normal walking. J Biomech. 2004;37(6):797–805.

    PubMed  Article  Google Scholar 

  293. Shelburne KBTM, Pandy MG. Muscle, ligament, and joint-contact forces at the knee during walking. Med Sci Sports Exerc. 2005;37(11):1948–56.

    PubMed  Article  Google Scholar 

  294. Taylor KA, Cutcliffe HC, Queen RM, Utturkar GM, Spritzer CE, Garrett WE, et al. In vivo measurement of ACL length and relative strain during walking. J Biomech. 2013;46(3):478–83.

    CAS  PubMed  Article  Google Scholar 

  295. Shin CS, Chaudhari AM, Andriacchi TP. The influence of deceleration forces on ACL strain during single-leg landing: a simulation study. J Biomech. 2007;40(5):1145–52.

    PubMed  Article  Google Scholar 

  296. Englander ZA, Spritzer CE, DeFrate LE. In vivo attachment site to attachment site length and strain of the ACL and its bundles during the full gait cycle measured by MRI and high-speed biplanar radiography: response. J Biomech. 2020;109:109918.

    PubMed  Article  Google Scholar 

  297. Beynnon B, Howe JG, Pope MH, Johnson RJ, Fleming BC. The measurement of anterior cruciate ligament strain in vivo. Int Orthop. 1992;16(1):1–12.

    CAS  PubMed  Article  Google Scholar 

  298. Fitzgerald GK, Axe MJ, Snyder-Mackler L. Proposed practice guidelines for nonoperative anterior cruciate ligament rehabilitation of physically active individuals. J Orthop Sports Phys Ther. 2000;30(4):194–203.

    CAS  PubMed  Article  Google Scholar 

  299. Bates NA, Schilaty ND, Nagelli CV, Krych AJ, Hewett TE. Validation of noncontact anterior cruciate ligament tears produced by a mechanical impact simulator against the clinical presentation of injury. Am J Sports Med. 2018;46(9):2113–21.

    PubMed  PubMed Central  Article  Google Scholar 

  300. Heijne A, Werner S. Early versus late start of open kinetic chain quadriceps exercises after ACL reconstruction with patellar tendon or hamstring grafts: a prospective randomized outcome study. Knee Surg Sports Traumatol Arthrosc. 2007;15(4):472–3.

    PubMed  Article  Google Scholar 

  301. Tagesson S, Oberg B, Good L, Kvist J. A comprehensive rehabilitation program with quadriceps strengthening in closed versus open kinetic chain exercise in patients with anterior cruciate ligament deficiency: a randomized clinical trial evaluating dynamic tibial translation and muscle function. Am J Sports Med. 2008;36(2):298–307.

    PubMed  Article  Google Scholar 

  302. Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC. The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. Am J Sports Med. 1994;22(3):328–33.

    CAS  PubMed  Article  Google Scholar 

  303. Brown CH Jr, Steiner ME, Carson EW. The use of hamstring tendons for anterior cruciate ligament reconstruction: technique and results. Clin Sports Med. 1993;12(4):723–56.

    PubMed  Article  Google Scholar 

  304. Handl M, Drzik M, Cerulli G, Povysil C, Chlpik J, Varga F, et al. Reconstruction of the anterior cruciate ligament: dynamic strain evaluation of the graft. Knee Surg Sports Traumatol Arthrosc. 2007;15(3):233–41.

    PubMed  Article  Google Scholar 

  305. Kondo E, Yasuda K, Katsura T, Hayashi R, Kotani Y, Tohyama H. Biomechanical and histological evaluations of the doubled semitendinosus tendon autograft after anterior cruciate ligament reconstruction in sheep. Am J Sports Med. 2012;40(2):315–24.

    PubMed  Article  Google Scholar 

  306. Weiler A, Peters G, Maurer J, Unterhauser FN, Sudkamp NP. Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging: a two-year study in sheep. Am J Sports Med. 2001;29(6):751–61.

    CAS  PubMed  Article  Google Scholar 

  307. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med. 1991;19(3):217–25.

    CAS  PubMed  Article  Google Scholar 

  308. Marumo K, Saito M, Yamagishi T, Fujii K. The, “ligamentization” process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sports Med. 2005;33(8):1166–73.

