Schumacher YO, Mueller P. The 4000-m team pursuit cycling world record: theoretical and practical aspects. Med Sci Sports Exerc. 2002;34(6):1029–36.
PubMed
Article
Google Scholar
Stoggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295.
PubMed
PubMed Central
Article
Google Scholar
Hellard P, Avalos-Fernandes M, Lefort G, et al. Elite Swimmers’ training patterns in the 25 weeks prior to their season’s best performances: insights into periodization from a 20-years cohort. Front Physiol. 2019;10:363.
PubMed
PubMed Central
Article
Google Scholar
Fiskerstrand A, Seiler KS. Training and performance characteristics among Norwegian international rowers 1970–2001. Scand J Med Sci Sports. 2004;14(5):303–10.
CAS
PubMed
Article
Google Scholar
Kuipers H. How much is too much? Performance aspects of overtraining. Res Q Exerc Sport. 1996;67(3):65–9.
Google Scholar
Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186–205.
PubMed
Article
Google Scholar
Casado A, Hanley B, Santos-Concejero J, et al. World-class long-distance running performances are best predicted by volume of easy runs and deliberate practice of short-interval and tempo runs. J Strength Cond Res. 2019. https://doi.org/10.1519/JSC.0000000000003176.
Article
Google Scholar
Stellingwerff T. Case study: nutrition and training periodization in three elite marathon runners. Int J Sport Nutr Exerc Metab. 2012;22(5):392–400.
Article
Google Scholar
Faria EW, Parker DL, Faria IE. The science of cycling: factors affecting performance—part 2. Sports Med. 2005;35(4):313–37.
PubMed
Article
Google Scholar
Weyand PG, Davis JA. Running performance has a structural basis. J Exp Biol. 2005;208(Pt 14):2625–31.
PubMed
Article
Google Scholar
Hoogkamer W, Kram R, Arellano CJ. How biomechanical improvements in running economy could break the 2-hour marathon barrier. Sports Med. 2017. https://doi.org/10.1007/s40279-017-0708-0.
Article
PubMed
PubMed Central
Google Scholar
Stellingwerff T. Case study: body composition periodization in an olympic-level female middle-distance runner over a 9-year career. Int J Sport Nutr Exerc Metab. 2018;28(4):428–33.
PubMed
Article
Google Scholar
Heydenreich J, Kayser B, Schutz Y, et al. Total energy expenditure, energy intake, and body composition in endurance athletes across the training season: a systematic review. Sports Med Open. 2017;3(1):8.
PubMed
PubMed Central
Article
Google Scholar
Heikura IA, Stellingwerff T, Mero AA, et al. A mismatch between athlete practice and current sports nutrition guidelines among elite female and male middle- and long-distance athletes. Int J Sport Nutr Exerc Metab. 2017;27(4):351–60. https://doi.org/10.1123/ijsnem.2016-0316.
Article
PubMed
Google Scholar
Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the Female Athlete Triad-Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7.
PubMed
Article
Google Scholar
Mountjoy M, Sundgot-Borgen JK, Burke LM, et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018;52(11):687–97.
PubMed
Article
Google Scholar
Joy E, De Souza MJ, Nattiv A, et al. 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad. Curr Sports Med Rep. 2014;13(4):219–32.
PubMed
Article
Google Scholar
Kuikman M, Mountjoy M, Stellingwerff T, et al. A narrative review of non-pharmacological strategies in the treatment of relative energy deficiency in sport. Int J Sport Nutr Exerc Metab. 2020. https://doi.org/10.1123/ijsnem.2020-0211.
Article
Google Scholar
Schaal K, Tiollier E, Le Meur Y, et al. Elite synchronized swimmers display decreased energy availability during intensified training. Scand J Med Sci Sports. 2017;27(9):925–34.
CAS
PubMed
Article
Google Scholar
Woods AL, Garvican-Lewis LA, Lundy B, et al. New approaches to determine fatigue in elite athletes during intensified training: resting metabolic rate and pacing profile. PLoS ONE. 2017;12(3):e0173807.
PubMed
PubMed Central
Article
CAS
Google Scholar
Woods AL, Rice AJ, Garvican-Lewis LA, et al. The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists. PLoS ONE. 2018;13(2):e0191644.
PubMed
PubMed Central
Article
CAS
Google Scholar
Schaal K, VanLoan MD, Hausswirth C, et al. Decreased energy availability during training overload is associated with non-functional overreaching and suppressed ovarian function in female runners. Appl Physiol Nutr Metab. 2021. https://doi.org/10.1139/apnm-2020-0880.
Article
PubMed
Google Scholar
Loucks AB. Energy balance and body composition in sports and exercise. J Sports Sci. 2004;22(1):1–14.
PubMed
Article
Google Scholar
Loucks AB, Kiens B, Wright HH. Energy availability in athletes. J Sports Sci. 2011;29(Suppl 1):S7-15.
PubMed
Article
Google Scholar
Manore MM, Kam LC, Loucks AB, et al. The female athlete triad: components, nutrition issues, and health consequences. J Sports Sci. 2007;25(Suppl 1):S61-71.
PubMed
Article
Google Scholar
De Souza MJ, Koltun KJ, Etter CV, et al. Current status of the female athlete triad: update and future directions. Curr Osteoporos Rep. 2017;15(6):577–87.
PubMed
Article
Google Scholar
Nattiv A, Lynch L. The female athlete triad. Phys Sportsmed. 1994;22(1):60–8.
CAS
PubMed
Article
Google Scholar
Bellinger P. Functional overreaching in endurance athletes: a necessity or cause for concern? Sports Med. 2020. https://doi.org/10.1007/s40279-020-01269-w.
Article
PubMed
Google Scholar
Fry RW, Morton AR, Keast D. Overtraining in athletes. An update Sports Med. 1991;12(1):32–65.
CAS
PubMed
Article
Google Scholar
Halson SL, Jeukendrup AE. Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med. 2004;34(14):967–81.
PubMed
Article
Google Scholar
Urhausen A, Gabriel H, Kindermann W. Blood hormones as markers of training stress and overtraining. Sports Med. 1995;20(4):251–76.
CAS
PubMed
Article
Google Scholar
Mountjoy M, Sundgot-Borgen J, Burke L, et al. RED-S CAT. relative energy deficiency in sport (RED-S) clinical assessment tool (CAT). Br J Sports Med. 2015;49(7):421–3.
Cadegiani FA, Kater CE. Hormonal aspects of overtraining syndrome: a systematic review. BMC Sports Sci Med Rehabil. 2017;9:14.
PubMed
PubMed Central
Article
Google Scholar
Lehmann M, Foster C, Keul J. Overtraining in endurance athletes: a brief review. Med Sci Sports Exerc. 1993;25(7):854–62.
CAS
PubMed
Article
Google Scholar
Kuipers H, Keizer HA. Overtraining in elite athletes. Review and directions for the future. Sports Med. 1988;6(2):79–92.
CAS
PubMed
Article
Google Scholar
Kreider RB, Fry AC, O'Toole ML, editors. Overtraining in sport. Champaign: Human Kinetics; 1998.
Google Scholar
Meeusen R, Nederhof E, Buyse L, et al. Diagnosing overtraining in athletes using the two-bout exercise protocol. Br J Sports Med. 2010;44(9):642–8.
