Skip to main content

Attempting to Separate Placebo Effects from Exercise in Chronic Pain: A Systematic Review and Meta-analysis

A Correction to this article was published on 19 October 2021

This article has been updated

Abstract

Background

Pain is the most disabling characteristic of musculoskeletal disorders, and while exercise is promoted as an important treatment modality for chronic musculoskeletal conditions, the relative contribution of the specific effects of exercise training, placebo effects and non-specific effects such as natural history are not clear. The aim of this systematic review and meta-analysis was to determine the relative contribution of these factors to better understand the true effect of exercise training for reducing pain in chronic primary musculoskeletal pain conditions.

Design

Systematic review with meta-analysis

Data Sources

MEDLINE, CINAHL, SPORTDiscus, EMBASE and CENTRAL from inception to February 2021. Reference lists of prior systematic reviews.

Eligibility Criteria

Randomised controlled trials of interventions that used exercise training compared to placebo, true control or usual care in adults with chronic primary musculoskeletal pain. The review was registered prospectively with PROSPERO (CRD42019141096).

Results

We identified 79 eligible trials for quantitative analysis. Pairwise meta-analysis showed very low-quality evidence (GRADE criteria) that exercise training was not more effective than placebo (g [95% CI]: 0.94 [− 0.17, 2.06], P = 0.098, I2 = 92.46%, studies: n = 4). Exercise training was more effective than true, no intervention controls (g [95% CI]: 0.99 [0.66, 1.32], P < 0.001, I2 = 92.43%, studies: n = 42), usual care controls (g [95% CI]: 0.64 [0.44, 0.83], P < 0.001, I2 = 76.52%, studies: n = 33), and when all controls combined (g [95% CI]: 0.84 [0.64, 1.04], P < 0.001, I2 = 90.02%, studies: n = 79).

Conclusions

There is very low-quality evidence that exercise training is not more effective than non-exercise placebo treatments in chronic pain. Exercise training and the associated clinical encounter are more effective than true control or standard medical care for reductions in pain for adults with chronic musculoskeletal pain, with very low quality of evidence based on GRADE criteria.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

References

  1. 1.

    Goldberg DS, McGee SJ. Pain as a global public health priority. BMC Public Health. 2011;11(1):770.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Smith BH, Elliott AM, Chambers WA, Smith WC, Hannaford PC, Penny K. The impact of chronic pain in the community. Fam Pract. 2001;18(3):292–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Majlesi J. Patients with chronic musculoskeletal pain of 3–6-month duration already have low levels of health-related quality of life and physical activity. Curr Pain Headache Rep. 2019. https://doi.org/10.1007/s11916-11019-10817-11916.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity. Arch Intern Med. 2003;163:2433–45.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Arnow BA, Hunkeler EM, Blasey CM, Lee J, Constantino MJ, Fireman B, et al. Comorbid depression, chronic pain, and disability in primary care. Psychosom Med. 2006;68(2):262–8.

    Google Scholar 

  6. 6.

    Blyth FM, March LM, Brnabic AJM, Jorm LR, Williamson M, Cousins MJ. Chronic pain in Australia: a prevalence study. Pain. 2001;89(2):127–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Dieppe P. Chronic musculoskeletal pain. BMJ. 2013;346:bmj.f3146.

  8. 8.

    Williams AC, Craig KD. Updating the definition of pain. Pain. 2016;157(11):2420–3.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. Chronic pain as a symptom or a disease: the IASP classification of chronic pain for the international classification of diseases (ICD-11). Pain. 2019;160(1):19–27.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Cunningham NR, Kashikar-Zuck S. Nonpharmacological treatment of pain in rheumatic diseases and other musculoskeletal pain conditions. Curr Rheum Rep. 2013;15(2):1–8.

    Google Scholar 

  11. 11.

    Polaski AM, Phelps AL, Kostek MC, Szucs KA, Kolber BJ. Exercise-induced hypoalgesia: a meta-analysis of exercise dosing for the treatment of chronic pain. PLoS ONE. 2019;14(1):e0210418.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Sullivan AB, Scheman J, Venesy D, Davin S. The role of exercise and types of exercise in the rehabilitation of chronic pain: specific or nonspecific benefits. Curr Pain Headache Rep. 2012;16(2):153–61.

    Google Scholar 

  13. 13.

    Lindheimer JB, Szabo A, Raglin JS, Beedie C. Advancing the understanding of placebo effects in psychological outcomes of exercise: lessons learned and future directions. Eur J Sport Sci. 2020;20(3):326–37.

    Google Scholar 

  14. 14.

    Lindheimer JB, O’Connor PJ, Dishman RK. Quantifying the placebo effect in psychological outcomes of exercise training: a meta-analysis of randomized trials. Sports Med. 2015;45(5):693–711.