    PubMed  Article  Google Scholar 

  309. Ohkoshi Y, Yasuda K, Kaneda K, Wada T, Yamanaka M. Biomechanical analysis of rehabilitation in the standing position. Am J Sports Med. 1991;19(6):605–11.

    CAS  PubMed  Article  Google Scholar 

  310. Wilk KE, Andrews JR. The effects of pad placement and angular velocity on tibial displacement during isokinetic exercise. J Orthop Sports Phys Ther. 1993;17(1):24–30.

    CAS  PubMed  Article  Google Scholar 

  311. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel: a biomechanical and histological study in the dog. J Bone Jt Surg Am. 1993;75(12):1795–803.

    CAS  Article  Google Scholar 

  312. Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med. 2006;34(11):1790–800.

    PubMed  Article  Google Scholar 

  313. Walton M. Absorbable and metal interference screws: comparison of graft security during healing. Arthroscopy. 1999;15(8):818–26.

    CAS  PubMed  Article  Google Scholar 

  314. Clancy WG Jr, Narechania RG, Rosenberg TD, Gmeiner JG, Wisnefske DD, Lange TA. Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Jt Surg Am. 1981;63(8):1270–84.

    Article  Google Scholar 

  315. Jackson DW, Windler GE, Simon TM. Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament. Am J Sports Med. 1990;18(1):1–10 ((discussion -1)).

    CAS  PubMed  Article  Google Scholar 

  316. Escamilla RF, Zheng N, MacLeod TD, Imamura R, Edwards WB, Hreljac A, et al. Cruciate ligament tensile forces during the forward and side lunge. Clin Biomech (Bristol, Avon). 2010;25(3):213–21.

    Article  Google Scholar 

  317. Shelburne KB, Torry MR, Pandy MG. Muscle, ligament, and joint-contact forces at the knee during walking. Med Sci Sports Exerc. 2005;37(11):1948–56.

    PubMed  Article  Google Scholar 

  318. Provenzano PP, Heisey D, Hayashi K, Lakes R, Vanderby R Jr. Subfailure damage in ligament: a structural and cellular evaluation. J Appl Physiol (1985). 2002;92(1):362–71.

    Article  Google Scholar 

  319. Quapp KM, Weiss JA. Material characterization of human medial collateral ligament. J Biomech Eng. 1998;120(6):757–63.

    CAS  PubMed  Article  Google Scholar 

  320. Woo SL, Orlando CA, Gomez MA, Frank CB, Akeson WH. Tensile properties of the medial collateral ligament as a function of age. J Orthop Res. 1986;4(2):133–41.

    CAS  PubMed  Article  Google Scholar 

  321. Wilson WT, Deakin AH, Payne AP, Picard F, Wearing SC. Comparative analysis of the structural properties of the collateral ligaments of the human knee. J Orthop Sports Phys Ther. 2012;42(4):345–51.

    PubMed  Article  Google Scholar 

  322. Delport H, Labey L, De Corte R, Innocenti B, Vander Sloten J, Bellemans J. Collateral ligament strains during knee joint laxity evaluation before and after TKA. Clin Biomech (Bristol, Avon). 2013;28(7):777–82.

    Article  Google Scholar 

  323. Jeffcote B, Nicholls R, Schirm A, Kuster MS. The variation in medial and lateral collateral ligament strain and tibiofemoral forces following changes in the flexion and extension gaps in total knee replacement: a laboratory experiment using cadaver knees. J Bone Jt Surg Br. 2007;89(11):1528–33.

    CAS  Article  Google Scholar 

  324. Malliaras P, Cook J, Ptasznik R, Thomas S. Prospective study of change in patellar tendon abnormality on imaging and pain over a volleyball season. Br J Sports Med. 2006;40(3):272–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  325. Alfredson H, Zeisig E, Fahlstrom M. No normalisation of the tendon structure and thickness after intratendinous surgery for chronic painful midportion Achilles tendinosis. Br J Sports Med. 2009;43(12):948–9.

    CAS  PubMed  Article  Google Scholar 

  326. Thornton GM, Hart DA. The interface of mechanical loading and biological variables as they pertain to the development of tendinosis. J Musculoskelet Neuronal Interact. 2011;11(2):94–105.

