Skip to main content

Development of a Revised Conceptual Framework of Physical Training for Use in Research and Practice

A Letter to the Editor to this article was published on 03 January 2022

A Letter to the Editor to this article was published on 03 January 2022

Abstract

A conceptual framework has a central role in the scientific process. Its purpose is to synthesize evidence, assist in understanding phenomena, inform future research and act as a reference operational guide in practical settings. We propose an updated conceptual framework intended to facilitate the validation and interpretation of physical training measures. This revised conceptual framework was constructed through a process of qualitative analysis involving a synthesis of the literature, analysis and integration with existing frameworks (Banister and PerPot models). We identified, expanded, and integrated four constructs that are important in the conceptualization of the process and outcomes of physical training. These are: (1) formal introduction of a new measurable component ‘training effects’, a higher-order construct resulting from the combined effect of four possible responses (acute and chronic, positive and negative); (2) explanation, clarification and examples of training effect measures such as performance, physiological, subjective and other measures (cognitive, biomechanical, etc.); (3) integration of the sport performance outcome continuum (from performance improvements to overtraining); (4) extension and definition of the network of linkages (uni and bidirectional) between individual and contextual factors and other constructs. Additionally, we provided constitutive and operational definitions, and examples of theoretical and practical applications of the framework. These include validation and conceptualization of constructs (e.g., performance readiness), and understanding of higher-order constructs, such as training tolerance, when monitoring training to adapt it to individual responses and effects. This proposed conceptual framework provides an overarching model that may help understand and guide the development, validation, implementation and interpretation of measures used for athlete monitoring.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Jeffries AC, Wallace L, Coutts AJ, et al. Athlete-reported outcome measures for monitoring training responses: a systematic review of risk of bias and measurement property quality according to the COSMIN guidelines. Int J Sports Physiol Perform. 2020;15(9):1203–15. https://doi.org/10.1123/ijspp.2020-0386.

    Article  Google Scholar 

  2. Maxwell JA. Conceptual framework: what do you think is going on? Qualitative research design: an interactive approach. 2nd ed. Thousand Oaks: SAGE Publications; 2005.

    Google Scholar 

  3. Victora CG, Huttly SR, Fuchs SC, et al. The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. Int J Epidemiol. 1997;26(1):224–7. https://doi.org/10.1093/ije/26.1.224.

    CAS  Article  PubMed  Google Scholar 

  4. Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology. 2004;15(5):615–25. https://doi.org/10.1097/01.ede.0000135174.63482.43.

    Article  PubMed  Google Scholar 

  5. Greenland S, Brumback B. An overview of relations among causal modelling methods. Int J Epidemiol. 2002;31(5):1030–7. https://doi.org/10.1093/ije/31.5.1030.

    Article  PubMed  Google Scholar 

  6. VanderWeele TJ, Robins JM. Four types of effect modification: a classification based on directed acyclic graphs. Epidemiology. 2007;18(5):561–8. https://doi.org/10.1097/EDE.0b013e318127181b.

    Article  PubMed  Google Scholar 

  7. Cole SR, Platt RW, Schisterman EF, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2009;39(2):417–20. https://doi.org/10.1093/ije/dyp334.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Impellizzeri F, Marcora S. Test validation in sport physiology: lessons learned from clinimetrics. Int J Sports Physiol Perform. 2009;4:269–77. https://doi.org/10.1123/ijspp.4.2.269.

    Article  PubMed  Google Scholar 

  9. Gimeno-Santos E, Frei A, Dobbels F, et al. Validity of instruments to measure physical activity may be questionable due to a lack of conceptual frameworks: a systematic review. Health Qual Life Outcomes. 2011;9(1):86. https://doi.org/10.1186/1477-7525-9-86.

    Article  PubMed  PubMed Central  Google Scholar 

  10. de Vet HCW, Terwee CB, Mokkink LB, et al. Measurement in medicine: a practical guide. Cambridge: Cambridge University Press; 2011.

    Book  Google Scholar 

  11. Camp WG. Formulating and evaluating theoretical frameworks for career and technical education research. J Vocat Educ Train. 2001;26(1):27–39.

    Google Scholar 

  12. Rothman ML, Beltran P, Cappelleri JC, et al. Patient-reported outcomes: conceptual issues. Value Health. 2007;10(Suppl 2):S66-75. https://doi.org/10.1111/j.1524-4733.2007.00269.x.