CAS
PubMed
Article
Google Scholar
Meeusen R, Piacentini MF, Busschaert B, et al. Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over)training status. Eur J Appl Physiol. 2004;91(2–3):140–6.
CAS
PubMed
Article
Google Scholar
Buyse L, Decroix L, Timmermans N, et al. Improving the diagnosis of nonfunctional overreaching and overtraining syndrome. Med Sci Sports Exerc. 2019;51(12):2524–30.
PubMed
Article
Google Scholar
Edwards WB. Modeling overuse injuries in sport as a mechanical fatigue phenomenon. Exerc Sport Sci Rev. 2018;46(4):224–31.
PubMed
Article
Google Scholar
Paquette MR, Napier C, Willy RW, et al. Moving beyond weekly “distance”: optimizing quantification of training load in runners. J Orthop Sports Phys Ther. 2020;50(10):564–9.
PubMed
Article
Google Scholar
Bertelsen ML, Hulme A, Petersen J, et al. A framework for the etiology of running-related injuries. Scand J Med Sci Sports. 2017;27(11):1170–80.
CAS
PubMed
Article
Google Scholar
Drinkwater BL, Bruemner B, Chesnut CH 3rd. Menstrual history as a determinant of current bone density in young athletes. JAMA. 1990;263(4):545–8.
CAS
PubMed
Article
Google Scholar
Drinkwater BL, Nilson K, Chesnut CH 3rd, et al. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med. 1984;311(5):277–81.
CAS
PubMed
Article
Google Scholar
Heikura IA, Uusitalo ALT, Stellingwerff T, et al. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):403–11.
CAS
PubMed
Article
Google Scholar
Tenforde AS, Carlson JL, Chang A, et al. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2017;45(2):302–10.
PubMed
Article
Google Scholar
Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40.
PubMed
Article
Google Scholar
Ackerman KE, Cano Sokoloff N, G DENM, et al. Fractures in relation to menstrual status and bone parameters in young athletes. Med Sci Sports Exerc. 2015;47(8):1577–86.
Melin A, Tornberg AB, Skouby S, et al. The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad. Br J Sports Med. 2014;48(7):540–5.
PubMed
Article
Google Scholar
Martinsen M, Holme I, Pensgaard AM, et al. The development of the brief eating disorder in athletes questionnaire. Med Sci Sports Exerc. 2014;46(8):1666–75.
PubMed
Article
Google Scholar
Drinkwater BL, Nilson K, Ott S, et al. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA. 1986;256(3):380–2.
CAS
PubMed
Article
Google Scholar
Capling L, Beck KL, Gifford JA, et al. Validity of dietary assessment in athletes: a systematic review. Nutrients. 2017;9(12):1313. https://doi.org/10.3390/nu9121313.
CAS
Article
PubMed Central
Google Scholar
O’Driscoll R, Turicchi J, Beaulieu K, et al. How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. Br J Sports Med. 2020;54(6):332–40.
PubMed
Google Scholar
Burke LM, Lundy B, Fahrenholtz IL, et al. Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):350–63.
PubMed
Article
Google Scholar
Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.
CAS
PubMed
Article
Google Scholar
Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol (1985). 1998;84(1):37–46.
Lieberman JL, MJ DES, Wagstaff DA, et al. Menstrual disruption with exercise is not linked to an energy availability threshold. Med Sci Sports Exerc. 2018;50(3):551–61.
Williams NI, Leidy HJ, Hill BR, et al. Magnitude of daily energy deficit predicts frequency but not severity of menstrual disturbances associated with exercise and caloric restriction. Am J Physiol Endocrinol Metab. 2015;308(1):E29-39.
CAS
PubMed
Article
Google Scholar
Schofield KL, Thorpe H, Sims ST. Where are all the men? Low energy availability in male cyclists: a review. Eur J Sport Sci. 2020. https://doi.org/10.1080/17461391.2020.1842510.
Article
PubMed
Google Scholar
Heikura IA, Burke LM, Bergland D, et al. Impact of energy availability, health, and sex on hemoglobin-mass responses following live-high-train-high altitude training in elite female and male distance athletes. Int J Sports Physiol Perform. 2018;13(8):1090–6.
PubMed
Article
Google Scholar
Keay N, Francis G, Entwistle I, et al. Clinical evaluation of education relating to nutrition and skeletal loading in competitive male road cyclists at risk of relative energy deficiency in sports (RED-S): 6-month randomised controlled trial. BMJ Open Sport Exerc Med. 2019;5(1):e000523.
PubMed
PubMed Central
Article
Google Scholar
Burke LM, Close GL, Lundy B, et al. Relative energy deficiency in sport in male athletes: a commentary on its presentation among selected groups of male athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):364–74.
PubMed
Article
Google Scholar
Langan-Evans C, Germaine M, Artukovic M, et al. The psychological and physiological consequences of low energy availability in a male combat sport athlete. Med Sci Sports Exerc. 2020. https://doi.org/10.1249/MSS.0000000000002519.
Article
Google Scholar
Blauwet CA, Brook EM, Tenforde AS, et al. Low energy availability, menstrual dysfunction, and low bone mineral density in individuals with a disability: implications for the para athlete population. Sports Med. 2017;47(9):1697–708.
PubMed
Article
Google Scholar
Brook EM, Tenforde AS, Broad EM, et al. Low energy availability, menstrual dysfunction, and impaired bone health: a survey of elite para athletes. Scand J Med Sci Sports. 2019;29(5):678–85.
PubMed
Article
Google Scholar
Pritchett K, DiFolco A, Glasgow S, et al. Risk of low energy availability in national and international level paralympic athletes: an exploratory investigation. Nutrients. 2021;13(3):979.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jurimae J, Maestu J, Jurimae T, et al. Peripheral signals of energy homeostasis as possible markers of training stress in athletes: a review. Metabolism. 2011;60(3):335–50.
PubMed
Article
CAS
Google Scholar
Cadegiani FA, Kater CE. Hypothalamic-pituitary-adrenal (HPA) Axis functioning in overtraining syndrome: findings from endocrine and metabolic responses on overtraining syndrome (EROS)-EROS-HPA Axis. Sports Med Open. 2017;3(1):45.
PubMed
PubMed Central
Article
Google Scholar
Elliott-Sale KJ, Tenforde AS, Parziale AL, et al. Endocrine effects of relative energy deficiency in sport. Int J Sport Nutr Exerc Metab. 2018;28(4):335–49.
CAS
PubMed
Article
Google Scholar
Gordon CM, Ackerman KE, Berga SL, et al. Functional hypothalamic amenorrhea: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2017;102(5):1413–39.
PubMed
Article
Google Scholar
Cano Sokoloff N, Misra M, Ackerman KE. Exercise, training, and the hypothalamic-pituitary-gonadal axis in men and women. Front Horm Res. 2016;47:27–43.
PubMed
PubMed Central
Article
CAS
Google Scholar
Urhausen A, Kindermann W. Diagnosis of overtraining: what tools do we have? Sports Med. 2002;32(2):95–102.
PubMed
Article
Google Scholar
Heikura IA, Stellingwerff T, Areta JL. Low energy availability in female athletes: from the lab to the field. Eur J Sport Sci. 2021. https://doi.org/10.1080/17461391.2021.1915391.