    Google Scholar 

  15. 15.

    Bérdi M, Köteles F, Szabó A, Bárdos G. Placebo effects in sport and exercise: a meta-analysis. Eur J Ment Health. 2011;6(2):196–212.

    Google Scholar 

  16. 16.

    Carlino E, Guerra G, Piedimonte A. Placebo effects: from pain to motor performance. Neurosci Lett. 2016;632:224–30.

    CAS  Google Scholar 

  17. 17.

    Wager TD, Atlas LY. The neuroscience of placebo effects: connecting context, learning and health. Nat Rev Neurosci. 2015;16(7):403–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Testa M, Rossettini G. Enhance placebo, avoid nocebo: how contextual factors affect physiotherapy outcomes. Man Ther. 2016;24:65–74.

    Google Scholar 

  19. 19.

    Howe LC, Leibowitz KA, Crum AJ. When your doctor “gets it” and “gets you”: the critical role of competence and warmth in the patient-provider interaction. Front Psychiatry. 2019. https://doi.org/10.3389/fpsyt.2019.00475.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Doherty M, Dieppe P. The, “placebo” response in osteoarthritis and its implications for clinical practice. Osteoarthritis Cartil. 2009;17(10):1255–62.

    CAS  Google Scholar 

  21. 21.

    Rossettini G, Camerone EM, Carlino E, Benedetti F, Testa M. Context matters: the psychoneurobiological determinants of placebo, nocebo and context-related effects in physiotherapy. Arch Physiother. 2020;10(1):1–12.

    Google Scholar 

  22. 22.

    Rossettini G, Palese A, Geri T, Fiorio M, Colloca L, Testa M. Physical therapists’ perspectives on using contextual factors in clinical practice: findings from an italian national survey. PLoS ONE. 2018;13(11):e0208159.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Rossettini G, Palese A, Geri T, Mirandola M, Tortella F, Testa M. The knowledge of contextual factors as triggers of placebo and nocebo effects in patients with musculoskeletal pain: findings from a national survey. Front Psychiatry. 2019;10:478.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Whiteside N, Sarmanova A, Chen X, Zou K, Abdullah N, Doherty M, et al. Proportion of contextual effects in the treatment of fibromyalgia—a meta-analysis of randomised controlled trials. Clin Rheumatol. 2018;37(5):1375–82.

    Google Scholar 

  25. 25.

    Chen AT, Shrestha S, Collins JE, Sullivan JK, Losina E, Katz JN. Estimating contextual effect in nonpharmacological therapies for pain in knee osteoarthritis: a systematic analytic review. Osteoarthritis Cartil. 2020;28(9):1154–69.

    CAS  Google Scholar 

  26. 26.

    McCambridge J, Witton J, Elbourne DR. Systematic review of the hawthorne effect: new concepts are needed to study research participation effects. J Clin Epidemiol. 2014;67(3):267–77.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kaptchuk TJ, Hemond CC, Miller FG. Placebos in chronic pain: evidence, theory, ethics, and use in clinical practice. BMJ. 2020;370:m1668.

    Google Scholar 

  28. 28.

    Zou K, Wong J, Abdullah N, Chen X, Smith T, Doherty M, et al. Examination of overall treatment effect and the proportion attributable to contextual effect in osteoarthritis: meta-analysis of randomised controlled trials. Ann Rheum Dis. 2016;75(11):1964–70.

    Google Scholar 

  29. 29.

    Tagliaferri SD, Miller CT, Owen PJ, Mitchell UH, Brisby H, Fitzgibbon B, et al. Domains of chronic low back pain and assessing treatment effectiveness: a clinical perspective. Pain Pract. 2019;20(2):211–25.

    Google Scholar 

  30. 30.

    Rossettini G, Carlino E, Testa M. Clinical relevance of contextual factors as triggers of placebo and nocebo effects in musculoskeletal pain. BMC Musculoskelet Dis. 2018;19(1):27.

    Google Scholar 

  31. 31.

    Benedetti F, Carlino E, Piedimonte A. Increasing uncertainty in CNS clinical trials: the role of placebo, nocebo, and hawthorne effects. Lancet Neurol. 2016;15(7):736–47.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Moher D, Liberati A, Tetzlaff J, Altman D, Group P. preferred reporting items for systematic reviews and meta-analyses: the prisma statement. BMJ. 2009;2009:1–8.

    Google Scholar 

  33. 33.

    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. A classification of chronic pain for icd-11. Pain. 2015;156(6):1003.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Hróbjartsson A, Gøtzsche PC. Is the placebo powerless? Update of a systematic review with 52 new randomized trials comparing placebo with no treatment. J Intern Med. 2004;256(2):91–100.

    Google Scholar 

  36. 36.

    Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Cochrane handbook for systematic reviews of interventions version 6.0 2019. http://www.training.cochrane.org/handbook. Accessed 13 Dec 2020.

  37. 37.

    Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27(6):1785–805.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. Grade guidelines: 1. Introduction—grade evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis. New York: Wiley; 2011.

    Google Scholar 

  40. 40.

    Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions version 6.1. 2020. http://www.training.cochrane.org/handbook.

  41. 41.

    Mengshoel AM, Komnas HB, Forre O. The effects of 20 weeks of physical fitness training in female patients with fibromyalgia. Clin Exp Rheumatol. 1992;10:345–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Sañudo B, Galiano D, Carrasco L, Blagojevic M, de Hoyo M, Saxton J. Aerobic exercise versus combined exercise therapy in women with fibromyalgia syndrome: a randomized controlled trial. Arch Phys Med Rehabil. 2010;91(12):1838–43.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Gowans S, DeHueck A, Voss S, Silaj A, Abbey S, Reynolds W. Effect of a randomized, controlled trial of exercise on mood and physical function in individuals with fibromyalgia. Arthritis Care Res. 2001;45(6):519–29.

    CAS  Google Scholar 

  44. 44.

    Etnier JL, Karper WB, Gapin JI, Barella LA, Chang YK, Murphy KJ. Exercise, fibromyalgia, and fibrofog: a pilot study. J Phys Activ Health. 2009;6:239–46.

    Google Scholar 

  45. 45.

    Abbott JH, Robertson MC, Chapple C, Pinto D, Wright AA, Leon de lan Barra S, et al. Manual therapy, exercise therapy, or both, in addition to usual care, for osteoarthritis of the hip or knee: a randomized controlled trial 1: clinical effectiveness. Osteoarthritis Cartil. 2013;21(4):525–34.

    CAS  Google Scholar 

  46. 46.

    Da Costa D, Abrahamowicz M, Lowensteyn I, Bernatsky S, Dritsa M, Fitzcharles MA, et al. A randomized clinical trial of an individualized home-based exercise programme for women with fibromyalgia. Rheumatology. 2005;44(11):1422–7.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Gusi N, Tomas-Carus P, Häkkinen A, Häkkinen K, Ortega-Alonso A. Exercise in waist-high warm water decreases pain and improves health-related quality of life and strength in the lower extremities in women with fibromyalgia. Arthritis Rheumatol. 2006;55(1):66–73.

    CAS  Google Scholar 

  48. 48.

    Rendant D, Pach D, Lüdtke R, Reisshauer A, Mietzner A, Willich SN, et al. Qigong versus exercise versus no therapy for patients with chronic neck pain. Spine. 2011;36(6):419–27.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Cheung C, Wyman JF, Resnick B, Savik K. Yoga for managing knee osteoarthritis in older women: a pilot randomized controlled trial. BMC. 2014;14(160):1–11.

    Google Scholar 

  50. 50.

    Lund H, Weile U, Christensen R, Rostock B, Downey A, Bartels EM, et al. A randomized controlled trial of aquatic and land-based exercise in patients with knee osteoarthritis. J Rehabil Med. 2008;40(2):137–44.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Williams K, Abildso C, Steinberg L, Doyle E, Epstein B, Smith D, et al. Evaluation of the effectiveness and efficacy of iyengaryoga therapy on chronic low back pain. Spine. 2009;34(19):2066–76.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Wong A, Figueroa A, Sanchez-Gonzalez MA, Son W-M, Chernykh O, Park S-Y. Effectiveness of tai chi on cardiac autonomic function and symptomatology in women with fibromyalgia: a randomized controlled trial. J Aging Phys Act. 2018;26(2):214–21.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kayo AH, Peccin MS, Sanches CM, Trevisani VFM. Effectiveness of physical activity in reducing pain in patients with fibromyalgia: a blinded randomized clinical trial. Rheumatol Int. 2011;32(8):2285–92.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Collado-Mateo D, Dominguez-Muñoz FJ, Adsuar JC, Garcia-Gordillo MA, Gusi N. Effects of exergames on quality of life, pain, and disease effect in women with fibromyalgia: a randomized controlled trial. Arch Phys Med Rehabil. 2017;98(9):1725–31.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Baptista AS, Villela AL, Jones A, Natour J. Effectiveness of dance in patients with fibromyalgia: a randomised, single-blind, controlled study. Clin Exp Rheumatol. 2012;30:S18–23.

    Google Scholar 

  56. 56.

    García-Martínez AM, De Paz JA, Márquez S. Effects of an exercise programme on self-esteem, self-concept and quality of life in women with fibromyalgia: a randomized controlled trial. Rheumatol Int. 2011;32(7):1869–76.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Häkkinen A, Häkkinen K, Hannonen P, Alen M. Strength training induced adaptations in neuromuscular function of premenopausal women with fibromyalgia: comparison with healthy women. Ann Rheumatol. 2001;60:21–6.

