Skip to main content
Log in

Training for Muscular Strength: Methods for Monitoring and Adjusting Training Intensity

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Linear loading, the two-for-two rule, percent of one repetition maximum (1RM), RM zones, rate of perceived exertion (RPE), repetitions in reserve, set-repetition best, autoregulatory progressive resistance exercise (APRE), and velocity-based training (VBT) are all methods of adjusting resistance training intensity. Each method has advantages and disadvantages that strength and conditioning practitioners should be aware of when measuring and monitoring strength characteristics. The linear loading and 2-for-2 methods may be beneficial for novice athletes; however, they may be limited in their capacity to provide athletes with variation and detrimental if used exclusively for long periods of time. The percent of 1RM and RM zone methods may provide athletes with more variation and greater potential for strength–power adaptations; however, they fail to account for daily changes in athlete’s performance capabilities. An athlete’s daily readiness can be addressed to various extents by both subjective (e.g., RPE, repetitions in reserve, set-repetition best, and APRE) and objective (e.g., VBT) load adjustment methods. Future resistance training monitoring may aim to include a combination of measures that quantify outcome (e.g., velocity, load, time, etc.) with process (e.g., variability, coordination, efficiency, etc.) relevant to the stage of learning or the task being performed. Load adjustment and monitoring methods should be used to supplement and guide the practitioner, quantify what the practitioner ‘sees’, and provide longitudinal data to assist in reviewing athlete development and providing baselines for the rate of expected development in resistance training when an athlete returns to sport from injury or large training load reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Cunanan et al. [10]

Fig. 2

Modified from DeWeese et al. [52] and reprinted with permission from Elsevier

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):1419–49.

    Article  PubMed  Google Scholar 

  2. Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sports Med. 2018;48:765–85.

    Article  PubMed  Google Scholar 

  3. DeWeese BH, Hornsby G, Stone M, Stone MH. The training process: planning for strength–power training in track and field. Part 1: theoretical aspects. J Sport Health Sci. 2015;4(4):308–17.

  4. Plisk SS, Stone MH. Periodization strategies. Strength Cond J. 2003;25(6):19–37.

    Article  Google Scholar 

  5. Bompa TO, Buzzichelli CA. Principles of training. Periodization. 6th ed. Champaign: Human Kinetics; 2019. p. 29–49.

  6. Rhea MR, Ball SD, Phillips WT, Burkett LN. A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. J Strength Cond Res. 2002;16(2):250–5.

    PubMed  Google Scholar 

  7. Miranda F, Simao R, Rhea M, Bunker D, Prestes J, Leite RD, et al. Effects of linear vs. daily undulatory periodized resistance training on maximal and submaximal strength gains. J Strength Cond Res. 2011;25(7):1824–30.

  8. Hotermans C, Peigneux P, de Noordhout AM, Moonen G, Maquet P. Early boost and slow consolidation in motor skill learning. Learn Mem. 2006;13(5):580–3.

    Article  PubMed  Google Scholar 

  9. Morita Y, Ogawa K, Uchida S. The effect of a daytime 2-hour nap on complex motor skill learning. Sleep Biol Rhythms. 2012;10(4):302–9.

    Article  Google Scholar 

  10. Cunanan AJ, DeWeese BH, Wagle JP, Carroll KM, Sausaman R, Hornsby WG, et al. The general adaptation syndrome: a foundation for the concept of periodization. Sports Med. 2018;48(4):787–97.

    Article  PubMed  Google Scholar 

  11. Baechle TR, Earle RW. Learning how to manipulate training variables to maximize results. Weight Training: Steps to Success. 4th ed. Champaign: Human Kinetics; 2011. p. 177–88.

  12. Newell KM. Coordination, control, and skill. In: Goodman D, Wilberg RB, Franks IM, editors. Advances in psychology. Amsterdam: North-Holland; 1985. p. 295–317.

    Google Scholar 

  13. Sheppard JM, Triplett NT. Program design for resistance training. In: Haff GG, Triplett NT, editors. Essentials of Strength Training and Conditioning. 4th ed. Champaign: Human Kinetics; 2016.

  14. Bompa TO, Buzzichelli CA. Strength and power development. Periodization. 6th ed. Champaign: Human Kinetics; 2019. p. 229–63.

  15. LeSuer DA, McCormick JH, Mayhew JL, Wasserstein RL, Arnold MD. The accuracy of prediction equations for estimating 1-RM performance in the bench press, squat, and deadlift. J Strength Cond Res. 1997;11(4):211–3.