Article
PubMed
Google Scholar
Mountjoy M, Andersen LB, Armstrong N, et al. International Olympic Committee consensus statement on the health and fitness of young people through physical activity and sport. Br J Sports Med. 2011;45(11):839–48.
PubMed
Article
Google Scholar
Torstveit MK, Fahrenholtz IL, Lichtenstein MB, et al. Exercise dependence, eating disorder symptoms and biomarkers of relative energy deficiency in sports (RED-S) among male endurance athletes. BMJ Open Sport Exerc Med. 2019;5(1):e000439.
PubMed
PubMed Central
Article
Google Scholar
De Souza MJ, Koltun KJ, Williams NI. The role of energy availability in reproductive function in the female athlete triad and extension of its effects to men: an initial working model of a similar syndrome in male athletes. Sports Med. 2019;49(Suppl 2):125–37.
PubMed
PubMed Central
Article
Google Scholar
Joy EA, Wilson C, Varechok S. The multidisciplinary team approach to the outpatient treatment of disordered eating. Curr Sports Med Rep. 2003;2(6):331–6.
PubMed
Article
Google Scholar
Poffe C, Ramaekers M, Van Thienen R, et al. Ketone ester supplementation blunts overreaching symptoms during endurance training overload. J Physiol. 2019. https://doi.org/10.1113/JP277831.
Article
PubMed
Google Scholar
Svendsen IS, Killer SC, Carter JM, et al. Impact of intensified training and carbohydrate supplementation on immunity and markers of overreaching in highly trained cyclists. Eur J Appl Physiol. 2016;116(5):867–77.
CAS
PubMed
PubMed Central
Article
Google Scholar
Costill DL, Flynn MG, Kirwan JP, et al. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc. 1988;20(3):249–54.
CAS
PubMed
Article
Google Scholar
Barr SI, Costill DL. Effect of increased training volume on nutrient intake of male collegiate swimmers. Int J Sports Med. 1992;13(1):47–51.
CAS
PubMed
Article
Google Scholar
Ramson R, Jurimae J, Jurimae T, et al. The effect of 4-week training period on plasma neuropeptide Y, leptin and ghrelin responses in male rowers. Eur J Appl Physiol. 2012;112(5):1873–80.
CAS
PubMed
Article
Google Scholar
Ramson R, Jurimae J, Jurimae T, et al. The influence of increased training volume on cytokines and ghrelin concentration in college level male rowers. Eur J Appl Physiol. 2008;104(5):839–46.
CAS
PubMed
Article
Google Scholar
Costa RJS, Jones GE, Lamb KL, et al. The effects of a high carbohydrate diet on cortisol and salivary immunoglobulin A (s-IgA) during a period of increase exercise workload amongst Olympic and Ironman triathletes. Int J Sports Med. 2005;26(10):880–5.
CAS
PubMed
Article
Google Scholar
Killer SC, Svendsen IS, Jeukendrup AE, et al. Evidence of disturbed sleep and mood state in well-trained athletes during short-term intensified training with and without a high carbohydrate nutritional intervention. J Sports Sci. 2017;35(14):1402–10.
CAS
PubMed
Article
Google Scholar
Woods AL, Garvican-Lewis LA, Rice A, et al. 12 days of altitude exposure at 1800 m does not increase resting metabolic rate in elite rowers. Appl Physiol Nutr Metab. 2017;42(6):672–6.
CAS
PubMed
Article
Google Scholar
Bellinger P, Desbrow B, Derave W, et al. Muscle fiber typology is associated with the incidence of overreaching in response to overload training. J Appl Physiol (1985). 2020. https://doi.org/10.1152/japplphysiol.00314.2020.
Article
Google Scholar
Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498-504.
CAS
PubMed
Article
Google Scholar
Margaria R, Cerretelli P, Aghemo P, et al. Energy cost of running. J Appl Physiol. 1963;18:367–70.
CAS
PubMed
Article
Google Scholar
Cadegiani FA, Kater CE. Novel insights of overtraining syndrome discovered from the EROS study. BMJ Open Sport Exerc Med. 2019;5(1):e000542.
PubMed
PubMed Central
Article
Google Scholar
Cadegiani FA, Kater CE. Body composition, metabolism, sleep, psychological and eating patterns of overtraining syndrome: results of the EROS study (EROS-PROFILE). J Sports Sci. 2018;36(16):1902–10.
PubMed
Article
Google Scholar
Noland RC, Baker JT, Boudreau SR, et al. Effect of intense training on plasma leptin in male and female swimmers. Med Sci Sports Exerc. 2001;33(2):227–31.
CAS
PubMed
Article
Google Scholar
Achten J, Halson SL, Moseley L, et al. Higher dietary carbohydrate content during intensified running training results in better maintenance of performance and mood state. J Appl Physiol. 2004;96(4):1331–40.
CAS
PubMed
Article
Google Scholar
Kirwan JP, Costill DL, Mitchell JB, et al. Carbohydrate balance in competitive runners during successive days of intense training. J Appl Physiol. 1988;65(6):2601–6.
CAS
PubMed
Article
Google Scholar
Mujika I. Case study: long-term low-carbohydrate, high-fat diet impairs performance and subjective well-being in a world-class vegetarian long-distance triathlete. Int J Sport Nutr Exerc Metab. 2019;29(3):339–44.
CAS
PubMed
Article
Google Scholar
Simonsen JC, Sherman WM, Lamb DR, et al. Dietary carbohydrate, muscle glycogen, and power output during rowing training. J Appl Physiol (1985). 1991;70(4):1500–5.
Snyder AC, Kuipers H, Cheng B, et al. Overtraining following intensified training with normal muscle glycogen. Med Sci Sports Exerc. 1995;27(7):1063–70.
CAS
PubMed
Article
Google Scholar
Anderson T, Wideman L, Cadegiani FA, et al. Effects of overtraining status on the cortisol awakening response-endocrine and metabolic responses on overtraining syndrome (EROS-CAR). Int J Sports Physiol Perform. 2021. https://doi.org/10.1123/ijspp.2020-0205.
Article
PubMed
Google Scholar
Cadegiani FA, Kater CE, Gazola M. Clinical and biochemical characteristics of high-intensity functional training (HIFT) and overtraining syndrome: findings from the EROS study (The EROS-HIFT). J Sports Sci. 2019;37(11):1296–307.
PubMed
Article
Google Scholar
Fahrenholtz IL, Sjodin A, Benardot D, et al. Within-day energy deficiency and reproductive function in female endurance athletes. Scand J Med Sci Sports. 2018;28(3):1139–46.
CAS
PubMed
Article
Google Scholar
Deutz RC, Benardot D, Martin DE, et al. Relationship between energy deficits and body composition in elite female gymnasts and runners. Med Sci Sports Exerc. 2000;32(3):659–68.
CAS
PubMed
Article
Google Scholar
Torstveit MK, Fahrenholtz I, Stenqvist TB, et al. Within-day energy deficiency and metabolic perturbation in male endurance athletes. Int J Sport Nutr Exerc Metab. 2018. https://doi.org/10.1123/ijsnem.2017-0337.
Article
PubMed
Google Scholar
Heikura IA, Burke LM, Hawley JA, et al. A short-term ketogenic diet impairs markers of bone health in response to exercise. Front Endocrinol (Lausanne). 2019;10:880.