    Google Scholar 

  58. 58.

    Sañudo B, Galiano D, Carrasco L, de Hoyo M, McVeigh JG. Effects of a prolonged exercise program on key health outcomes in women with fibromyalgia: a randomized controlled trial. J Rehabill Med. 2011;43(6):521–6.

    Google Scholar 

  59. 59.

    Schachter CL, Busch AJ, Peloso PM, Sheppard MS. Effects of short versus long bouts of aerobic exercise in sedentary women with fibromyalgia: a randomized controlled trial. Phys Ther. 2003;83(4):340–58.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Sencan S, Ak S, Karan A, Muslumanoglu L, Ozcan E, Berker E. A study to compare the therapeutic efficacy of aerobic exercise and paroxetine in fibromyalgia syndrome. J Back Musculoskelet Rehabil. 2004;17(2):57–61.

    Google Scholar 

  61. 61.

    Tomás-Carus P, Gusi N, Häkkinen A, Häkkinen K, Leal A, Ortega-Alonso A. Eight months of physical training in warm water improves physical and mental health in women with fibromyalgia: a randomized controlled trial. J Rehabil Med. 2008;40(4):248–52.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Tomás-Carus P, Gusi N, Hakkinen A, Hakkinen K, Raimundo A, Ortega-Alonso A. Improvements of muscle strength predicted benefits in HRQOL and postural balance in women with fibromyalgia: an 8-month randomized controlled trial. Rheumatol. 2009;48(9):1147–51.

    Google Scholar 

  63. 63.

    Tomás-Carús P, Gusi N, Leal A, García Y, Ortega-Alonso A. The fibromyalgia treatment with physical exercise in warm water reduces the impact of the disease on female patients’ physical and mental health. Reumatol Clin. 2007;3(1):33–7.

    Google Scholar 

  64. 64.

    Assumpção A, Matsutani LA, Yuan SL, Santo AS, Sauer J, Mango P, et al. Muscle stretching exercises and resistance training in fibromyalgia: which is better? A three-arm randomized controlled trial. Eu J Phys Rehabil Med. 2018;54(5):663–70.

    Google Scholar 

  65. 65.

    King SJ, Wessel J, Bhambhani Y, Sholter D, Maksymowych W. The effects of exercise and education, individually or combined, in women with fibromyalgia. J Rheumatol. 2002;29(12):2620–7.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Aglamis B, Toraman NF, Yaman H. The effect of a 12-week supervised multicomponent exercise program on knee OA in Turkish women. J Back Muscoloskelet Rehabil. 2008;21:121–8.

    Google Scholar 

  67. 67.

    An B, Dai K, Zhu Z, Wang Y, Hao Y, Tang T, et al. Baduanjin alleviates the symptoms of knee osteoarthritis. J Altern Complement Med. 2008;14(2):167–74.

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Borjesson M, Robertson E. Physiotherapy in knee osteoarthrosis: effect on pain and walking. Physiother Res Int. 1996;1(2):89–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Cheing GL, Hui-Chan CW. Does four weeks of tens and/or isometric exercise produce cumulative reduction of osteoarthritic knee pain? Cllin Rehabil. 2002;16:749–60.

    Google Scholar 

  70. 70.

    French HP, Cusack T, Brennan A, Caffrey A, Conroy R, Cuddy V, et al. Exercise and manual physiotherapy arthritis research trial (EMPART) for osteoarthritis of the hip: a multicenter randomized controlled trial. Arch Phys Med Rehabil. 2013;94(2):302–14.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Jan M-H, Lin J-J, Liau J-J, Lin Y-F, Lin D-H. Investigation of clinical effects of high- and low-resistance training for patients with knee osteoarthritis: a randomized controlled trial. Phys Ther. 2008;88(4):427–36.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Lim BW, Hinman RS, Wrigley TV, Sharma L, Bennell KL. Does knee malalignment mediate the effects of quadriceps strengthening on knee adduction moment, pain, and function in medial knee osteoarthritis? A randomized controlled trial. Arthritis Rheumatol. 2008;59(7):943–51.

    Google Scholar 

  73. 73.

    Lin D-H, Lin C-HJ, Lin Y-F, Jan M-H. Efficacy of 2 non-weight-bearing interventions, proprioception training versus strength training, for patients with knee osteoarthritis: a randomized clinical trial. J Orthop Sports Phys Ther. 2009;39(6):450–7.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Rosedale R, Rastogi R, May S, Chesworth BM, Filice F, Willis S, et al. Efficacy of exercise intervention as determined by the mckenzie system of mechanical diagnosis and therapy for knee osteoarthritis: a randomized controlled trial. J Orthop Sports Phys Ther. 2014;44(3):173-A176.

