Skip to main content
Log in

Is there Evidence for the Suggestion that Fatigue Accumulates Following Resistance Exercise?

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

It has been suggested that improper post-exercise recovery or improper sequence of training may result in an ‘accumulation’ of fatigue. Despite this suggestion, there is a lack of clarity regarding which physiological mechanisms may be proposed to contribute to fatigue accumulation. The present paper explores the time course of the changes in various fatigue-related measures in order to understand how they may accumulate or lessen over time following an exercise bout or in the context of an exercise program. Regarding peripheral fatigue, the depletion of energy substrates and accumulation of metabolic byproducts has been demonstrated to occur following an acute bout of resistance training; however, peripheral accumulation and depletion appear unlikely candidates to accumulate over time. A number of mechanisms may contribute to the development of central fatigue, postulating the need for prolonged periods of recovery; however, a time course is difficult to determine and is dependent on which measurement is examined. In addition, it has not been demonstrated that central fatigue measures accumulate over time. A potential candidate that may be interpreted as accumulated fatigue is muscle damage, which shares similar characteristics (i.e., prolonged strength loss). Due to the delayed appearance of muscle damage, it may be interpreted as accumulated fatigue. Overall, evidence for the presence of fatigue accumulation with resistance training is equivocal, making it difficult to draw the conclusion that fatigue accumulates. Considerable work remains as to whether fatigue can accumulate over time. Future studies are warranted to elucidate potential mechanisms underlying the concept of fatigue accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol. 2008;586(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  2. Zając A, Chalimoniuk M, Maszczyk A, Gołaś A, Lngfort J. Central and peripheral fatigue during resistance exercise—a critical review. J Hum Kinet. 2015;49:159–69.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Edwards RH. Biochemical bases of fatigue in exercise performance: catastrophe theory of muscular fatigue. Biochem Exerc. 1983;13(13):3–28.

    Google Scholar 

  4. Allen DG, Westerblad H. Role of phosphate and calcium stores in muscle fatigue. J Physiol. 2001;536(Pt 3):657–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Søgaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J Physiol. 2006;573(Pt 2):511–23.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morán-Navarro R, Pérez CE, Mora-Rodríguez R, de la Cruz-Sánchez E, González-Badillo JJ, Sánchez-Medina L, et al. Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol. 2017;117(12):2387–99.

    Article  PubMed  Google Scholar 

  7. Barnes MJ, Miller A, Reeve D, Stewart RJC. Acute neuromuscular and endocrine responses to two different compound exercises: squat vs deadlift. J Strength Cond Res. 2019;33(9):2381–7.

    Article  PubMed  Google Scholar 

  8. Rossman MJ, Garten RS, Venturelli M, Amann M, Richardson RS. The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise. Am J Physiol Regul Integr Comp Physiol. 2014;306(12):R934–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartolomei S, Sadres E, Church DD, Arroyo E, Gordon JA III, Varanoske AN, et al. Comparison of the recovery response from high-intensity and high-volume resistance exercise in trained men. Eur J Appl Physiol. 2017;117(7):1287–98.

    Article  CAS  PubMed  Google Scholar 

  10. Reilly T, Piercy M. The effect of partial sleep deprivation on weight-lifting performance. Ergonomics. 1994;37(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  11. Stults-Kolehmainen MA, Bartholomew JB, Sinha R. Chronic psychological stress impairs recovery of muscular function and somatic sensations over a 96-hour period. J Strength Cond Res. 2014;28(7):2007–17.

    Article  PubMed  Google Scholar 

  12. Yang Y, Bay PB, Wang YR, Huang J, Teo HWJ, Goh J. Effects of consecutive versus non-consecutive days of resistance training on strength, body composition, and red blood cells. Front Physiol. 2018;9:725.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Borresen J, Lambert MI. The quantification of training load, the training response and the effect on performance. Sports Med. 2009;39(9):779–95.

    Article  PubMed  Google Scholar 

  14. Chiu LZF, Barnes JL. The fitness-fatigue model revisited: implications for planning short- and long-term training. Strength Cond J. 2003;25(6):42–51.

    Google Scholar 

  15. Lambert M, Borresen J. A theoretical basis of monitoring fatigue: a practical approach for coaches. Int J Sports Sci Coach. 2006;1(4):371–88.