    CAS  PubMed  Google Scholar 

  327. Docking SI, Cook J. Pathological tendons maintain sufficient aligned fibrillar structure on ultrasound tissue characterization (UTC). Scand J Med Sci Sports. 2016;26(6):675–83.

    CAS  PubMed  Article  Google Scholar 

  328. Cook JL, Purdam CR. The challenge of managing tendinopathy in competing athletes. Br J Sports Med. 2014;48(7):506–9.

    CAS  PubMed  Article  Google Scholar 

  329. Rio E, van Ark M, Docking S, Moseley GL, Kidgell D, Gaida JE, et al. Isometric contractions are more analgesic than isotonic contractions for patellar tendon pain: an in-season randomized clinical trial. Clin J Sport Med. 2017;27(3):253–9.

    PubMed  Article  Google Scholar 

  330. Pearson SJ, Stadler S, Menz H, Morrissey D, Scott I, Munteanu S, et al. Immediate and short-term effects of short- and long-duration isometric contractions in patellar tendinopathy. Clin J Sport Med. 2020;30(4):335–40.

    PubMed  Google Scholar 

  331. van Ark M, Cook JL, Docking SI, Zwerver J, Gaida JE, van den Akker-Scheek I, et al. Do isometric and isotonic exercise programs reduce pain in athletes with patellar tendinopathy in-season? A randomised clinical trial. J Sci Med Sport. 2016;19(9):702–6.

    PubMed  Article  Google Scholar 

  332. Silbernagel KG. Does one size fit all when it comes to exercise treatment for Achilles tendinopathy? J Orthop Sports Phys Ther. 2014;44(2):42–4.

    PubMed  Article  Google Scholar 

  333. Malliaras P, Barton CJ, Reeves ND, Langberg H. Achilles and patellar tendinopathy loading programmes : a systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. Sports Med. 2013;43(4):267–86.

    PubMed  Article  Google Scholar 

  334. Douglas J, Pearson S, Ross A, McGuigan M. Chronic adaptations to eccentric training: a systematic review. Sports Med. 2017;47(5):917–41.

    PubMed  Article  Google Scholar 

  335. Alfredson H, Pietila T, Jonsson P, Lorentzon R. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med. 1998;26(3):360–6.

    CAS  PubMed  Article  Google Scholar 

  336. Beyer R, Kongsgaard M, Hougs Kjaer B, Ohlenschlaeger T, Kjaer M, Magnusson SP. Heavy slow resistance versus eccentric training as treatment for Achilles tendinopathy: a randomized controlled trial. Am J Sports Med. 2015;43(7):1704–11.

    PubMed  Article  Google Scholar 

  337. Silbernagel KG, Thomee R, Thomee P, Karlsson J. Eccentric overload training for patients with chronic Achilles tendon pain: a randomised controlled study with reliability testing of the evaluation methods. Scand J Med Sci Sports. 2001;11(4):197–206.

    CAS  PubMed  Article  Google Scholar 

  338. Silbernagel KG, Crossley KM. A proposed return-to-sport program for patients with midportion Achilles tendinopathy: rationale and implementation. J Orthop Sports Phys Ther. 2015;45(11):876–86.

    PubMed  Article  Google Scholar 

  339. Sayana MK, Maffulli N. Eccentric calf muscle training in non-athletic patients with Achilles tendinopathy. J Sci Med Sport. 2007;10(1):52–8.

    PubMed  Article  Google Scholar 

  340. Spang Iii RC, Nasr MC, Mohamadi A, DeAngelis JP, Nazarian A, Ramappa AJ. Rehabilitation following meniscal repair: a systematic review. BMJ Open Sport Exerc Med. 2018;4(1):e000212.

    PubMed  PubMed Central  Article  Google Scholar 

  341. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. Knee Surg Sports Traumatol Arthrosc. 2018;26(8):2245–50.

    PubMed  Article  Google Scholar 

  342. Bryant D, Dill J, Litchfield R, Amendola A, Giffin R, Fowler P, et al. Effectiveness of bioabsorbable arrows compared with inside-out suturing for vertical, reparable meniscal lesions: a randomized clinical trial. Am J Sports Med. 2007;35(6):889–96.