PubMed
Article
Google Scholar
Hammond KM, Sale C, Fraser W, et al. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation. J Physiol. 2019;597(18):4779–96.
CAS
PubMed
Article
Google Scholar
Spaulding SW, Chopra IJ, Sherwin RS, et al. Effect of caloric restriction and dietary composition of serum T3 and reverse T3 in man. J Clin Endocrinol Metab. 1976;42(1):197–200.
CAS
PubMed
Article
Google Scholar
Jenkins AB, Markovic TP, Fleury A, et al. Carbohydrate intake and short-term regulation of leptin in humans. Diabetologia. 1997;40(3):348–51.
CAS
PubMed
Article
Google Scholar
Lehmann M, Gastmann U, Petersen KG, et al. Training-overtraining: performance, and hormone levels, after a defined increase in training volume versus intensity in experienced middle- and long-distance runners. Br J Sports Med. 1992;26(4):233–42.
CAS
PubMed
PubMed Central
Article
Google Scholar
Saris WH, van Erp-Baart MA, Brouns F, et al. Study on food intake and energy expenditure during extreme sustained exercise: the Tour de France. Int J Sports Med. 1989;10(Suppl 1):S26-31.
PubMed
Article
Google Scholar
Cuddy JS, Slivka DR, Hailes WS, et al. Metabolic profile of the Ironman World Championships: a case study. Int J Sports Physiol Perform. 2010;5(4):570–6.
PubMed
Article
Google Scholar
Rontoyannis GP, Skoulis T, Pavlou KN. Energy balance in ultramarathon running. Am J Clin Nutr. 1989;49(5 Suppl):976–9.
CAS
PubMed
Article
Google Scholar
Heikura IA, Quod M, Strobel N, et al. Alternate-day low energy availability during spring classics in professional cyclists. Int J Sports Physiol Perform. 2019. https://doi.org/10.1123/ijspp.2018-0842.
Article
PubMed
Google Scholar
Wells KR, Jeacocke NA, Appaneal R, et al. The Australian Institute of Sport (AIS) and National Eating Disorders Collaboration (NEDC) position statement on disordered eating in high performance sport. Br J Sports Med. 2020;54(21):1247–58.
PubMed
Article
Google Scholar
Bonci CM, Bonci LJ, Granger LR, et al. National athletic trainers’ association position statement: preventing, detecting, and managing disordered eating in athletes. J Athl Train. 2008;43(1):80–108.
PubMed
PubMed Central
Article
Google Scholar
Sundgot-Borgen J, Torstveit MK. Prevalence of eating disorders in elite athletes is higher than in the general population. Clin J Sport Med. 2004;14(1):25–32.
PubMed
Article
Google Scholar
Sundgot-Borgen J, Garthe I. Elite athletes in aesthetic and Olympic weight-class sports and the challenge of body weight and body compositions. J Sports Sci. 2011;29(Suppl 1):S101–14.
PubMed
Article
Google Scholar
Impey SG, Hearris MA, Hammond KM, et al. Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 2018;48(5):1031–48.
PubMed
PubMed Central
Article
Google Scholar
Burke LM, Hawley JA, Jeukendrup A, et al. Toward a common understanding of diet-exercise strategies to manipulate fuel availability for training and competition preparation in endurance sport. Int J Sport Nutr Exerc Metab. 2018;28(5):451–63.
PubMed
Article
Google Scholar
Blundell JE, King NA. Physical activity and regulation of food intake: current evidence. Med Sci Sports Exerc. 1999;31(11 Suppl):S573–83.
CAS
PubMed
Article
Google Scholar
Donnelly JE, Herrmann SD, Lambourne K, et al. Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? A systematic review. PLoS ONE. 2014;9(1):e83498.
PubMed
PubMed Central
Article
CAS
Google Scholar
Blundell JE, Gibbons C, Caudwell P, et al. Appetite control and energy balance: impact of exercise. Obes Rev. 2015;16(Suppl 1):67–76.
PubMed
Article
Google Scholar
Blundell JE, Stubbs RJ, Hughes DA, et al. Cross talk between physical activity and appetite control: does physical activity stimulate appetite? Proc Nutr Soc. 2003;62(3):651–61.
CAS
PubMed
Article
Google Scholar
Dorling J, Broom DR, Burns SF, et al. Acute and chronic effects of exercise on appetite, energy intake, and appetite-related hormones: the modulating effect of adiposity, sex, and habitual physical activity. Nutrients. 2018. https://doi.org/10.3390/nu10091140.
Article
PubMed
PubMed Central
Google Scholar
Hazell TJ, Islam H, Townsend LK, et al. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms. Appetite. 2016;98:80–8.
PubMed
Article
Google Scholar
Thompson JL, Manore MM, Skinner JS, et al. Daily energy expenditure in male endurance athletes with differing energy intakes. Med Sci Sports Exerc. 1995;27(3):347–54.
CAS
PubMed
Article
Google Scholar
Lund J, Gerhart-Hines Z, Clemmensen C. Role of energy excretion in human body weight regulation. Trends Endocrinol Metab. 2020;31(10):705–8.
CAS
PubMed
Article
Google Scholar
Carbone EA, D'Amato P, Vicchio G, et al. A systematic review on the role of microbiota in the pathogenesis and treatment of eating disorders. Eur Psychiatry. 2020;64(1):e2.
Renner B, Sproesser G, Strohbach S, et al. Why we eat what we eat. The Eating Motivation Survey (TEMS). Appetite. 2012;59(1):117–28.
PubMed
Article
Google Scholar
Wahl DR, Villinger K, Blumenschein M, et al. Why we eat what we eat: assessing dispositional and in-the-moment eating motives by using ecological momentary assessment. JMIR Mhealth Uhealth. 2020;8(1):e13191.
Hall KD, Heymsfield SB, Kemnitz JW, et al. Energy balance and its components: implications for body weight regulation. Am J Clin Nutr. 2012;95(4):989–94.
PubMed
PubMed Central
Article
Google Scholar
MacLean PS, Blundell JE, Mennella JA, et al. Biological control of appetite: a daunting complexity. Obesity (Silver Spring). 2017;25(Suppl 1):S8–16.
Article
Google Scholar
Muller MJ, Geisler C, Heymsfield SB, et al. Recent advances in understanding body weight homeostasis in humans. F1000Research. 2018. https://doi.org/10.12688/f1000research.14151.1.
Article
PubMed
PubMed Central
Google Scholar
Muros JJ, Sanchez-Munoz C, Hoyos J, et al. Nutritional intake and body composition changes in a UCI World Tour cycling team during the Tour of Spain. Eur J Sport Sci. 2019;19(1):86–94.
PubMed
Article
Google Scholar
Garcia-Roves PM, Terrados N, Fernandez SF, et al. Macronutrients intake of top level cyclists during continuous competition–change in the feeding pattern. Int J Sports Med. 1998;19(1):61–7.
CAS
PubMed
Article
Google Scholar
Cooper JA, Nguyen DD, Ruby BC, et al. Maximal sustained levels of energy expenditure in humans during exercise. Med Sci Sports Exerc. 2011;43(12):2359–67.
PubMed
Article
Google Scholar
Peterson CC, Nagy KA, Diamond J. Sustained metabolic scope. Proc Natl Acad Sci USA. 1990;87(6):2324–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Thurber C, Dugas LR, Ocobock C, et al. Extreme events reveal an alimentary limit on sustained maximal human energy expenditure. Sci Adv. 2019;5(6):eaaw0341.