    Article  Google Scholar 

  16. Wan J-J, Qin Z, Wang P-Y, Sun Y, Liu X. Muscle fatigue: general understanding and treatment. Exp Mol Med. 2017;49(10):e384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grandou C, Wallace L, Impellizzeri FM, Allen NG, Coutts AJ. Overtraining in resistance exercise: an exploratory systematic review and methodological appraisal of the literature. Sports Med. 2020;50(4):815–28.

    Article  PubMed  Google Scholar 

  18. Pyne DB, Mujika I, Reilly T. Peaking for optimal performance: Research limitations and future directions. J Sports Sci. 2009;27(3):195–202.

    Article  PubMed  Google Scholar 

  19. Le Meur Y, Hausswirth C, Mujika I. Tapering for competition: a review. Sci Sports. 2012;27(2):77–87.

    Article  Google Scholar 

  20. Banister E, Calvert T, Savage M, Bach T. A systems model of training for athletic performance. Aust J Sports Med. 1975;7(3):57–61.

    Google Scholar 

  21. Zatsiorsky V, Kraemer W. Science and practice of strength training: Human Kinetics; 2006.

  22. Israetel M, Feather J, Faleiro TV, Juneau C-E. Mesocycle progression in hypertrophy: volume versus intensity. Strength Cond J. 2020;42(5):2–6.

    Article  Google Scholar 

  23. Mujika I, Padilla S. Scientific bases for precompetition tapering strategies. Med Sci Sports Exerc. 2003;35(7):1182–7.

    Article  PubMed  Google Scholar 

  24. Mujika I, Padilla S, Pyne D, Busso T. Physiological changes associated with the pre-event taper in athletes. Sports Med. 2004;34(13):891–927.

    Article  PubMed  Google Scholar 

  25. Mujika I, Chatard JC, Padilla S, Guezennec CY, Geyssant A. Hormonal responses to training and its tapering off in competitive swimmers: relationships with performance. Eur J Appl Physiol Occup Physiol. 1996;74(4):361–6.

    Article  CAS  PubMed  Google Scholar 

  26. Fry AC, Kraemer WJ, Ramsey LT. Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining. J Appl Physiol (1985). 1998;85(6):2352–9.

    Article  CAS  Google Scholar 

  27. Fry AC, Kraemer WJ, Stone MH, Warren BJ, Kearney JT, Maresh CM, et al. Endocrine and performance responses to high volume training and amino acid supplementation in elite junior weightlifters. Int J Sport Nutr. 1993;3(3):306–22.

    Article  CAS  PubMed  Google Scholar 

  28. Calvert TW, Banister EW, Savage MV, Bach T. A systems model of the effects of training on physical performance. IEEE Trans Syst Man Cybern. 1976;2:94–102.

    Article  Google Scholar 

  29. Morton RH, Fitz-Clarke JR, Banister EW. Modeling human performance in running. J Appl Physiol (1985). 1990;69(3):1171–7.

    Article  CAS  Google Scholar 

  30. Hellard P, Avalos M, Lacoste L, Barale F, Chatard J-C, Millet GP. Assessing the limitations of the Banister model in monitoring training. J Sports Sci. 2006;24(5):509–20.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stephens Hemingway BH, Burgess KE, Elyan E, Swinton PA. The effects of measurement error and testing frequency on the fitness-fatigue model applied to resistance training: a simulation approach. Int J Sports Sci Coach. 2020;15(1):60–71.

    Article  Google Scholar 

  32. Taha T, Thomas SG. Systems modelling of the relationship between training and performance. Sports Med. 2003;33(14):1061–73.

    Article  PubMed  Google Scholar 

  33. Johnston RD, Gabbett TJ, Jenkins DG. Influence of an intensified competition on fatigue and match performance in junior rugby league players. J Sci Med Sport. 2013;16(5):460–5.

    Article  PubMed  Google Scholar 

  34. Montgomery PG, Pyne DB, Hopkins WG, Dorman JC, Cook K, Minahan CL. The effect of recovery strategies on physical performance and cumulative fatigue in competitive basketball. J Sports Sci. 2008;26(11):1135–45.

    Article  PubMed  Google Scholar 

  35. Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186–205.