    Article  PubMed  Google Scholar 

  13. Wilson IB, Cleary PD. Linking clinical variables with health-related quality of life. A conceptual model of patient outcomes. J Am Med Assoc. 1995;273(1):59–65.

    CAS  Article  Google Scholar 

  14. Smoliga JM, Zavorsky GS. Team logo predicts concussion risk: lessons in protecting a vulnerable sports community from misconceived, but highly publicized epidemiologic research. Epidemiology. 2017;28(5):753–7. https://doi.org/10.1097/ede.0000000000000694.

    Article  PubMed  Google Scholar 

  15. Impellizzeri FM, Rampinini E, Marcora SM. Physiological assessment of aerobic training in soccer. J Sports Sci. 2005;23(6):583–92. https://doi.org/10.1080/02640410400021278.

    Article  PubMed  Google Scholar 

  16. Impellizzeri FM, Marcora SM, Coutts AJ. Internal and external training load: 15 years on. Int J Sports Physiol Perform. 2019;14(2):270–3. https://doi.org/10.1123/ijspp.2018-0935.

    Article  PubMed  Google Scholar 

  17. Viru A, Viru M. Nature of training effects. Exercise and sport science. Philadelphia: Lippincott Williams and Wilkins; 2000.

    Google Scholar 

  18. Bhattacherjee A. Social science research: principles, methods, and practices. Textbooks collection, vol. 3. South Florida: Global Text Project; 2012.

    Google Scholar 

  19. Lakens D. Pandemic researchers—recruit your own best critics. Nature. 2020;581(7807):121. https://doi.org/10.1038/d41586-020-01392-8.

    CAS  Article  PubMed  Google Scholar 

  20. Vanrenterghem J, Nedergaard NJ, Robinson MA, et al. Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017;47(11):2135–42. https://doi.org/10.1007/s40279-017-0714-2.

    Article  PubMed  Google Scholar 

  21. Herold F, Torpel A, Hamacher D, et al. a discussion on different approaches for prescribing physical interventions—four roads lead to Rome, but which one should we choose? J Pers Med. 2020. https://doi.org/10.3390/jpm10030055.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sassi A. Allenamento e sovrallenamento. Milan: EdiErmes; 1997.

    Google Scholar 

  23. Matveyev L. Fundamentals of sports training. Moscow: Fizkultura i Sport Publ; 1977.

    Google Scholar 

  24. Morton RH, Fitz-Clarke JR, Banister EW. Modeling human performance in running. J Appl Physiol. 1990;69(3):1171–7. https://doi.org/10.1152/jappl.1990.69.3.1171.

    CAS  Article  PubMed  Google Scholar 

  25. Calvert TW, Banister EW, Savage MV, et al. A systems model of the effects of training on physical performance. IEEE Trans Syst Man Cybern B. 1976;SMC-6(2):94–102. https://doi.org/10.1109/TSMC.1976.5409179.

    Article  Google Scholar 

  26. Perl J. PerPot: a metamodel for simulation of load performance interaction. Eur J Sport Sci. 2001;1(2):1–13. https://doi.org/10.1080/17461390100071202.

    Article  Google Scholar 

  27. Perl J. PerPot—a meta-model and software tool for analysis and optimisation of load-performance-interaction. Int J Perform Anal Sport. 2004;4(2):61–73. https://doi.org/10.1080/24748668.2004.11868305.

    Article  Google Scholar 

  28. Busso T. Variable dose–response relationship between exercise training and performance. Med Sci Sports Exerc. 2003;35(7):1188–95. https://doi.org/10.1249/01.Mss.0000074465.13621.37.

    Article  PubMed  Google Scholar 

  29. Busso T, Carasso C, Lacour JR. Adequacy of a systems structure in the modeling of training effects on performance. J Appl Physiol. 1991;71(5):2044–9. https://doi.org/10.1152/jappl.1991.71.5.2044.

    CAS  Article  PubMed  Google Scholar 

  30. Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186–205. https://doi.org/10.1249/MSS.0b013e318279a10a.

    Article  PubMed  Google Scholar 

  31. Wilder RP, Greene JA, Winters KL, et al. Physical fitness assessment: an update. J Long Term Eff Med Implants. 2006;16(2):193–204. https://doi.org/10.1615/jlongtermeffmedimplants.v16.i2.90.