Bonnar D, Bartel K, Kakoschke N, et al. Sleep interventions designed to improve athletic performance and recovery: a systematic review of current approaches. Sports Med. 2018;48(3):683–703.
PubMed
Article
Google Scholar
Halson SL. Sleep in elite athletes and nutritional interventions to enhance sleep. Sports Med. 2014;44(Suppl 1):S13-23.
PubMed
Article
Google Scholar
Hausswirth C, Louis J, Aubry A, et al. Evidence of disturbed sleep and increased illness in overreached endurance athletes. Med Sci Sports Exerc. 2013. https://doi.org/10.1249/MSS.0000000000000177.
Article
PubMed
Google Scholar
Halson SL, Bartram J, West N, et al. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014;46(8):1631–9.
PubMed
Article
Google Scholar
te Wierike SC, van der Sluis A, van den Akker-Scheek I, et al. Psychosocial factors influencing the recovery of athletes with anterior cruciate ligament injury: a systematic review. Scand J Med Sci Sports. 2013;23(5):527–40.
Google Scholar
Stults-Kolehmainen MA, Bartholomew JB. Psychological stress impairs short-term muscular recovery from resistance exercise. Med Sci Sports Exerc. 2012;44(11):2220–7.
PubMed
Article
Google Scholar
Pauli SA, Berga SL. Athletic amenorrhea: energy deficit or psychogenic challenge? Ann N Y Acad Sci. 2010;1205:33–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Burke LM, Hawley JA, Wong SH, et al. Carbohydrates for training and competition. J Sports Sci. 2011. https://doi.org/10.1080/02640414.2011.585473.
Article
PubMed
Google Scholar
Burke LM, Kiens B, Ivy JL. Carbohydrates and fat for training and recovery. J Sports Sci. 2004;22(1):15–30.
PubMed
Article
Google Scholar
Phillips SM, Van Loon LJ. Dietary protein for athletes: From requirements to optimum adaptation. J Sports Sci. 2011;29(Suppl 1):S29-38.
PubMed
Article
Google Scholar
Shirreffs SM, Sawka MN. Fluid and electrolyte needs for training, competition, and recovery. J Sports Sci. 2011;29(Suppl 1):S39-46.
PubMed
Article
Google Scholar
Ackerman KE, Holtzman B, Cooper KM, et al. Low energy availability surrogates correlate with health and performance consequences of Relative Energy Deficiency in Sport. Br J Sports Med. 2019;53(10):628–33.
PubMed
Article
Google Scholar
Sygo J, Coates AM, Sesbreno E, et al. Prevalence of indicators of low energy availability in elite female sprinters. Int J Sport Nutr Exerc Metab. 2018. https://doi.org/10.1123/ijsnem.2017-0397.
Article
PubMed
Google Scholar
Melin A, Tornberg AB, Skouby S, et al. Energy availability and the female athlete triad in elite endurance athletes. Scand J Med Sci Sports. 2015;25(5):610–22.
CAS
PubMed
Article
Google Scholar
Gibbs JC, Williams NI, De Souza MJ. Prevalence of individual and combined components of the female athlete triad. Med Sci Sports Exerc. 2013;45(5):985–96.
PubMed
Article
Google Scholar
Curry EJ, Logan C, Ackerman K, et al. Female athlete triad awareness among multispecialty physicians. Sports Med Open. 2015;1(1):38.
PubMed
PubMed Central
Article
Google Scholar
Pantano KJ. Knowledge, attitude, and skill of high school coaches with regard to the female athlete triad. J Pediatr Adolesc Gynecol. 2017;30(5):540–5.
PubMed
Article
Google Scholar
Brown KN, Wengreen HJ, Beals KA. Knowledge of the female athlete triad, and prevalence of triad risk factors among female high school athletes and their coaches. J Pediatr Adolesc Gynecol. 2014;27(5):278–82.
PubMed
Article
Google Scholar
Halson SL, Bridge MW, Meeusen R, et al. Time course of performance changes and fatigue markers during intensified training in trained cyclists. J Appl Physiol. 2002;93(3):947–56.
PubMed
Article
Google Scholar
Halson SL, Lancaster GI, Achten J, et al. Effects of carbohydrate supplementation on performance and carbohydrate oxidation after intensified cycling training. J Appl Physiol (1985). 2004;97(4):1245–53.
Jeukendrup AE, Hesselink MK, Snyder AC, et al. Physiological changes in male competitive cyclists after two weeks of intensified training. Int J Sports Med. 1992;13(7):534–41.
CAS
PubMed
Article
Google Scholar
Le Meur Y, Louis J, Aubry A, et al. Maximal exercise limitation in functionally overreached triathletes: role of cardiac adrenergic stimulation. J Appl Physiol (1985). 2014;117(3):214–22.
Coutts AJ, Wallace LK, Slattery KM. Monitoring changes in performance, physiology, biochemistry, and psychology during overreaching and recovery in triathletes. Int J Sports Med. 2007;28(2):125–34.
CAS
PubMed
Article
Google Scholar
Halson SL, Lancaster GI, Jeukendrup AE, et al. Immunological responses to overreaching in cyclists. Med Sci Sports Exerc. 2003;35(5):854–61.
PubMed
Article
Google Scholar
Urhausen A, Gabriel HH, Kindermann W. Impaired pituitary hormonal response to exhaustive exercise in overtrained endurance athletes. Med Sci Sports Exerc. 1998;30(3):407–14.
CAS
PubMed
Article
Google Scholar
Urhausen A, Gabriel HH, Weiler B, et al. Ergometric and psychological findings during overtraining: a long-term follow-up study in endurance athletes. Int J Sports Med. 1998;19(2):114–20.
CAS
PubMed
Article
Google Scholar
Uusitalo AL, Uusitalo AJ, Rusko HK. Exhaustive endurance training for 6–9 weeks did not induce changes in intrinsic heart rate and cardiac autonomic modulation in female athletes. Int J Sports Med. 1998;19(8):532–40.
CAS
PubMed
Article
Google Scholar
Uusitalo AL, Uusitalo AJ, Rusko HK. Heart rate and blood pressure variability during heavy training and overtraining in the female athlete. Int J Sports Med. 2000;21(1):45–53.
CAS
PubMed
Article
Google Scholar
Vanheest JL, Rodgers CD, Mahoney CE, et al. Ovarian suppression impairs sport performance in junior elite female swimmers. Med Sci Sports Exerc. 2014;46(1):156–66.
PubMed
Article
Google Scholar
Tornberg AB, Melin A, Koivula FM, et al. Reduced neuromuscular performance in amenorrheic elite endurance athletes. Med Sci Sports Exerc. 2017;49(12):2478–85.
PubMed
Article
Google Scholar
Coutts A, Reaburn P, Piva TJ, et al. Changes in selected biochemical, muscular strength, power, and endurance measures during deliberate overreaching and tapering in rugby league players. Int J Sports Med. 2007;28(2):116–24.
CAS
PubMed
Article
Google Scholar
Steinacker JM, Lormes W, Kellmann M, et al. Training of junior rowers before world championships. Effects on performance, mood state and selected hormonal and metabolic responses. J Sports Med Phys Fitness. 2000;40(4):327–35.