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Schilke JM, Johnson GO, Housh TJ, O’Dell JR. Effects of muscle-strength training on the functional status of patients with osteoarthritis of the knee joint. Nurs Res. 1996;45(2):68–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Wang T-J, Lee S-C, Liang S-Y, Tung H-H, Wu S-FV, Lin Y-P. Comparing the efficacy of aquatic exercises and land-based exercises for patients with knee osteoarthritis. J Clin Nurs. 2011;20(17–18):2609–22.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Hinman RS, Heywood SE, Day AR. Aquatic physical therapy for hip and knee osteoarthritis: results of a single-blind randomized controlled trial. Phys Ther. 2007;87(1):32–43.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Fransen M, Nairn L, Winstanley J, Lam P, Edmonds J. Physical activity for osteoarthritis management: a randomized controlled clinical trial evaluating hydrotherapy or Tai Chi classes. Arthr Rheumatol. 2007;57(3):407–14.

    Google Scholar 

  79. 79.

    Fukuda TY, Rossetto FM, Magalhães E, Bryk FF, Garcia Lucareli PR, De Almeida Carvalho NA. Short-term effects of hip abductors and lateral rotators strengthening in females with patellofemoral pain syndrome: a randomized controlled clinical trial. J Orthop Sports Phys Ther. 2010;40(11):736–42.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Khayambashi K, Mohammadkhani Z, Ghaznavi K, Lyle MA, Powers CM. The effects of isolated hip abductor and external rotator muscle strengthening on pain, health status, and hip strength in females with patellofemoral pain: a randomized controlled trial. J Orthop Sports Phys Ther. 2012;42(1):22–9.

    Google Scholar 

  81. 81.

    Saad MC, Vasconcelos RAD, Mancinelli LVDO, Munno MSDB, Liporaci RF, Grossi DB. Is hip strengthening the best treatment option for females with patellofemoral pain? A randomized controlled trial of three different types of exercises. Braz J Phys Ther. 2018;22(5):408–16.

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Harris-Hayes M, Czuppon S, Van Dillen LR, Steger-May K, Sahrmann S, Schootman M, et al. Movement-pattern training to improve function in people with chronic hip joint pain: a feasibility randomized clinical trial. J Orthop Sports Phys Ther. 2016;46(6):452–61.

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Ferrell BA, Josephson KR, Pollan AM, Loy S, Ferrell BR. A randomized trial of walking versus physical methods for chronic pain management. Aging Clin Exp Res. 1997;9:99–105.

    CAS  Google Scholar 

  84. 84.

    Cortell-Tormo JM, Sánchez PT, Chulvi-Medrano I, Tortosa-Martínez J, Manchado-López C, Llana-Belloch S, et al. Effects of functional resistance training on fitness and quality of life in females with chronic nonspecific low-back pain. J Back Musculoskelet Rehabil. 2018;31(1):95–105.

    Google Scholar 

  85. 85.

    Costa LOP, Maher CG, Latimer J, Hodges PW, Herbert RD, Refshauge KM, et al. Motor control exercise for chronic low back pain: a randomized placebo-controlled trial. Phys Ther. 2009;89(12):1275–86.

    Google Scholar 

  86. 86.

    Jackson JK, Shepherd TR, Kell RT. The influence of periodized resistance training on recreationally active males with chronic nonspecific low back pain. J Strength Cond Res. 2011;25(1):242–51.

    Google Scholar 

  87. 87.

    Kell RT, Asmundson GJG. A comparison of two forms of periodized exercise rehabilitation programs in the management of chronic nonspecific low-back pain. J Strength Cond Res. 2009;23(2):513–23.

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Kell RT, Risi AD, Barden JM. The response of persons with chronic nonspecific low back pain to three different volumes of periodized musculoskeletal rehabilitation. J Strength Cond Res. 2011;25(4):1052–64.

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Kofotolis N, Eleftherios K. Effects of two 4-week proprioreceptive neuromuscular facilitation programs on muscle endurance, flexibility, and functional performance in women with chronic low back pain. Phys Ther. 2006;86(7):1001–12.

    Google Scholar 

  90. 90.

    Masharawi Y, Nadaf N. The effect of non-weight bearing group-exercising on females with non-specific chronic low back pain: a randomized single blind controlled pilot study. J Back Musculoskelet Rehabil. 2013;26(4):353–9.

    Google Scholar 

  91. 91.

    Moussouli M, Vlachopoulos SP, Kofotolis ND, Theodorakis Y, Malliou P, Kellis E. Effects of stabilization exercises on health-related quality of life in women with chronic low back pain. J Phys Act Health. 2014;11(7):1295–303.

    Google Scholar 

  92. 92.