    Article  PubMed  Google Scholar 

  32. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  33. Edwards RHT. Biochemical basis of fatigue in exercise performance. Champaign: Human Kinetics; 1983.

    Google Scholar 

  34. Lewis G, Wessely S. The epidemiology of fatigue: more questions than answers. J Epidemiol Commun Health. 1992;46(2):92–7. https://doi.org/10.1136/jech.46.2.92.

    CAS  Article  Google Scholar 

  35. Coutts AJ, Crowcroft S, Kempton T. Developing athlete monitoring systems: theoretical basis and practical applications. In: Kellmann M, Beckman J, editors. Sport, recovery, and performance: interdisciplinary insights. Taylor & Francis; 2017.

    Google Scholar 

  36. Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):2228–38. https://doi.org/10.1249/mss.0000000000000929.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morgan WP, Brown DR, Raglin JS, et al. Psychological monitoring of overtraining and staleness. Br J Sports Med. 1987;21(3):107–14. https://doi.org/10.1136/bjsm.21.3.107.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Peake JM, Neubauer O, Della Gatta PA, et al. Muscle damage and inflammation during recovery from exercise. J Appl Physiol. 2017;122(3):559–70. https://doi.org/10.1152/japplphysiol.00971.2016.

    CAS  Article  PubMed  Google Scholar 

  39. Clarke D, Skiba P. Rationale and resources for teaching the mathematical modeling of athletic training and performance. Adv Physiol Educ. 2013;37(2):134–52.

    Article  PubMed  Google Scholar 

  40. Endler S, Hoffmann S, Sterzing B, et al. The PerPot simulated anaerobic threshold—a comparison to typical lactate-based thresholds. Int J Hum Mov Sports Sci. 2017;5(1):9–15. https://doi.org/10.13189/saj.2017.050102.

    Article  Google Scholar 

  41. Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(Suppl 2):139–47. https://doi.org/10.1007/s40279-014-0253-z.

    Article  PubMed Central  Google Scholar 

  42. McLaren SJ, Macpherson TW, Coutts AJ, et al. The relationships between internal and external measures of training load and intensity in team sports: a meta-analysis. Sports Med. 2018;48(3):641–58. https://doi.org/10.1007/s40279-017-0830-z.

    Article  PubMed  Google Scholar 

  43. Kalkhoven JT, Watsford ML, Coutts AJ, et al. Training load and injury: causal pathways and future directions. Sports Med. 2021;51(6):1137–50. https://doi.org/10.1007/s40279-020-01413-6.

    Article  PubMed  Google Scholar 

  44. Tanner RK, Gore CJ, Sport AIo. Physiological tests for elite athletes. vol. Champaign: Human Kinetics; 2013. Accessed from https://nla.gov.au/nla.cat-vn6220329.

  45. Luebbers PE, Potteiger JA, Hulver MW, et al. Effects of plyometric training and recovery on vertical jump performance and anaerobic power. J Strength Cond Res. 2003;17(4):704–9. https://doi.org/10.1519/1533-4287(2003)017%3c0704:eoptar%3e2.0.co;2.

    Article  PubMed  Google Scholar 

  46. Morin JB, Capelo-Ramirez F, Rodriguez-Pérez MA, et al. Individual adaptation kinetics following heavy resisted sprint training. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003546 (ahead of print).

    Article  Google Scholar 

  47. Coffey V, Hawley J. The molecular bases of training adaptation. Sports Med. 2007;37:737–63. https://doi.org/10.2165/00007256-200737090-00001.

    Article  PubMed  Google Scholar 

  48. Thomas K, Brownstein CG, Dent J, et al. Neuromuscular fatigue and recovery after heavy resistance, jump, and sprint training. Med Sci Sports Exerc. 2018;50(12):2526–35. https://doi.org/10.1249/mss.0000000000001733.

    Article  PubMed  Google Scholar 

  49. Knuiman P, Hopman MTE, Mensink M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr Metab. 2015;12(1):59. https://doi.org/10.1186/s12986-015-0055-9.

    CAS  Article  Google Scholar 

  50. Baar K, McGee S. Optimizing training adaptations by manipulating glycogen. Eur J Sport Sci. 2008;8(2):97–106. https://doi.org/10.1080/17461390801919094.

    Article  Google Scholar 

  51. Bartlett JD, Hawley JA, Morton JP. Carbohydrate availability and exercise training adaptation: too much of a good thing? Eur J Sport Sci. 2015;15(1):3–12. https://doi.org/10.1080/17461391.2014.920926.