    Article  PubMed  Google Scholar 

  36. Kenttä G, Hassmén P, Raglin JS. Training practices and overtraining syndrome in Swedish age-group athletes. Int J Sports Med. 2001;22(6):460–5.

    Article  PubMed  Google Scholar 

  37. Enoka RM. Mechanisms of muscle fatigue: central factors and task dependency. J Electromyogr Kinesiol. 1995;5(3):141–9.

    Article  CAS  PubMed  Google Scholar 

  38. Cairns SP, Knicker AJ, Thompson MW, Sjøgaard G. Evaluation of models used to study neuromuscular fatigue. Exerc Sport Sci Rev. 2005;33(1):9–16.

    PubMed  Google Scholar 

  39. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.

    Article  CAS  PubMed  Google Scholar 

  40. Carroll TJ, Taylor JL, Gandevia SC. Recovery of central and peripheral neuromuscular fatigue after exercise. J Appl Physiol (1985). 2017;122(5):1068–76.

    Article  CAS  Google Scholar 

  41. Ament W, Verkerke GJ. Exercise and fatigue. Sports Med. 2009;39(5):389–422.

    Article  PubMed  Google Scholar 

  42. Maclaren DP, Gibson H, Parry-Billings M, Edwards RH. A review of metabolic and physiological factors in fatigue. Exerc Sport Sci Rev. 1989;17:29–66.

    CAS  PubMed  Google Scholar 

  43. Walker S, Davis L, Avela J, Häkkinen K. Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. J Electromyogr Kinesiol. 2012;22(3):356–62.

    Article  PubMed  Google Scholar 

  44. Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1):50–60.

    Article  PubMed  Google Scholar 

  45. Boyas S, Guével A. Neuromuscular fatigue in healthy muscle: underlying factors and adaptation mechanisms. Ann Phys Rehabil Med. 2011;54(2):88–108.

    Article  CAS  PubMed  Google Scholar 

  46. Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020;2:817–28.

    Article  CAS  PubMed  Google Scholar 

  47. Tesch PA, Colliander EB, Kaiser P. Muscle metabolism during intense, heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1986;55(4):362–6.

    Article  CAS  PubMed  Google Scholar 

  48. MacDougall JD, Ray S, Sale DG, McCartney N, Lee P, Garner S. Muscle substrate utilization and lactate production. Can J Appl Physiol. 1999;24(3):209–15.

    Article  CAS  PubMed  Google Scholar 

  49. Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725–41.

    Article  CAS  PubMed  Google Scholar 

  50. Sahlin K, Ren JM. Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J Appl Physiol (1985). 1989;67(2):648–54.

    Article  CAS  Google Scholar 

  51. Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJ. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol. 1999;277(5):E890-900.

    CAS  PubMed  Google Scholar 

  52. Marchand I, Chorneyko K, Tarnopolsky M, Hamilton S, Shearer J, Potvin J, et al. Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. J Appl Physiol (1985). 2002;93(5):1598–607.

    Article  CAS  Google Scholar 

  53. Nielsen J, Holmberg H-C, Schrøder HD, Saltin B, Ortenblad N. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol. 2011;589(Pt 11):2871–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Knuiman P, Hopman MTE, Mensink M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr Metab. 2015;12(1):59.

    Article  Google Scholar 

  55. Ørtenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol. 2011;589(Pt 3):711–25.

    Article  PubMed  Google Scholar 

  56. Pascoe DD, Costill DL, Fink WJ, Robergs RA, Zachwieja JJ. Glycogen resynthesis in skeletal muscle following resistive exercise. Med Sci Sports Exerc. 1993;25(3):349–54.

    Article  CAS  PubMed  Google Scholar 

  57. Hokken R, Laugesen S, Aagaard P, Suetta C, Frandsen U, Ørtenblad N, et al. Subcellular localization- and fibre type-dependent utilization of muscle glycogen during heavy resistance exercise in elite power and Olympic weightlifters. Acta Physiol (Oxf). 2021;231(2):e13561.

    Article  CAS  Google Scholar 

  58. Roy BD, Tarnopolsky MA. Influence of differing macronutrient intakes on muscle glycogen resynthesis after resistance exercise. J Appl Physiol (1985). 1998;84(3):890–6.