    Oh H-W, Lee M-G, Jang J-Y, Jin J-J, Cha J-Y, Jin Y-Y, et al. Time-effects of horse simulator exercise on psychophysiological responses in men with chronic low back pain. Isokinet Exerc Sci. 2014;22(2):153–63.

    Google Scholar 

  93. 93.

    Segal-Snir Y, Lubetzky VA, Masharawi Y. Rotation exercise classes did not improve function in women with non-specific chronic low back pain: a randomized single blind controlled study. J Back Musculoskelet Rehabil. 2016;29(3):467–75.

    Google Scholar 

  94. 94.

    Schinhan M, Neubauer B, Pieber K, Gruber M, Kainberger F, Castellucci C, et al. Climbing has a positive impact on low back pain: a prospective randomized controlled trial. Clin J Sport Med. 2016;26(3):199–205.

    Google Scholar 

  95. 95.

    Cho H-Y, Kim E-H, Kim J. Effects of the core exercise program on pain and active range of motion in patients with chronic low back pain. J Phys Ther Sci. 2014;26:1237–40.

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Gladwell V, Head S, Haggar M, Beneke R. Does a program of pilates improve chronic non-specific low back pain? J Sport Rehabil. 2006;15:338–50.

    Google Scholar 

  97. 97.

    de Fonseca JL, Magini M, van Freitas TH. Laboratory gait analysis in patients with low back pain before and after a pilates intervention. J Sport Rehabil. 2009;18:269–82.

    Google Scholar 

  98. 98.

    Steele J, Bruce-Low S, Smith D, Jessop D, Osborne N. A randomized controlled trial of the effects of isolated lumbar extension exercise on lumbar kinematic pattern variability during gait in chronic low back pain. PM&R. 2016;8(2):105–14.

    Google Scholar 

  99. 99.

    Yoo JH, Kim SE, Lee MG, Jin JJ, Hong J, Choi YT, et al. The effect of horse simulator riding on visual analogue scale, body composition and trunk strength in the patients with chronic low back pain. Int J Clin Pract. 2014;68(8):941–9.

    Google Scholar 

  100. 100.

    Shaughnessy M, Caulfield B. A pilot study to investigate the effect of lumbar stabilisation exercise training on functional ability and quality of life in patients with chronic low back pain. Int J Rehabil Res. 2004;27(4):297–301.

    CAS  Google Scholar 

  101. 101.

    Zadro JR, Shirley D, Simic M, Mousavi SJ, Ceprnja D, Maka K, et al. Video-game–based exercises for older people with chronic low back pain: a randomized controlledtable trial (gameback). Phys Ther. 2019;99(1):14–27.

    Google Scholar 

  102. 102.

    de Araujo CL, Jones A, Roger-Silva D, Ribeiro LHC, Natour J. Effectiveness of the pilates method in the treatment of chronic mechanical neck pain: a randomized controlled trial. Arch Phys Med Rehabil. 2018;99(9):1740–6.

    Google Scholar 

  103. 103.

    Falla D, Lindstrøm R, Rechter L, Boudreau S, Petzke F. Effectiveness of an 8-week exercise programme on pain and specificity of neck muscle activity in patients with chronic neck pain: a randomized controlled study. Eur J Pain. 2013;17(10):1517–28.

    CAS  Google Scholar 

  104. 104.

    von Trott P, Wiedemann AM, Lüdtke R, Reißhauer A, Willich SN, Witt CM. Qigong and exercise therapy for elderly patients with chronic neck pain (qibane): a randomized controlled study. J Pain. 2009;10(5):501–8.

    Google Scholar 

  105. 105.

    Buttagat V, Taepa N, Suwannived N, Rattanachan N. Effects of scapular stabilization exercise on pain related parameters in patients with scapulocostal syndrome: a randomized controlled trial. J Bodyw Mov Ther. 2016;20(1):115–22.

    Google Scholar 

  106. 106.

    Saeterbakken AH, Nordengen S, Andersen V, Fimland MS. Nordic walking and specific strength training for neck- and shoulder pain in office workers: a pilot-study. Eur J Phys Rehab Med. 2017;53(6):928–35.

    Google Scholar 

  107. 107.

    Viljanen M, Malmivaara A, Uitti J, Rinne M, Palmroos P, Laippala P. Effectiveness of dynamic muscle training, relaxation training, or ordinary activity for chronic neck pain: randomised controlled trial. BMJ. 2003;327:1–5.

    Google Scholar 

  108. 108.

    Horstmann T, Jud HM, Fröhlich V, Mündermann A, Grau S. Whole-body vibration versus eccentric training or a wait-and-see approach for chronic achilles tendinopathy: a randomized clinical trial. J Orthop Sports Phys Ther. 2013;43(11):794–803.

    Google Scholar 

  109. 109.