    PubMed  Article  Google Scholar 

  343. Noyes FR, Barber-Westin SD. Arthroscopic repair of meniscus tears extending into the avascular zone with or without anterior cruciate ligament reconstruction in patients 40 years of age and older. Arthroscopy. 2000;16(8):822–9.

    CAS  PubMed  Article  Google Scholar 

  344. Morrissey MC, Goodwin PC. Correlates of knee extensor training load used in rehabilitation after knee surgery. J Strength Cond Res. 2007;21(4):1050–2.

    PubMed  Google Scholar 

  345. Arokoski J, Jurvelin J, Kiviranta I, Tammi M, Helminen HJ. Softening of the lateral condyle articular cartilage in the canine knee joint after long distance (up to 40 km/day) running training lasting one year. Int J Sports Med. 1994;15(5):254–60.

    CAS  PubMed  Article  Google Scholar 

  346. Arokoski J, Kiviranta I, Jurvelin J, Tammi M, Helminen HJ. Long-distance running causes site-dependent decrease of cartilage glycosaminoglycan content in the knee joints of beagle dogs. Arthritis Rheum. 1993;36(10):1451–9.

    CAS  PubMed  Article  Google Scholar 

  347. van Rossom S, Smith CR, Zevenbergen L, Thelen DG, Vanwanseele B, Van Assche D, et al. Knee cartilage thickness, T1rho and T2 relaxation time are related to articular cartilage loading in healthy adults. PLoS ONE. 2017;12(1):e0170002.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  348. Arokoski JP, Hyttinen MM, Helminen HJ, Jurvelin JS. Biomechanical and structural characteristics of canine femoral and tibial cartilage. J Biomed Mater Res. 1999;48(2):99–107.

    CAS  PubMed  Article  Google Scholar 

  349. Roughley PJ. Age-associated changes in cartilage matrix: implications for tissue repair. Clin Orthop Relat Res. 2001(391 Suppl.):S153–60.

  350. Loeser RF Jr. Aging and the etiopathogenesis and treatment of osteoarthritis. Rheum Dis Clin N Am. 2000;26(3):547–67.

    Article  Google Scholar 

  351. Hudelmaier M, Glaser C, Hohe J, Englmeier KH, Reiser M, Putz R, et al. Age-related changes in the morphology and deformational behavior of knee joint cartilage. Arthritis Rheumatol. 2001;44(11):2556–61.

    CAS  Article  Google Scholar 

  352. Kraus VB, McDaniel G, Worrell TW, Feng S, Vail TP, Varju G, et al. Association of bone scintigraphic abnormalities with knee malalignment and pain. Ann Rheum Dis. 2009;68(11):1673–9.

    CAS  PubMed  Article  Google Scholar 

  353. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP, et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheumatol. 2006;54(5):1529–35.

    Article  Google Scholar 

  354. Heijink A, Gomoll AH, Madry H, Drobnic M, Filardo G, Espregueira-Mendes J, et al. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20(3):423–35.

    PubMed  Article  Google Scholar 

  355. Harding GT, Dunbar MJ, Hubley-Kozey CL, Stanish WD, Astephen Wilson JL. Obesity is associated with higher absolute tibiofemoral contact and muscle forces during gait with and without knee osteoarthritis. Clin Biomech (Bristol, Avon). 2016;31:79–86.

    Article  Google Scholar 

  356. Messier SP, Pater M, Beavers DP, Legault C, Loeser RF, Hunter DJ, et al. Influences of alignment and obesity on knee joint loading in osteoarthritic gait. Osteoarthr Cartil. 2014;22(7):912–7.

    CAS  Article  Google Scholar 

  357. Anandacoomarasamy A, Smith G, Leibman S, Caterson I, Giuffre B, Fransen M, et al. Cartilage defects are associated with physical disability in obese adults. Rheumatology (Oxford). 2009;48(10):1290–3.

    Article  Google Scholar 

  358. Ding C, Cicuttini F, Scott F, Cooley H, Jones G. Knee structural alteration and BMI: a cross-sectional study. Obes Res. 2005;13(2):350–61.

    PubMed  Article  Google Scholar 

  359. Reina N, Cavaignac E, Pailhe R, Pailliser A, Bonnevialle N, Swider P, et al. BMI-related microstructural changes in the tibial subchondral trabecular bone of patients with knee osteoarthritis. J Orthop Res. 2017;35(8):1653–60.