    Article  CAS  Google Scholar 

  59. Robergs RA, Pearson DR, Costill DL, Fink WJ, Pascoe DD, Benedict MA, et al. Muscle glycogenolysis during differing intensities of weight-resistance exercise. J Appl Physiol (1985). 1991;70(4):1700–6.

    Article  CAS  Google Scholar 

  60. Burke LM, van Loon LJC, Hawley JA. Postexercise muscle glycogen resynthesis in humans. J Appl Physiol (1985). 2017;122(5):1055–67.

    Article  CAS  Google Scholar 

  61. Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr Rev. 2018;76(4):243–59.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fryer MW, Owen VJ, Lamb GD, Stephenson DG. Effects of creatine phosphate and P(i) on Ca2+ movements and tension development in rat skinned skeletal muscle fibres. J Physiol. 1995;482(Pt 1):123–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cady EB, Jones DA, Lynn J, Newham DJ. Changes in force and intracellular metabolites during fatigue of human skeletal muscle. J Physiol. 1989;418:311–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Degroot M, Massie BM, Boska M, Gober J, Miller RG, Weiner MW. Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR. Muscle Nerve. 1993;16(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  65. Baker AJ, Kostov KG, Miller RG, Weiner MW. Slow force recovery after long-duration exercise: metabolic and activation factors in muscle fatigue. J Appl Physiol (1985). 1993;74(5):2294–300.

    Article  CAS  Google Scholar 

  66. Sejersted OM, Hargens AR, Kardel KR, Blom P, Jensen O, Hermansen L. Intramuscular fluid pressure during isometric contraction of human skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(2):287–95.

    CAS  PubMed  Google Scholar 

  67. Barnes WS. The relationship between maximum isometric strength and intramuscular circulatory occlusion. Ergonomics. 1980;23(4):351–7.

    Article  CAS  PubMed  Google Scholar 

  68. Russ DW, Kent-Braun JA. Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions. J Appl Physiol (1985). 2003;94(6):2414–22.

    Article  Google Scholar 

  69. Sundberg CW, Fitts RH. Bioenergetic basis of skeletal muscle fatigue. Curr Opin Physiol. 2019;10:118–27.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fitts RH. The muscular system: fatigue processes: Wolters Kluwer Health Adis (ESP); 2011.

  71. Place N, Yamada T, Bruton JD, Westerblad H. Muscle fatigue: from observations in humans to underlying mechanisms studied in intact single muscle fibres. Eur J Appl Physiol. 2010;110(1):1–15.

    Article  PubMed  Google Scholar 

  72. Sejersted OM, Sjøgaard G. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev. 2000;80(4):1411–81.

    Article  CAS  PubMed  Google Scholar 

  73. Renaud JM, Gramolini A, Light P, Comtois A. Modulation of muscle contractility during fatigue and recovery by ATP sensitive potassium channel. Acta Physiol Scand. 1996;156(3):203–12.

    Article  CAS  PubMed  Google Scholar 

  74. Fitts RH. The cross-bridge cycle and skeletal muscle fatigue. J Appl Physiol (1985). 2008;104(2):551–8.

    Article  CAS  Google Scholar 

  75. Nelson CR, Fitts RH. Effects of low cell pH and elevated inorganic phosphate on the pCa-force relationship in single muscle fibers at near-physiological temperatures. Am J Physiol Cell Physiol. 2014;306(7):C670–8.

    Article  CAS  PubMed  Google Scholar 

  76. Parsons B, Szczesna D, Zhao J, Van Slooten G, Kerrick WG, Putkey JA, et al. The effect of pH on the Ca2+ affinity of the Ca2+ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibres. J Muscle Res Cell Motil. 1997;18(5):599–609.

    Article  CAS  PubMed  Google Scholar 

  77. Westerblad H. Acidosis is not a significant cause of skeletal muscle fatigue. Med Sci Sports Exerc. 2016;48(11):2339–42.

    Article  PubMed  Google Scholar 

  78. Fitts RH. The role of acidosis in fatigue: pro perspective. Med Sci Sports Exerc. 2016;48(11):2335–8.

    Article  PubMed  Google Scholar 

  79. Pate E, Bhimani M, Franks-Skiba K, Cooke R. Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J Physiol. 1995;486(Pt 3):689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sinoway LI, Rea RF, Mosher TJ, Smith MB, Mark AL. Hydrogen ion concentration is not the sole determinant of muscle metaboreceptor responses in humans. J Clin Invest. 1992;89(6):1875–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Westerblad H, Allen DG, Lännergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci. 2002;17:17–21.