    Article  PubMed  Google Scholar 

  52. Fitzpatrick JF, Akenhead R, Russell M, et al. Sensitivity and reproducibility of a fatigue response in elite youth football players. Sci Med Footb. 2019;3(3):214–20. https://doi.org/10.1080/24733938.2019.1571685.

    Article  Google Scholar 

  53. Ade JD, Drust B, Morgan OJ, et al. Physiological characteristics and acute fatigue associated with position-specific speed endurance soccer drills: production vs maintenance training. Sci Med Footb. 2020. https://doi.org/10.1080/24733938.2020.1789202.

    Article  PubMed  Google Scholar 

  54. Sparkes W, Turner AN, Weston M, et al. The effect of training order on neuromuscular, endocrine and mood response to small-sided games and resistance training sessions over a 24-h period. J Sci Med Sport. 2020;23(9):866–71. https://doi.org/10.1016/j.jsams.2020.01.017.

    CAS  Article  PubMed  Google Scholar 

  55. Clarke N, Farthing JP, Lanovaz JL, et al. Direct and indirect measurement of neuromuscular fatigue in Canadian football players. Appl Physiol Nutr Metab. 2015;40(5):464–73. https://doi.org/10.1139/apnm-2014-0465.

    Article  PubMed  Google Scholar 

  56. AIS AIoS. Prescription of training load in relation to loading and unloading phases of training. 2nd ed. Bruce: Australian Sports Commission; 2020.

    Google Scholar 

  57. Behm DG, Young JD, Whitten JHD, et al. Effectiveness of traditional strength vs. power training on muscle strength, power and speed with youth: a systematic review and meta-analysis. Front Physiol. 2017;8:423. https://doi.org/10.3389/fphys.2017.00423.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Speirs DE, Bennett MA, Finn CV, et al. Unilateral vs. bilateral squat training for strength, sprints, and agility in academy rugby players. J Strength Cond Res. 2016;30(2):386–92. https://doi.org/10.1519/jsc.0000000000001096.

    Article  PubMed  Google Scholar 

  59. Moran J, Paxton K, Jones B, et al. Variable long-term developmental trajectories of short sprint speed and jumping height in English Premier League academy soccer players: an applied case study. J Sports Sci. 2020. https://doi.org/10.1080/02640414.2020.1792689.

    Article  PubMed  Google Scholar 

  60. Fanchini M, Schena F, Castagna C, et al. External responsiveness of the Yo-Yo IR test level 1 in high-level male soccer players. Int J Sports Med. 2015;36(9):735–41. https://doi.org/10.1055/s-0035-1547223.

    CAS  Article  PubMed  Google Scholar 

  61. Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000;29(6):373–86. https://doi.org/10.2165/00007256-200029060-00001.

    CAS  Article  PubMed  Google Scholar 

  62. Tolfrey K, Hansen SA, Dutton K, et al. Physiological correlates of 2-mile run performance as determined using a novel on-demand treadmill. Appl Physiol Nutr Metab Physiologie appliquee, nutrition et metabolisme. 2009;34(4):763–72. https://doi.org/10.1139/h09-069.

    Article  PubMed  Google Scholar 

  63. Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):35–44. https://doi.org/10.1113/jphysiol.2007.143834.

    CAS  Article  PubMed  Google Scholar 

  64. Baird MF, Graham SM, Baker JS, et al. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012: 960363. https://doi.org/10.1155/2012/960363.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Berriel GP, Costa RR, da Silva ES, et al. Stress and recovery perception, creatine kinase levels, and performance parameters of male volleyball athletes in a preseason for a championship. Sports Med. 2020;6(1):26. https://doi.org/10.1186/s40798-020-00255-w.

    Article  Google Scholar 

  66. Marin DP, Bolin AP, Campoio TR, et al. Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring. Int Immunopharmacol. 2013;17(2):462–70. https://doi.org/10.1016/j.intimp.2013.07.009.

    CAS  Article  PubMed  Google Scholar 

  67. Tofari PJ, Kemp JG, Cormack SJ. Measuring the response to simulated fixture congestion in soccer. Sci Med Footb. 2020. https://doi.org/10.1080/24733938.2020.1746824.

    Article  Google Scholar 

  68. Coutts AJ, Cormack S. Monitoring the training response high-performance training for sports. Champaign: Human Kinetics; 2014.