    CAS  PubMed  Article  Google Scholar 

  360. Messier SP, Gutekunst DJ, Davis C, DeVita P. Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis. Arthritis Rheumatol. 2005;52(7):2026–32.

    Article  Google Scholar 

  361. Guymer E, Baranyay F, Wluka AE, Hanna F, Bell RJ, Davis SR, et al. A study of the prevalence and associations of subchondral bone marrow lesions in the knees of healthy, middle-aged women. Osteoarthr Cartil. 2007;15(12):1437–42.

    CAS  Article  Google Scholar 

  362. Segal NA, Glass NA. Is quadriceps muscle weakness a risk factor for incident or progressive knee osteoarthritis? Phys Sportsmed. 2011;39(4):44–50.

    PubMed  Article  Google Scholar 

  363. Muraki S, Akune T, Teraguchi M, Kagotani R, Asai Y, Yoshida M, et al. Quadriceps muscle strength, radiographic knee osteoarthritis and knee pain: the ROAD study. BMC Musculoskelet Disord. 2015;16(1):305.

    PubMed  PubMed Central  Article  Google Scholar 

  364. Mikesky AE, Meyer A, Thompson KL. Relationship between quadriceps strength and rate of loading during gait in women. J Orthop Res. 2000;18(2):171–5.

    CAS  PubMed  Article  Google Scholar 

  365. Lo GH, Niu J, McLennan CE, Kiel DP, McLean RR, Guermazi A, et al. Meniscal damage associated with increased local subchondral bone mineral density: a Framingham study. Osteoarthr Cartil. 2008;16(2):261–7.

    CAS  Article  Google Scholar 

  366. Wang Y, Wluka AE, Pelletier JP, Martel-Pelletier J, Abram F, Ding C, et al. Meniscal extrusion predicts increases in subchondral bone marrow lesions and bone cysts and expansion of subchondral bone in osteoarthritic knees. Rheumatology (Oxford). 2010;49(5):997–1004.

    Article  Google Scholar 

  367. Meyer EG, Baumer TG, Slade JM, Smith WE, Haut RC. Tibiofemoral contact pressures and osteochondral microtrauma during anterior cruciate ligament rupture due to excessive compressive loading and internal torque of the human knee. Am J Sports Med. 2008;36(10):1966–77.

    PubMed  Article  Google Scholar 

  368. Rubin DA, Harner CD, Costello JM. Treatable chondral injuries in the knee: frequency of associated focal subchondral edema. Am J Roentgenol. 2000;174(4):1099–106.

    CAS  Article  Google Scholar 

  369. Oberlander KD, Bruggemann GP, Hoher J, Karamanidis K. Knee mechanics during landing in anterior cruciate ligament patients: a longitudinal study from pre- to 12 months post-reconstruction. Clin Biomech (Bristol, Avon). 2014;29(5):512–7.

    Article  Google Scholar 

  370. Andriacchi TP, Mundermann A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol. 2006;18(5):514–8.

    PubMed  Article  Google Scholar 

  371. Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, Rorabeck C, et al. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Investig. 1994;93(4):1722–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  372. Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis. 1977;36(2):121–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  373. Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Jt Surg Am. 1982;64(1):88–94.

    CAS  Article  Google Scholar 

  374. Kempson GE, Spivey CJ, Swanson SA, Freeman MA. Patterns of cartilage stiffness on normal and degenerate human femoral heads. J Biomech. 1971;4(6):597–609.

    CAS  PubMed  Article  Google Scholar 

  375. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil. 2006;14(1):13–29.

    CAS  Article  Google Scholar 

  376. Ebert JR, Smith A, Fallon M, Wood DJ, Ackland TR. The degree of pre-operative subchondral bone edema is not associated with pain and graft outcome following matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2014 (accepted for publication).

  377. Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, et al. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):434–47.

    PubMed  PubMed Central  Article  Google Scholar 

  378. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil. 2006;14(11):1119–25.

    CAS  Article  Google Scholar 

  379. Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee: a prospective cohort study. J Bone Jt Surg Am. 2005;87(9):1911–20.