Fry AC, Schilling BK, Weiss LW, et al. beta2-Adrenergic receptor downregulation and performance decrements during high-intensity resistance exercise overtraining. J Appl Physiol (1985). 2006;101(6):1664–72.
Moore CA, Fry AC. Nonfunctional overreaching during off-season training for skill position players in collegiate American football. J Strength Cond Res. 2007;21(3):793–800.
PubMed
Google Scholar
Wilson G, Hawken MB, Poole I, et al. Rapid weight-loss impairs simulated riding performance and strength in jockeys: implications for making-weight. J Sports Sci. 2014;32(4):383–91.
PubMed
Article
Google Scholar
Harber VJ, Petersen SR, Chilibeck PD. Thyroid hormone concentrations and muscle metabolism in amenorrheic and eumenorrheic athletes. Can J Appl Physiol. 1998;23(3):293–306.
CAS
PubMed
Article
Google Scholar
Kasper AM, Crighton B, Langan-Evans C, et al. Case study: extreme weight making causes relative energy deficiency, dehydration, and acute kidney injury in a male mixed martial arts athlete. Int J Sport Nutr Exerc Metab. 2019;29(3):331–8.
CAS
PubMed
Article
Google Scholar
Gleeson M, McDonald WA, Cripps AW, et al. The effect on immunity of long-term intensive training in elite swimmers. Clin Exp Immunol. 1995;102(1):210–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gleeson M, McDonald WA, Pyne DB, et al. Salivary IgA levels and infection risk in elite swimmers. Med Sci Sports Exerc. 1999;31(1):67–73.
CAS
PubMed
Article
Google Scholar
Lancaster GI, Halson SL, Khan Q, et al. Effects of acute exhaustive exercise and chronic exercise training on type 1 and type 2 T lymphocytes. Exerc Immunol Rev. 2004;10:91–106.
PubMed
Google Scholar
Main LC, Landers GJ, Grove JR, et al. Training patterns and negative health outcomes in triathlon: longitudinal observations across a full competitive season. J Sports Med Phys Fitness. 2010;50(4):475–85.
CAS
PubMed
Google Scholar
Morgado JM, Rama L, Silva I, et al. Cytokine production by monocytes, neutrophils, and dendritic cells is hampered by long-term intensive training in elite swimmers. Eur J Appl Physiol. 2012;112(2):471–82.
CAS
PubMed
Article
Google Scholar
Morgado JP, Matias CN, Reis JF, et al. The cellular composition of the innate and adaptive immune system is changed in blood in response to long-term swimming training. Front Physiol. 2020;11:471.
PubMed
PubMed Central
Article
Google Scholar
Tiollier E, Gomez-Merino D, Burnat P, et al. Intense training: mucosal immunity and incidence of respiratory infections. Eur J Appl Physiol. 2005;93(4):421–8.
CAS
PubMed
Article
Google Scholar
Hootman JM, Macera CA, Ainsworth BE, et al. Predictors of lower extremity injury among recreationally active adults. Clin J Sport Med. 2002;12(2):99–106.
PubMed
Article
Google Scholar
Psaila M, Ranson C. Risk factors for lower leg, ankle and foot injuries during basic military training in the Maltese Armed Forces. Phys Ther Sport. 2017;24:7–12.
PubMed
Article
Google Scholar
Sharma J, Greeves JP, Byers M, et al. Musculoskeletal injuries in British Army recruits: a prospective study of diagnosis-specific incidence and rehabilitation times. BMC Musculoskelet Disord. 2015;16:106.
PubMed
PubMed Central
Article
Google Scholar
Ackerman KE, Putman M, Guereca G, et al. Cortical microstructure and estimated bone strength in young amenorrheic athletes, eumenorrheic athletes and non-athletes. Bone. 2012;51(4):680–7.
PubMed
PubMed Central
Article
Google Scholar
Ackerman KE, Nazem T, Chapko D, et al. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab. 2011;96(10):3123–33.
CAS
PubMed
PubMed Central
Article
Google Scholar
Drew MK, Vlahovich N, Hughes D, et al. A multifactorial evaluation of illness risk factors in athletes preparing for the Summer Olympic Games. J Sci Med Sport. 2017;20(8):745–50.
PubMed
Article
Google Scholar
Drew M, Vlahovich N, Hughes D, et al. Prevalence of illness, poor mental health and sleep quality and low energy availability prior to the 2016 Summer Olympic Games. Br J Sports Med. 2018;52(1):47–53.
PubMed
Article
Google Scholar
Barrack MT, Gibbs JC, De Souza MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.
PubMed
Article
Google Scholar
Gibbs JC, Nattiv A, Barrack MT, et al. Low bone density risk is higher in exercising women with multiple triad risk factors. Med Sci Sports Exerc. 2014;46(1):167–76.
PubMed
Article
Google Scholar
Tenforde AS, Fredericson M, Sayres LC, et al. Identifying sex-specific risk factors for low bone mineral density in adolescent runners. Am J Sports Med. 2015;43(6):1494–504.
PubMed
Article
Google Scholar
Tenforde AS, Parziale AL, Popp KL, et al. Low bone mineral density in male athletes is associated with bone stress injuries at anatomic sites with greater trabecular composition. Am J Sports Med. 2018;46(1):30–6.
PubMed
Article
Google Scholar
De Souza MJ, West SL, Jamal SA, et al. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone. 2008;43(1):140–8.
PubMed
Article
CAS
Google Scholar
Hagmar M, Berglund B, Brismar K, et al. Body composition and endocrine profile of male Olympic athletes striving for leanness. Clin J Sport Med. 2013;23(3):197–201.
PubMed
Article
Google Scholar
Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both male and female endurance runners. Bone. 2006;39(4):880–5.
CAS
PubMed
Article
Google Scholar
Rauh MJ, Nichols JF, Barrack MT. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athl Train. 2010;45(3):243–52.
PubMed
PubMed Central
Article
Google Scholar
Thein-Nissenbaum JM, Carr KE, Hetzel S, et al. Disordered eating, menstrual irregularity, and musculoskeletal injury in high school athletes: a comparison of oral contraceptive pill users and nonusers. Sports Health. 2014;6(4):313–20.
PubMed
PubMed Central
Article
Google Scholar
Warrington G, Dolan E, McGoldrick A, et al. Chronic weight control impacts on physiological function and bone health in elite jockeys. J Sports Sci. 2009;27(6):543–50.
PubMed
Article
Google Scholar
Tenforde AS, Carlson JL, Sainani KL, et al. Sport and triad risk factors influence bone mineral density in collegiate athletes. Med Sci Sports Exerc. 2018;50(12):2536–43.
PubMed
Article
Google Scholar
Kraus E, Tenforde AS, Nattiv A, et al. Bone stress injuries in male distance runners: higher modified Female Athlete Triad Cumulative Risk Assessment scores predict increased rates of injury. Br J Sports Med. 2019;53(4):237–42.
PubMed
Article
Google Scholar
Nose-Ogura S, Yoshino O, Dohi M, et al. Risk factors of stress fractures due to the female athlete triad: differences in teens and twenties. Scand J Med Sci Sports. 2019;29(10):1501–10.
PubMed
Article
Google Scholar
Lane AR, Hackney AC, Smith-Ryan A, et al. Prevalence of low energy availability in competitively trained male endurance athletes. Medicina (Kaunas). 2019;55(10).