    CAS  PubMed  Google Scholar 

  82. Ruotsalainen I, Ahtiainen JP, Kidgell DJ, Avela J. Changes in corticospinal excitability during an acute bout of resistance exercise in the elbow flexors. Eur J Appl Physiol. 2014;114(7):1545–53.

    Article  PubMed  Google Scholar 

  83. Thomas K, Brownstein CG, Dent J, Parker P, Goodall S, Howatson G. Neuromuscular fatigue and recovery after heavy resistance, jump, and sprint training. Med Sci Sports Exerc. 2018;50(12):2526–35.

    Article  PubMed  Google Scholar 

  84. Gandevia SC, Allen GM, McKenzie DK. Central fatigue critical issues, quantification and practical implications. Adv Exp Med Biol. 1995;384:281–94.

    Article  CAS  PubMed  Google Scholar 

  85. Miller RG, Kent-Braun JA, Sharma KR, Weiner MW. Mechanisms of human muscle fatigue quantitating the contribution of metabolic factors and activation impairment. Adv Exp Med Biol. 1995;384:195–210.

    Article  CAS  PubMed  Google Scholar 

  86. Davis JM, Bailey SP. Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc. 1997;29(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  87. Laurin J, Pertici V, Dousset E, Marqueste T, Decherchi P. Group III and IV muscle afferents: role on central motor drive and clinical implications. Neuroscience. 2015;290:543–51.

    Article  CAS  PubMed  Google Scholar 

  88. Vargas NT, Marino F. A neuroinflammatory model for acute fatigue during exercise. Sports Med. 2014;44(11):1479–87.

    Article  PubMed  Google Scholar 

  89. Yoon T, Schlinder Delap B, Griffith EE, Hunter SK. Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women. Muscle Nerve. 2007;36(4):515–24.

    Article  PubMed  Google Scholar 

  90. Farrow J, Steele J, Behm DG, Skivington M, Fisher JP. Lighter-load exercise produces greater acute- and prolonged-fatigue in exercised and non-exercised limbs. Res Q Exerc Sport. 2021;92(3):369–79.

    Article  PubMed  Google Scholar 

  91. Gruet M, Temesi J, Rupp T, Levy P, Millet GY, Verges S. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Neuroscience. 2013;231:384–99.

    Article  CAS  PubMed  Google Scholar 

  92. Contessa P, Puleo A, De Luca CJ. Is the notion of central fatigue based on a solid foundation? J Neurophysiol. 2016;115(2):967–77.

    Article  PubMed  Google Scholar 

  93. Latella C, Hendy AM, Pearce AJ, VanderWesthuizen D, Teo W-P. The time-course of acute changes in corticospinal excitability, intra-cortical inhibition and facilitation following a single-session heavy strength training of the biceps brachii. Front Hum Neurosci. 2016;10:607.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gandevia SC, Allen GM, Butler JE, Taylor JL. Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol. 1996;490(Pt 2):529–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Prasartwuth O, Taylor JL, Gandevia SC. Maximal force, voluntary activation and muscle soreness after eccentric damage to human elbow flexor muscles. J Physiol. 2005;567(Pt 1):337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Goodall S, Thomas K, Barwood M, Keane K, Gonzalez JT, Clair Gibson A, et al. Neuromuscular changes and the rapid adaptation following a bout of damaging eccentric exercise. Acta Physiol (Oxf). 2017;220(4):486–500.

    Article  CAS  Google Scholar 

  97. Schillings ML, Hoefsloot W, Stegeman DF, Zwarts MJ. Relative contributions of central and peripheral factors to fatigue during a maximal sustained effort. Eur J Appl Physiol. 2003;90(5–6):562–8.

    Article  PubMed  Google Scholar 

  98. Kent-Braun JA. Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. Eur J Appl Physiol Occup Physiol. 1999;80(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  99. Fry AC, Kraemer WJ. Resistance exercise overtraining and overreaching. Sports Med. 1997;23(2):106–29.