    Article  Google Scholar 

  380. Peterson L. Articular cartilage injuries treated with autologous chondrocyte transplantation in the human knee. Acta Orthop Belg. 1996;62(Suppl. 1):196–200.

    PubMed  Google Scholar 

  381. Smith MD. The normal synovium. Open Rheumatol J. 2011;5:100–6.

    PubMed  PubMed Central  Article  Google Scholar 

  382. Grissom MJ, Temple-Wong MM, Adams MS, Tom M, Schumacher BL, McIlwraith CW, et al. Synovial fluid lubricant properties are transiently deficient after arthroscopic articular cartilage defect repair with platelet-enriched fibrin alone and with mesenchymal stem cells. Orthop J Sports Med. 2014;2(7):2325967114542580.

    PubMed Central  Article  Google Scholar 

  383. Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77–95.

    PubMed  Article  Google Scholar 

  384. Goyal D, Keyhani S, Lee EH, Hui JH. Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy. 2013;29(9):1579–88.

    PubMed  Article  Google Scholar 

  385. Iseki T, Rothrauff BB, Kihara S, Sasaki H, Yoshiya S, Fu FH, et al. Dynamic compressive loading improves cartilage repair in an in vitro model of microfracture: comparison of 2 mechanical loading regimens on simulated microfracture based on fibrin gel scaffolds encapsulating connective tissue progenitor cells. Am J Sports Med. 2019;47(9):2188–99.

    PubMed  PubMed Central  Article  Google Scholar 

  386. Oussedik S, Tsitskaris K, Parker D. Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review. Arthroscopy. 2015;31(4):732–44.

    PubMed  Article  Google Scholar 

  387. Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, et al. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Jt Surg Am. 2003;85-A(Suppl. 2):45–57.

    Article  Google Scholar 

  388. Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects. Orthopedics. 1997;20(6):525–38.

    CAS  PubMed  Article  Google Scholar 

  389. McGinty G, Irrgang JJ, Pezzullo D. Biomechanical considerations for rehabilitation of the knee. Clin Biomech (Bristol, Avon). 2000;15(3):160–6.

    CAS  Article  Google Scholar 

  390. Riegger-Krugh C, Gerhart TN, Powers WR, Hayes WC. Tibiofemoral contact pressures in degenerative joint disease. Clin Orthop Relat Res. 1998;348:233–45.

    Article  Google Scholar 

  391. Hungerford DS, Barry M. Biomechanics of the patellofemoral joint. Clin Orthop Relat Res. 1979;144:9–15.

    Google Scholar 

  392. Reinold MM, Wilk KE, Macrina LC, Dugas JR, Cain EL. Current concepts in the rehabilitation following articular cartilage repair procedures in the knee. J Orthop Sports Phys Ther. 2006;36(10):774–94.

    PubMed  Article  Google Scholar 

  393. Bourdon PC, Cardinale M, Murray A, Gastin P, Kellmann M, Varley MC, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(Suppl 2):S2161–70.

    PubMed  Article  Google Scholar 

  394. Drew MK, Finch CF. The relationship between training load and injury, illness and soreness: a systematic and literature review. Sports Med. 2016;46(6):861–83.

    PubMed  Article  Google Scholar 

  395. Gabbett TJ, Hulin BT, Blanch P, Whiteley R. High training workloads alone do not cause sports injuries: how you get there is the real issue. Br J Sports Med. 2016;50(8):444–5.

    PubMed  Article  Google Scholar 

  396. Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(Suppl. 2):S139–47.

    PubMed  Article  Google Scholar 

  397. Udby CL, Impellizzeri FM, Lind M, Nielsen RO. How has workload been defined and how many workload-related exposures to injury are included in published sports injury articles? A scoping review. J Orthop Sports Phys Ther. 2020;50(10):538–48.

    PubMed  Article  Google Scholar 

  398. Abbiss CR, Laursen PB. Models to explain fatigue during prolonged endurance cycling. Sports Med. 2005;35(10):865–98.

    PubMed  Article  Google Scholar 

  399. O’Sullivan K, O’Sullivan PB, Gabbett TJ. Pain and fatigue in sport: are they so different? Br J Sports Med. 2018;52(9):555–6.