    Osteras N, Hagen KB, Grotle M, Sand-Svartrud AL, Mowinckel P, Kjeken I. Limited effects of exercises in people with hand osteoarthritis: results from a randomized controlled trial. Osteoarthritis Cartil. 2014;22:1224–33.

    CAS  Google Scholar 

  110. 110.

    Alikhajeh Y, Barabadi E, Rahimi GRM. A comparison of 6 weeks of aquatic exercise and kinesio taping in patients with chronic nonspecific low back pain. J Sport Rehabil. 2020;30(1):37–42.

    Google Scholar 

  111. 111.

    Izquierdo-Alventosa R, Inglés M, Cortés-Amador S, Gimeno-Mallench L, Sempere-Rubio N, Chirivella J, et al. Comparative study of the effectiveness of a low-pressure hyperbaric oxygen treatment and physical exercise in women with fibromyalgia: randomized clinical trial. Ther Adv Musculoskelet Dis. 2020;12:1759720X20930493.

  112. 112.

    Madadi-Shad M, Jafarnezhadgero AA, Sheikhalizade H, Dionisio VC. Effect of a corrective exercise program on gait kinetics and muscle activities in older adults with both low back pain and pronated feet: a double-blind, randomized controlled trial. Gait Posture. 2020;76:339–45.

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Prado ÉRA, Meireles SM, Carvalho ACA, Mazoca MF, Neto ADMM, Da Silva RB, et al. Influence of isostretching on patients with chronic low back pain. A randomized controlled trial. Physiother Theory Pract. 2019;32(2):287–94.

    Google Scholar 

  114. 114.

    Rezasoltani Z, Sanati E, Mofrad RK, Azizi S, Dadarkhah A, Najafi S. Randomized controlled trial of aquatic cycling for treatment of knee osteoarthritis in elderly people. Top Geriatr Rehabil. 2020;36(2):103–9.

    Google Scholar 

  115. 115.

    Vincent KR, Vasilopoulos T, Montero C, Vincent HK. Eccentric and concentric resistance exercise comparison for knee osteoarthritis. Med Sci Sports Exerc. 2019;51(10):1977–86.

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    McIlveen B, Robertson VJ. A randomised controlled study of the outcome of hydrotherapy for subjects with low back or back and leg pain. Physiotherapy. 1998;84(1):17–26.

    Google Scholar 

  117. 117.

    Nichols DS, Glenn TM. Effects of aerobic exercise on pain perception, affect, and level of disability in individuals with fibromyalgia. Phys Ther. 1994;74(4):327–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Turner JA, Clancy S, McQuade KJ, Cardenas DD. Effectiveness of behavioral therapy for chronic low back pain: a component analysis. J Consult Clin Psychol. 1990;58(5):573.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Valkeinen H, Alén M, Häkkinen A, Hannonen P, Kukkonen-Harjula K, Häkkinen K. Effects of concurrent strength and endurance training on physical fitness and symptoms in postmenopausal women with fibromyalgia: a randomized controlled trial. Arch Phys Med Rehabil. 2008;89(9):1660–6.

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Wigers SHR, Stiles T, Vogel P. Effects of aerobic exercise versus stress management treatment in fibromyalgia. Scand J Rheumatol. 1996;25(2):77–86.

    CAS  Google Scholar 

  121. 121.

    McBeth J, Prescott G, Scotland G, Lovell K, Keeley P, Hannaford P, et al. Cognitive behavior therapy, exercise, or both for treating chronic widespread pain. Arch Intern Med. 2012;172(1):48–57.

    Google Scholar 

  122. 122.

    Keane LG. Comparing aquastretch with supervised land based stretching for chronic lower back pain. J Bodyw Mov Ther. 2017;21(2):297–305.

    Google Scholar 

  123. 123.

    Hróbjartsson A, Copenhagen P. Placebo is better than no treatment for subjective continuous outcomes and for treatment of pain. N Engl J Med. 2001;344:1594–602.

    Google Scholar 

  124. 124.

    Chen X, Zou K, Abdullah N, Whiteside N, Sarmanova A, Doherty M, et al. The placebo effect and its determinants in fibromyalgia: meta-analysis of randomised controlled trials. Clin Rheumatol. 2017;36(7):1623–30.

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    de Craen AJ, Tijssen JG, de Gans J, Kleijnen J. Placebo effect in the acute treatment of migraine: subcutaneous placebos are better than oral placebos. J Neurol. 2000;247(3):183–8.

    Google Scholar 

  126. 126.

    Zhang W, Robertson J, Jones AC, Dieppe PA, Doherty M. The placebo effect and its determinants in osteoarthritis: Meta-analysis of randomised controlled trials. Ann Rheum Dis. 2008;67(12):1716–23.

    CAS  Google Scholar 

  127. 127.