Logue DM, Madigan SM, Melin A, et al. Self-reported reproductive health of athletic and recreationally active males in Ireland: potential health effects interfering with performance. Eur J Sport Sci. 2020:1-10. https://doi.org/10.1080/17461391.2020.1748116.
Logue DM, Madigan SM, Heinen M, et al. Screening for risk of low energy availability in athletic and recreationally active females in Ireland. Eur J Sport Sci. 2019;19(1):112–22.
PubMed
Article
Google Scholar
Aubry A, Hausswirth C, Louis J, et al. Functional overreaching: the key to peak performance during the taper? Med Sci Sports Exerc. 2014;46(9):1769–77.
PubMed
Article
Google Scholar
Areta JL, Burke LM, Camera DM, et al. Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Endocrinol Metab. 2014;306(8):E989–97.
CAS
PubMed
Article
Google Scholar
Ishibashi A, Kojima C, Tanabe Y, et al. Effect of low energy availability during three consecutive days of endurance training on iron metabolism in male long distance runners. Physiol Rep. 2020;8(12):e14494.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kojima C, Ishibashi A, Tanabe Y, et al. Muscle glycogen content during endurance training under low energy availability. Med Sci Sports Exerc. 2020;52(1):187–95.
CAS
PubMed
Article
Google Scholar
Rietjens GJ, Kuipers H, Adam JJ, et al. Physiological, biochemical and psychological markers of strenuous training-induced fatigue. Int J Sports Med. 2005;26(1):16–26.
CAS
PubMed
Article
Google Scholar
Nederhof E, Lemmink K, Zwerver J, et al. The effect of high load training on psychomotor speed. Int J Sports Med. 2007;28(7):595–601.
CAS
PubMed
Article
Google Scholar
Nederhof E, Zwerver J, Brink M, et al. Different diagnostic tools in nonfunctional overreaching. Int J Sports Med. 2008;29(7):590–7.
CAS
PubMed
Article
Google Scholar
Silva MR, Paiva T. Poor precompetitive sleep habits, nutrients’ deficiencies, inappropriate body composition and athletic performance in elite gymnasts. Eur J Sport Sci. 2016;16(6):726–35.
PubMed
Article
Google Scholar
Baskaran C, Plessow F, Ackerman KE, et al. A cross-sectional analysis of verbal memory and executive control across athletes with varying menstrual status and non-athletes. Psychiatry Res. 2017;258:605–6.
PubMed
PubMed Central
Article
Google Scholar
Lane AR, Duke JW, Hackney AC. Influence of dietary carbohydrate intake on the free testosterone: cortisol ratio responses to short-term intensive exercise training. Eur J Appl Physiol. 2010;108(6):1125–31.
CAS
PubMed
Article
Google Scholar
Lehmann M, Knizia K, Gastmann U, et al. Influence of 6-week, 6 days per week, training on pituitary function in recreational athletes. Br J Sports Med. 1993;27(3):186–92.
CAS
PubMed
PubMed Central
Article
Google Scholar
Arce JC, De Souza MJ, Pescatello LS, et al. Subclinical alterations in hormone and semen profile in athletes. Fertil Steril. 1993;59(2):398–404.
CAS
PubMed
Article
Google Scholar
Hackney AC, Sinning WE, Bruot BC. Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc. 1988;20(1):60–5.
CAS
PubMed
Article
Google Scholar
McColl EM, Wheeler GD, Gomes P, et al. The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol. 1989;31(5):617–21.
CAS
Article
Google Scholar
Christo K, Cord J, Mendes N, et al. Acylated ghrelin and leptin in adolescent athletes with amenorrhea, eumenorrheic athletes and controls: a cross-sectional study. Clin Endocrinol. 2008;69(4):628–33.
CAS
Article
Google Scholar
Hackney AC, Fahrner CL, Gulledge TP. Basal reproductive hormonal profiles are altered in endurance trained men. J Sports Med Phys Fitness. 1998;38(2):138–41.
CAS
PubMed
Google Scholar
Hooper DR, Kraemer WJ, Saenz C, et al. The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition. Eur J Appl Physiol. 2017;117(7):1349–57.
CAS
PubMed
Article
Google Scholar
Miller KK, Lawson EA, Mathur V, et al. Androgens in women with anorexia nervosa and normal-weight women with hypothalamic amenorrhea. J Clin Endocrinol Metab. 2007;92(4):1334–9.
CAS
PubMed
Article
Google Scholar
Rickenlund A, Thoren M, Carlstrom K, et al. Diurnal profiles of testosterone and pituitary hormones suggest different mechanisms for menstrual disturbances in endurance athletes. J Clin Endocrinol Metab. 2004;89(2):702–7.
CAS
PubMed
Article
Google Scholar
Keay N, Francis G, Hind K. Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists. BMJ Open Sport Exerc Med. 2018;4(1):e000424.
PubMed
PubMed Central
Article
Google Scholar
Civil R, Lamb A, Loosmore D, et al. Assessment of dietary intake, energy status, and factors associated with RED-S in vocational female ballet students. Front Nutr. 2018;5:136.
PubMed
Article
CAS
Google Scholar
Shimizu Y, Mutsuzaki H, Tachibana K, et al. Investigation of the female athlete triad in japanese elite wheelchair basketball players. Medicina (Kaunas). 2019. https://doi.org/10.3390/medicina56010010.
Article
PubMed
PubMed Central
Google Scholar
Mathisen TF, Heia J, Raustol M, et al. Physical health and symptoms of relative energy deficiency in female fitness athletes. Scand J Med Sci Sports. 2020;30(1):135–47.
PubMed
Article
Google Scholar
Meng K, Qiu J, Benardot D, et al. The risk of low energy availability in Chinese elite and recreational female aesthetic sports athletes. J Int Soc Sports Nutr. 2020;17(1):13.
CAS
PubMed
PubMed Central
Article
Google Scholar
Stenqvist TB, Torstveit MK, Faber J, et al. Impact of a 4-week intensified endurance training intervention on markers of relative energy deficiency in sport (RED-S) and performance among well-trained male cyclists. Front Endocrinol (Lausanne). 2020;11:512365.
PubMed
PubMed Central
Article
Google Scholar
Mackinnon LT, Hooper SL, Jones S, et al. Hormonal, immunological, and hematological responses to intensified training in elite swimmers. Med Sci Sports Exerc. 1997;29(12):1637–45.
CAS
PubMed
Article
Google Scholar
O’Connor PJ, Morgan WP, Raglin JS, et al. Mood state and salivary cortisol levels following overtraining in female swimmers. Psychoneuroendocrinology. 1989;14(4):303–10.
CAS
PubMed
Article
Google Scholar
Simsch C, Lormes W, Petersen KG, et al. Training intensity influences leptin and thyroid hormones in highly trained rowers. Int J Sports Med. 2002;23(6):422–7.
CAS
PubMed
Article
Google Scholar
Schaal K, Van Loan MD, Casazza GA. Reduced catecholamine response to exercise in amenorrheic athletes. Med Sci Sports Exerc. 2011;43(1):34–43.
CAS
PubMed
Article
Google Scholar
MacConnie SE, Barkan A, Lampman RM, et al. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med. 1986;315(7):411–7.