    PubMed  Article  Google Scholar 

  400. Exercise programs for adults. In: Sports PsCoPFa, editor. Washington, DC: US Government Printing Office; 1965.

  401. Prietto MP, Bain JR, Stonebrook SN, Settlage RA. Tensile strength of the human posterior cruciate ligament (PCL). Trans 34th Ann ORS; 1988. p. 195.

  402. Trent PS, Walker PS, Wolf B. Ligament length patterns, strength, and rotational axes of the knee joint. Clin Orthop Relat Res. 1976;117:263–70.

    Google Scholar 

  403. Butler DL, Kay MD, Stouffer DC. Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech. 1986;19(6):425–32.

    CAS  PubMed  Article  Google Scholar 

  404. Reeves ND, Maganaris CN, Narici MV. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol. 2003;548(Pt 3):971–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  405. Edwards S, Steele JR, Cook JL, Purdam CR, McGhee DE, Munro BJ. Characterizing patellar tendon loading during the landing phases of a stop-jump task. Scand J Med Sci Sports. 2012;22(1):2–11.

    CAS  PubMed  Article  Google Scholar 

  406. Richards J, Selfe J, Sinclair J, May K, Thomas G. The effect of different decline angles on the biomechanics of double limb squats and the implications to clinical and training practice. J Hum Kinet. 2016;1(52):125–38.

    Article  Google Scholar 

  407. Zellmer M, Kernozek TW, Gheidi N, Hove J, Torry M. Patellar tendon stress between two variations of the forward step lunge. J Sport Health Sci. 2019;8(3):235–41.

    PubMed  Article  Google Scholar 

  408. Torres-Ronda L, Del Alcazar XS. The properties of water and their applications for training. J Hum Kinet. 2014;9(44):237–48.

    Article  Google Scholar 

  409. D’Lima DD, Steklov N, Patil S, Colwell CW Jr. The Mark Coventry Award: in vivo knee forces during recreation and exercise after knee arthroplasty. Clin Orthop Relat Res. 2008;466(11):2605–11.

    PubMed  PubMed Central  Article  Google Scholar 

  410. Rogatzki MJ, Kernozek TW, Willson JD, Greany JF, Hong DA, Porcari JR. Peak muscle activation, joint kinematics, and kinetics during elliptical and stepping movement pattern on a Precor Adaptive Motion Trainer. Res Q Exerc Sport. 2012;83(2):152–9.

    PubMed  Article  Google Scholar 

  411. Patil S, Steklov N, Bugbee WD, Goldberg T, Colwell CW Jr, D’Lima DD. Anti-gravity treadmills are effective in reducing knee forces. J Orthop Res. 2013;31(5):672–9.

    PubMed  Article  Google Scholar 

  412. Neptune RR, Kautz SA. Knee joint loading in forward versus backward pedaling: implications for rehabilitation strategies. Clin Biomech (Bristol, Avon). 2000;15(7):528–35.

    CAS  Article  Google Scholar 

  413. Nagura T, Matsumoto H, Kiriyama Y, Chaudhari A, Andriacchi TP. Tibiofemoral joint contact force in deep knee flexion and its consideration in knee osteoarthritis and joint replacement. J Appl Biomech. 2006;22(4):305–13.

    PubMed  Article  Google Scholar 

  414. Pollard JP, Porter WL, Redfern MS. Forces and moments on the knee during kneeling and squatting. J Appl Biomech. 2011;27(3):233–41.

    PubMed  Article  Google Scholar 

  415. D’Lima DD, Patil S, Steklov N, Chien S, Colwell CW Jr. In vivo knee moments and shear after total knee arthroplasty. J Biomech. 2007;40(Suppl. 1):S11–7.

    PubMed  Article  Google Scholar 

  416. D’Lima DD, Patil S, Steklov N, Slamin JE, Colwell CW Jr. The Chitranjan Ranawat Award: in vivo knee forces after total knee arthroplasty. Clin Orthop Relat Res. 2005;440:45–9.

    PubMed  Article  Google Scholar 

  417. D’Lima DD, Patil S, Steklov N, Slamin JE, Colwell CW Jr. Tibial forces measured in vivo after total knee arthroplasty. J Arthroplasty. 2006;21(2):255–62.

    PubMed  Article  Google Scholar 

  418. Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech. 2010;43(11):2164–73.