    Article  CAS  PubMed  Google Scholar 

  100. Halson SL, Jeukendrup AE. Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med. 2004;34(14):967–81.

    Article  PubMed  Google Scholar 

  101. Fry AC, Schilling BK, Weiss LW, Chiu LZ. beta2-Adrenergic receptor downregulation and performance decrements during high-intensity resistance exercise overtraining. J Appl Physiol (1985). 2006;101(6):1664–72.

    Article  CAS  Google Scholar 

  102. Fry AC, Kraemer WJ, van Borselen F, Lynch JM, Marsit JL, Roy EP, et al. Performance decrements with high-intensity resistance exercise overtraining. Med Sci Sports Exerc. 1994;26(9):1165–73.

    Article  CAS  PubMed  Google Scholar 

  103. Margonis K, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Douroudos I, Chatzinikolaou A, et al. Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic Biol Med. 2007;43(6):901–10.

    Article  CAS  PubMed  Google Scholar 

  104. Warren BJ, Stone MH, Kearney JT, Fleck SJ, Johnson RL, Wilson GD, et al. Performance measures, blood lactate and plasma ammonia as indicators of overwork in elite junior weightlifters. Int J Sports Med. 1992;13(5):372–6.

    Article  CAS  PubMed  Google Scholar 

  105. Fry AC, Webber JM, Weiss LW, Fry MD, Li Y. Impaired performances with excessive high-intensity free-weight training. J Strength Cond Res. 2000;14(1):54–61.

    Google Scholar 

  106. Clarkson PM, Tremblay I. Exercise-induced muscle damage, repair, and adaptation in humans. J Appl Physiol. 1988;65(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  107. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11):S52–69.

    Article  PubMed  Google Scholar 

  108. Clarkson PM, Newham DJ. Associations between muscle soreness, damage, and fatigue. Adv Exp Med Biol. 1995;384:457–69.

    Article  CAS  PubMed  Google Scholar 

  109. Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med. 1989;7(4):207–34.

    Article  CAS  PubMed  Google Scholar 

  110. Fridén J, Sjöström M, Ekblom B. A morphological study of delayed muscle soreness. Experientia. 1981;37(5):506–7.

    Article  PubMed  Google Scholar 

  111. Hody S, Croisier J-L, Bury T, Rogister B, Leprince P. Eccentric muscle contractions: risks and benefits. Front Physiol. 2019;10:536.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Allen DG, Whitehead NP, Yeung EW. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol. 2005;567(Pt 3):723–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Belcastro AN, Shewchuk LD, Raj DA. Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem. 1998;179(1–2):135–45.

    Article  CAS  PubMed  Google Scholar 

  114. Corona BT, Balog EM, Doyle JA, Rupp JC, Luke RC, Ingalls CP. Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am J Physiol Cell Physiol. 2010;298(2):C365–76.

    Article  CAS  PubMed  Google Scholar 

  115. Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992;24(5):512–20.

    Article  CAS  PubMed  Google Scholar 

  116. Ebbeling CB, Clarkson PM. Muscle adaptation prior to recovery following eccentric exercise. Eur J Appl Physiol Occup Physiol. 1990;60(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  117. Nosaka K, Clarkson P. Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc. 1995;27(9):1263–9.

    Article  CAS  PubMed  Google Scholar 

  118. Paulsen G, Crameri R, Benestad HB, Fjeld JG, Mørkrid L, Hallén J, et al. Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc. 2010;42(1):75–85.

    Article  PubMed  Google Scholar 

  119. Izquierdo M, Ibañez J, Calbet JAL, Navarro-Amezqueta I, González-Izal M, Idoate F, et al. Cytokine and hormone responses to resistance training. Eur J Appl Physiol. 2009;107(4):397.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Buckner.

Ethics declarations

Funding

No external sources of funding were used in the preparation of this article.

Conflict of interest

Ryo Kataoka, Ecaterina Vasenina, William B. Hammert, Adam H. Ibrahim, Scott J. Dankel, and Samuel L. Buckner declare they have no conflicts of interest that are relevant to the contents of this article.

Authorship contributions

The first draft of this manuscript was written by RK and SLB. All authors commented and modified previous versions of the manuscript, and read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataoka, R., Vasenina, E., Hammert, W.B. et al. Is there Evidence for the Suggestion that Fatigue Accumulates Following Resistance Exercise?. Sports Med 52, 25–36 (2022). https://doi.org/10.1007/s40279-021-01572-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01572-0

Navigation