    Google Scholar 

  69. Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 2013;43(12):1259–77. https://doi.org/10.1007/s40279-013-0083-4.

    Article  PubMed  Google Scholar 

  70. Plews DJ, Laursen PB, Stanley J, et al. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773–81. https://doi.org/10.1007/s40279-013-0071-8.

    Article  PubMed  Google Scholar 

  71. Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281–91. https://doi.org/10.1136/bjsports-2015-094758.

    Article  PubMed  Google Scholar 

  72. Hooper SL, Mackinnon LT, Howard A, et al. Markers for monitoring overtraining and recovery. Med Sci Sports Exerc. 1995;27(1):106–12.

    CAS  Article  PubMed  Google Scholar 

  73. Hooper SL, MacKinnon LT. Monitoring overtraining in athletes. Recomm Sports Med. 1995;20(5):321–7.

    CAS  Article  Google Scholar 

  74. van Hooff ML, Geurts SA, Kompier MA, et al. “How fatigued do you currently feel?” Convergent and discriminant validity of a single-item fatigue measure. J Occup Health. 2007;49(3):224–34. https://doi.org/10.1539/joh.49.224.

    Article  PubMed  Google Scholar 

  75. Gawron VJ. Overview of self-reported measures of fatigue. Int J Aviat Psychol. 2016;26(3–4):120–31. https://doi.org/10.1080/10508414.2017.1329627.

    Article  Google Scholar 

  76. Neuberger GB. Measures of fatigue: The Fatigue Questionnaire, Fatigue Severity Scale, Multidimensional Assessment of Fatigue Scale, and Short Form-36 Vitality (Energy/Fatigue) Subscale of the Short Form Health Survey. Arthritis Care Res. 2003;49(S5):S175–83.

    Article  Google Scholar 

  77. Akenhead R, Marques JB, Paul DJ. Accelerometer load: a new way to measure fatigue during repeated sprint training? Sci Med Footb. 2017;1(2):151–6. https://doi.org/10.1080/24733938.2017.1330550.

    Article  Google Scholar 

  78. Decroix L, Piacentini MF, Rietjens G, et al. Monitoring physical and cognitive overload during a training camp in professional female cyclists. Int J Sports Physiol Perform. 2016;11(7):933–9. https://doi.org/10.1123/ijspp.2015-0570.

    Article  PubMed  Google Scholar 

  79. Hurdiel R, Pezé T, Daugherty J, et al. Combined effects of sleep deprivation and strenuous exercise on cognitive performances during The North Face® Ultra Trail du Mont Blanc® (UTMB®). J Sports Sci. 2015;33(7):670–4. https://doi.org/10.1080/02640414.2014.960883.

    Article  PubMed  Google Scholar 

  80. Lysenko EA, Popov DV, Vepkhvadze TF, et al. Signaling responses to high and moderate load strength exercise in trained muscle. Physiol Rep. 2019;7(9): e14100. https://doi.org/10.14814/phy2.14100.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Coles E, Wells M, Maxwell M, et al. The influence of contextual factors on healthcare quality improvement initiatives: what works, for whom and in what setting? Protocol for a realist review. Syst Rev. 2017;6(1):168. https://doi.org/10.1186/s13643-017-0566-8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Durand-Bush N, Salmela JH. The development and maintenance of expert athletic performance: perceptions of World and Olympic champions. J Appl Sport Psychol. 2002;14(3):154–71. https://doi.org/10.1080/10413200290103473.

    Article  Google Scholar 

  83. Beck KL, Thomson JS, Swift RJ, et al. Role of nutrition in performance enhancement and postexercise recovery. Open Access J Sports Med. 2015;6:259–67. https://doi.org/10.2147/OAJSM.S33605.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nédélec M, Halson S, Delecroix B, et al. Sleep hygiene and recovery strategies in elite soccer players. Sports Med. 2015;45(11):1547–59. https://doi.org/10.1007/s40279-015-0377-9.

    Article  PubMed  Google Scholar 

  85. Chtourou H, Hammouda O, Souissi H, et al. The effect of ramadan fasting on physical performances, mood state and perceived exertion in young footballers. Asian J Sports Med. 2011;2(3):177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Judge LW, Urbina LJ, Hoover DL, et al. The impact of competitive trait anxiety on collegiate powerlifting performance. J Strength Cond Res. 2016;30(9):2399–405. https://doi.org/10.1519/jsc.0000000000001363.