    Branthwaite A, Cooper P. Analgesic effects of branding in treatment of headaches. Br Med J (Clin Res Ed). 1981;282(6276):1576–8.

    CAS  Google Scholar 

  128. 128.

    Bello S, Wei M, Hilden J, Hróbjartsson A. The matching quality of experimental and control interventions in blinded pharmacological randomised clinical trials: a methodological systematic review. BMC Med Res Methodol. 2016;16(1):18.

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Friesen P. Placebos as a source of agency: evidence and implications. Front Psychiatry. 2019;10:721.

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Zhang W, Doherty M. Efficacy paradox and proportional contextual effect (PCE). Clin Immunol. 2018;186:82–6.

    CAS  Google Scholar 

  131. 131.

    Kamper SJ, Williams CM. The placebo effect: powerful, powerless or redundant? Br J Sports Med. 2013;47(1):6–9.

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Rossettini G, Testa M. Manual therapy rcts: should we control placebo in placebo control? Eur J Phys Rehabil Med. 2018;54(3):500–1.

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Rains JC, Penzien DB. Behavioral research and the double-blind placebo-controlled methodology: challenges in applying the biomedical standard to behavioral headache research. Headache. 2005;45(5):479–86.

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Singal AG, Higgins PDR, Waljee AK. A primer on effectiveness and efficacy trials. Clin Transl Gastroenterol. 2014;5(1):e45.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Sosa-Reina MD, Nunez-Nagy S, Gallego-Izquierdo T, Pecos-Martín D, Monserrat J, Álvarez-Mon M. Effectiveness of therapeutic exercise in fibromyalgia syndrome: a systematic review and meta-analysis of randomized clinical trials. BioMed Res Int. 2017;2017:2356346.

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Andrade A, Dominski FH, Sieczkowska SM. What we already know about the effects of exercise in patients with fibromyalgia: an umbrella review. Semin Arthritis Rheum. 2020;50(6):1465–80.

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Zampogna B, Papalia R, Papalia GF, Campi S, Vasta S, Vorini F, et al. The role of physical activity as conservative treatment for hip and knee osteoarthritis in older people: a systematic review and meta-analysis. J Clin Med. 2020;9(4):1167.

    Google Scholar 

  138. 138.

    Goh S-L, Persson MSM, Stocks J, Hou Y, Lin J, Hall MC, et al. Efficacy and potential determinants of exercise therapy in knee and hip osteoarthritis: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62(5):356–65.

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Owen PJ, Miller CT, Mundell NL, Verswijveren SJ, Tagliaferri SD, Brisby H, et al. Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis. Br J Sports Med. 2019;54(21):1279–87.

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Bertozzi L, Gardenghi I, Turoni F, Villafañe JH, Capra F, Guccione AA, et al. Effect of therapeutic exercise on pain and disability in the management of chronic nonspecific neck pain: systematic review and meta-analysis of randomized trials. Phys Ther. 2013;93(8):1026–36.

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Imai K, Keele L, Tingley D, Yamamoto T. Causal mediation analysis using r. New York: Springer; 2010. p. 129–54.

    Google Scholar 

  142. 142.

    Lee H, Herbert RD, Lamb SE, Moseley AM, McAuley JH. Investigating causal mechanisms in randomised controlled trials. Trials. 2019;20(1):524.

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Cashin AG, McAuley JH, Lamb SE, Lee H. Disentangling contextual effects from musculoskeletal treatments. Osteoarthritis Cartilage. 2021;29(3):297–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Jérolon A, Baglietto L, Birmelé E, Alarcon F, Perduca V. Causal mediation analysis in presence of multiple mediators uncausally related. Int J Biostat. 2020. https://doi.org/10.1515/ijb-2019-0088.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clint T. Miller.

Ethics declarations

Funding

No funding was provided for this systematic review.

Conflict of interest

Clint Miller, Patrick Owen, Christian Than, Jake Ball, Kate Sadler, Alessandro Piedimonte, Fabrizio Benedetti and Daniel Belavy declare that they have no conflicts of interest relevant to the content of this review.

Data availability

The data extracted as part of this systematic review and used in subsequent analysis are made available in Table 1 and the Stata code and data are included in Table S2 (OSM).

Author contributions

Systematic review conception: CTM, PJO, DLB, AP. Screening: PJO, JB, CAT, KS. Extraction: JB, CAT, KS. Statistical analyses: PJO. Drafted manuscript: CTM. Edited and approved final manuscript: All.

Additional information

The original article has been updated: Due to Figures update.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1816 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miller, C.T., Owen, P.J., Than, C.A. et al. Attempting to Separate Placebo Effects from Exercise in Chronic Pain: A Systematic Review and Meta-analysis. Sports Med (2021). https://doi.org/10.1007/s40279-021-01526-6

Download citation