CAS
PubMed
Article
Google Scholar
Koehler K, Hoerner NR, Gibbs JC, et al. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J Sports Sci. 2016;34(20):1921–9.
PubMed
Article
Google Scholar
Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Physiol. 1994;266(3 Pt 2):R817–23.
CAS
PubMed
Google Scholar
Geesmann B, Gibbs JC, Mester J, et al. Association between energy balance and metabolic hormone suppression during ultraendurance exercise. Int J Sports Physiol Perform. 2017;12(7):984–9.
PubMed
Article
Google Scholar
Berg U, Enqvist JK, Mattsson CM, et al. Lack of sex differences in the IGF-IGFBP response to ultra endurance exercise. Scand J Med Sci Sports. 2008;18(6):706–14.
CAS
PubMed
Article
Google Scholar
Loucks AB, Mortola JF, Girton L, et al. Alterations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axes in athletic women. J Clin Endocrinol Metab. 1989;68(2):402–11.
CAS
PubMed
Article
Google Scholar
Loucks AB, Callister R. Induction and prevention of low-T3 syndrome in exercising women. Am J Physiol. 1993;264(5 Pt 2):R924–30.
CAS
PubMed
Google Scholar
Russell M, Stark J, Nayak S, et al. Peptide YY in adolescent athletes with amenorrhea, eumenorrheic athletes and non-athletic controls. Bone. 2009;45(1):104–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Strock NCA, Koltun KJ, Southmayd EA, et al. Indices of resting metabolic rate accurately reflect energy deficiency in exercising women. Int J Sport Nutr Exerc Metab. 2020. https://doi.org/10.1123/ijsnem.2019-0199.
Article
PubMed
Google Scholar
Strock NCA, De Souza MJ, Williams NI. Eating behaviours related to psychological stress are associated with functional hypothalamic amenorrhoea in exercising women. J Sports Sci. 2020;38(21):2396–406.
PubMed
Article
Google Scholar
Snyder AC, Jeukendrup AE, Hesselink MK, et al. A physiological/psychological indicator of over-reaching during intensive training. Int J Sports Med. 1993;14(1):29–32.
CAS
PubMed
Article
Google Scholar
De Souza MJ, Hontscharuk R, Olmsted M, et al. Drive for thinness score is a proxy indicator of energy deficiency in exercising women. Appetite. 2007;48(3):359–67.
PubMed
Article
Google Scholar
Papillard-Marechal S, Sznajder M, Hurtado-Nedelec M, et al. Iron metabolism in patients with anorexia nervosa: elevated serum hepcidin concentrations in the absence of inflammation. Am J Clin Nutr. 2012;95(3):548–54.
CAS
PubMed
Article
Google Scholar
Pasiakos SM, Margolis LM, Murphy NE, et al. Effects of exercise mode, energy, and macronutrient interventions on inflammation during military training. Physiol Rep. 2016. https://doi.org/10.14814/phy2.12820.
Article
PubMed
PubMed Central
Google Scholar
Rowbottom DG, Keast D, Goodman C, et al. The haematological, biochemical and immunological profile of athletes suffering from the overtraining syndrome. Eur J Appl Physiol Occup Physiol. 1995;70(6):502–9.
CAS
PubMed
Article
Google Scholar
Smith DJ, Norris SR. Changes in glutamine and glutamate concentrations for tracking training tolerance. Med Sci Sports Exerc. 2000;32(3):684–9.
CAS
PubMed
Article
Google Scholar
Parry-Billings M, Budgett R, Koutedakis Y, et al. Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Med Sci Sports Exerc. 1992;24(12):1353–8.
CAS
PubMed
Article
Google Scholar
Mackinnon LT, Hooper S. Mucosal (secretory) immune system responses to exercise of varying intensity and during overtraining. Int J Sports Med. 1994;15(Suppl 3):S179–83.
PubMed
Article
Google Scholar
Shimizu K, Suzuki N, Nakamura M, et al. Mucosal immune function comparison between amenorrheic and eumenorrheic distance runners. J Strength Cond Res. 2012;26(5):1402–6.
PubMed
Article
Google Scholar
Le Meur Y, Pichon A, Schaal K, et al. Evidence of parasympathetic hyperactivity in functionally overreached athletes. Med Sci Sports Exerc. 2013;45(11):2061–71.
PubMed
Article
Google Scholar
Wilson G, Hill J, Sale C, et al. Elite male Flat jockeys display lower bone density and lower resting metabolic rate than their female counterparts: implications for athlete welfare. Appl Physiol Nutr Metab. 2015;40(12):1318–20.
PubMed
Article
Google Scholar
Koehler K, De Souza MJ, Williams NI. Less-than-expected weight loss in normal-weight women undergoing caloric restriction and exercise is accompanied by preservation of fat-free mass and metabolic adaptations. Eur J Clin Nutr. 2017;71(3):365–71.
CAS
PubMed
Article
Google Scholar
Zabriskie HA, Currier BS, Harty PS, et al. Energy status and body composition across a collegiate women's Lacrosse season. Nutrients. 2019. https://doi.org/10.3390/nu11020470.
Article
PubMed
PubMed Central
Google Scholar
Papageorgiou M, Elliott-Sale KJ, Parsons A, et al. Effects of reduced energy availability on bone metabolism in women and men. Bone. 2017;105:191–9.
CAS
PubMed
Article
Google Scholar
Viner RT, Harris M, Berning JR, et al. Energy availability and dietary patterns of adult male and female competitive cyclists with lower than expected bone mineral density. Int J Sport Nutr Exerc Metab. 2015;25(6):594–602.
PubMed
Article
Google Scholar
Bilanin JE, Blanchard MS, Russek-Cohen E. Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc. 1989;21(1):66–70.
CAS
PubMed
Article
Google Scholar
Barrack MT, Fredericson M, Tenforde AS, et al. Evidence of a cumulative effect for risk factors predicting low bone mass among male adolescent athletes. Br J Sports Med. 2017;51(3):200–5.
PubMed
Article
Google Scholar
Morgan WP, Costill DL, Flynn MG, et al. Mood disturbance following increased training in swimmers. Med Sci Sports Exerc. 1988;20(4):408–14.
CAS
PubMed
Article
Google Scholar
Petrie TA, Greenleaf C, Reel JJ, et al. An examination of psychosocial correlates of eating disorders among female collegiate athletes. Res Q Exerc Sport. 2009;80(3):621–32.
PubMed
Article
Google Scholar
Petrie TA, Greenleaf C, Reel J, et al. Personality and psychological factors as predictors of disordered eating among female collegiate athletes. Eat Disord. 2009;17(4):302–21.
PubMed
Article
Google Scholar
Greenleaf C, Petrie TA, Carter J, et al. Female collegiate athletes: prevalence of eating disorders and disordered eating behaviors. J Am Coll Health. 2009;57(5):489–95.
PubMed
Article
Google Scholar
Krentz EM, Warschburger P. A longitudinal investigation of sports-related risk factors for disordered eating in aesthetic sports. Scand J Med Sci Sports. 2013;23(3):303–10.
CAS
PubMed
Article
Google Scholar
Keay N, Overseas A, Francis G. Indicators and correlates of low energy availability in male and female dancers. BMJ Open Sport Exerc Med. 2020;6(1):e000906.
PubMed
PubMed Central
Article
Google Scholar