    CAS  PubMed  Article  Google Scholar 

  419. Flynn TW, Soutas-Little RW. Patellofemoral joint compressive forces in forward and backward running. J Orthop Sports Phys Ther. 1995;21(5):277–82.

    CAS  PubMed  Article  Google Scholar 

  420. van Rossom S, Smith CR, Thelen DG, Vanwanseele B, Van Assche D, Jonkers I. Knee joint loading in healthy adults during functional exercises: implications for rehabilitation guidelines. J Orthop Sports Phys Ther. 2018;48(3):162–73.

    PubMed  Article  Google Scholar 

  421. Kulkarni A, Kunte M, Kulkarni M. Kinematic evaluation of knee joint force in men and women rowers. Int J Res Advent Technol. 2014;2(9):93–6.

    Google Scholar 

  422. Wilk KE, Escamilla RF, Fleisig GS, Barrentine SW, Andrews JR, Boyd ML. A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am J Sports Med. 1996;24(4):518–27.

    CAS  PubMed  Article  Google Scholar 

  423. Baltzopoulos V. Muscular and tibiofemoral joint forces during isokinetic concentric knee extension. Clin Biomech (Bristol, Avon). 1995;10(4):208–14.

    CAS  Article  Google Scholar 

  424. Comfort P, Jones PA, Smith LC, Herrington L. Joint kinetics and kinematics during common lower limb rehabilitation exercises. J Athl Train. 2015;50(10):1011–8.

    PubMed  PubMed Central  Article  Google Scholar 

  425. Alexander N, Schwameder H. Lower limb joint forces during walking on the level and slopes at different inclinations. Gait Posture. 2016;45:137–42.

    PubMed  Article  Google Scholar 

  426. Schwameder H, Lindenhofer E, Muller E. Effect of walking speed on lower extremity joint loading in graded ramp walking. Sports Biomech. 2005;4(2):227–43.

    PubMed  Article  Google Scholar 

  427. Taylor SJ, Walker PS. Forces and moments telemetered from two distal femoral replacements during various activities. J Biomech. 2001;34(7):839–48.

    CAS  PubMed  Article  Google Scholar 

  428. Saxby DJ, Modenese L, Bryant AL, Gerus P, Killen B, Fortin K, et al. Tibiofemoral contact forces during walking, running and sidestepping. Gait Posture. 2016;49:78–85.

    PubMed  Article  Google Scholar 

  429. Niehoff A, Muller M, Bruggemann L, Savage T, Zaucke F, Eckstein F, et al. Deformational behaviour of knee cartilage and changes in serum cartilage oligomeric matrix protein (COMP) after running and drop landing. Osteoarthr Cartil. 2011;19(8):1003–10.

    CAS  Article  Google Scholar 

  430. Cleather DJ, Goodwin JE, Bull AM. Hip and knee joint loading during vertical jumping and push jerking. Clin Biomech (Bristol, Avon). 2013;28(1):98–103.

    Article  Google Scholar 

  431. Niu W, Wang L, Jiang C, Zhang M. Effect of dropping height on the forces of lower extremity joints and muscles during landing: a musculoskeletal modeling. J Healthc Eng. 2018;2018:2632603.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Logerstedt.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

David S. Logerstedt, Jay R. Ebert, Toran D. MacLeod, Bryan C. Heiderscheit, Tim J. Gabbett, and Brian J. Eckenrode declare that they have no conflict of interest relevant to the content of this review.

Ethics approval

Ethical approval for publication for this review was not required. The authors declare that the findings of this review are presently truthfully, and without fabrication, falsification, or inappropriate data manipulation.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

No datasets were used or analyzed for the purpose of this review.

Code availability

Not applicable.

Authors’ contributions

DSL: concept, layout, writing, editing manuscript and tables; JRE: layout, writing, editing manuscript and tables; TJG: writing, editing manuscript, figures, and tables; TDM, BCH, BJE: writing, editing manuscript and tables. All authors read and approved the final manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Logerstedt, D.S., Ebert, J.R., MacLeod, T.D. et al. Effects of and Response to Mechanical Loading on the Knee. Sports Med 52, 201–235 (2022). https://doi.org/10.1007/s40279-021-01579-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01579-7