    Article  PubMed  Google Scholar 

  87. Caris AV, Santos RVT. Performance and altitude: ways that nutrition can help. Nutrition. 2019;60:35–40. https://doi.org/10.1016/j.nut.2018.09.030.

    Article  PubMed  Google Scholar 

  88. Burtscher M, Niedermeier M, Burtscher J, et al. Preparation for endurance competitions at altitude: physiological, psychological, dietary and coaching aspects. A narrative review. Front Physiol. 2018;9:1504. https://doi.org/10.3389/fphys.2018.01504.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bühlmayer L, Birrer D, Röthlin P, et al. Effects of mindfulness practice on performance-relevant parameters and performance outcomes in sports: a meta-analytical review. Sports Med. 2017;47(11):2309–21. https://doi.org/10.1007/s40279-017-0752-9.

    Article  PubMed  Google Scholar 

  90. Gould D, Damarjian N, Greenleaf C. Imagery training for peak performance. In: Van Raalte JL, Brewer BW, editors. Exploring sport and exercise psychology. American Psychological Association; 2002. p. 49–74.

    Chapter  Google Scholar 

  91. Kiely J. Periodization paradigms in the 21st century: evidence-led or tradition-driven? Int J Sports Physiol Perform. 2012;7(3):242. https://doi.org/10.1123/ijspp.7.3.242.

    Article  PubMed  Google Scholar 

  92. Gigerenzer G, Gaissmaier W. Heuristic decision making. Annu Rev Psychol. 2011;62:451–82. https://doi.org/10.1146/annurev-psych-120709-145346.

    Article  PubMed  Google Scholar 

  93. Nosek P, Brownlee TE, Drust B, et al. Feedback of GPS training data within professional English soccer: a comparison of decision making and perceptions between coaches, players and performance staff. Sci Med Footb. 2020. https://doi.org/10.1080/24733938.2020.1770320.

    Article  PubMed  Google Scholar 

  94. Cheung K, Hume P, Maxwell L. Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med. 2003;33:145–64.

    Article  PubMed  Google Scholar 

  95. McGahan J, Burns C, Lacey S, et al. Relationship between load and readiness to train in a Gaelic football pre-competition training camp. J Aust Stength Cond. 2018;27(1):28–35.

    Google Scholar 

  96. McGahan J, Burns C, Lacey S, et al. Variation in training load and markers of wellness. J Aust Stength Cond. 2020;27(3):6–14.

    Google Scholar 

  97. Ryan S, Kempton T, Impellizzeri F, et al. Training monitoring in professional Australian football: theoretical basis and recommendations for coaches and scientists. Sci Med Footb. 2019. https://doi.org/10.1080/24733938.2019.1641212.

    Article  Google Scholar 

  98. Cullen BD, McCarren AL, Malone S. Ecological validity of self-reported wellness measures to assess pre-training and pre-competition preparedness within elite Gaelic football. Sport Sci Health. 2020. https://doi.org/10.1007/s11332-020-00667-x.

    Article  Google Scholar 

  99. Mason B, McKune A, Pumpa K, et al. The use of acute exercise interventions as game day priming strategies to improve physical performance and athlete readiness in team-sport athletes: a systematic review. Sports Med. 2020;50(11):1943–62. https://doi.org/10.1007/s40279-020-01329-1.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Fabio Nakamura and Carlo Buzzichelli for their assistance and feedback. We would also like to thank the reviewers for their useful comments and contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie C. Jeffries.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Annie C. Jeffries, Samuele M. Marcora, Aaron J. Coutts, Lee Wallace, Alan McCall and Franco M. Impellizzeri declare that they have no conflicts of interest relevant to the content of this review.

Author contributions

ACJ and FMI developed the project. ACJ wrote the first draft of the manuscript. FMI and SM analysed, tested internally and externally the conceptual framework, and revised the first draft. AJC, AM and LW revised the original manuscript and provided feedback in the development of the framework. All authors read and approved the final manuscript.

Ethics approval

Not applicable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeffries, A.C., Marcora, S.M., Coutts, A.J. et al. Development of a Revised Conceptual Framework of Physical Training for Use in Research and Practice. Sports Med 52, 709–724 (2022). https://doi.org/10.1007/s40279-021-01551-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01551-5