    Google Scholar 

  16. Moore CA, Fry AC. Nonfunctional overreaching during off-season training for skill position players in collegiate American football. J Strength Cond Res. 2007;21(3):793–800.

    PubMed  Google Scholar 

  17. Bartholomew JB, Stults-Kolehmainen MA, Elrod CC, Todd JS. Strength gains after resistance training: the effect of stressful, negative life events. J Strength Cond Res. 2008;22(4):1215–21.

    Article  PubMed  Google Scholar 

  18. Lopes Dos Santos M, Uftring M, Stahl CA, Lockie RG, Alvar B, Mann JB, et al. Stress in academic and athletic performance in collegiate athletes: a narrative review of sources and monitoring strategies. Front Sports Act Liv. 2020;2:1–10.

  19. Arazi H, Asadi A. The relationship between the selected percentages of one repetition maximum and the number of repetitions in trained and untrained males. FU Phys Ed Sport. 2011;9(1):25–33.

    Google Scholar 

  20. Hoeger WWK, Hopkins DR, Barette SL, Hale DF. Relationship between repetitions and selected percentages of one repetition maximum: a comparison between untrained and trained males and females. J Strength Cond Res. 1990;4(2):47–54.

    Google Scholar 

  21. Richens B, Cleather DJ. The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biol Sport. 2014;31(2):157–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Julio UF, Panissa VLG, Franchini E. Prediction of one repetition maximum from the maximum number of repetitions with submaximal loads in recreationally strength-trained men. Sci Sport. 2012;27(6):e69–76.

    Article  Google Scholar 

  23. Shimano T, Kraemer WJ, Spiering BA, Volek JS, Hatfield DL, Silvestre R, et al. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men. J Strength Cond Res. 2006;20(4):819–23.

    PubMed  Google Scholar 

  24. Scott BR, Duthie GM, Thornton HR, Dascombe BJ. Training monitoring for resistance exercise: theory and applications. Sports Med. 2016;46(5):687–98.

    Article  PubMed  Google Scholar 

  25. Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60.

    Article  PubMed  Google Scholar 

  26. Carroll KM, Bernards JR, Bazyler CD, Taber CB, Stuart CA, DeWeese BH, et al. Divergent performance outcomes following resistance training using repetition maximums or relative intensity. Int J Sports Physiol Perform. 2019;14(1):46–54.

    Article  Google Scholar 

  27. Painter KB, Haff GG, Ramsey MW, McBride J, Triplett T, Sands WA, et al. Strength gains: block versus daily undulating periodization weight training among track and field athletes. Int J Sports Physiol Perform. 2012;7(2):161–9.

    Article  PubMed  Google Scholar 

  28. Hoffman JR, Ratamess NA, Klatt M, Faigenbaum AD, Ross RE, Tranchina NM, et al. Comparison between different off-season resistance training programs in Division III American college football players. J Strength Cond Res. 2009;23(1):11–9.

    Article  PubMed  Google Scholar 

  29. Haff GG, Nimphius S. Training principles for power. Strength Cond J. 2012;34(6):2–12.

    Article  Google Scholar 

  30. Izquierdo M, Ibanez J, González-Badillo JJ, Häkkinen K, Ratamess NA, Kraemer WJ, et al. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J Appl Physiol. 2006;100(5):1647–56.

    Article  CAS  PubMed  Google Scholar 

  31. Peterson MD, Rhea MR, Alvar BA. Applications of the dose-response for muscular strength development: a review of meta-analytic efficacy and reliability for designing training prescription. J Strength Cond Res. 2005;19(4):950–8.

    PubMed  Google Scholar 

  32. Thompson SW, Rogerson D, Ruddock A, Barnes A. The effectiveness of two methods of prescribing load on maximal strength development: a systematic review. Sports Med. 2020;50(5):919–38.

    Article  CAS  PubMed  Google Scholar 

  33. Borg GAV. Perceived exertion as an indicator of somatic stress. Scand J Rehab Med. 1970;2:92–8.

    CAS  Google Scholar 

  34. Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81.

    Article  CAS  PubMed  Google Scholar 

  35. Robertson RJ, Goss FL, Rutkowski J, Lenz B, Dixon C, Timmer J, et al. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med Sci Sports Exerc. 2003;35(2):333–41.

    Article  PubMed  Google Scholar 

  36. Lagally KM, Robertson RJ. Construct validity of the OMNI resistance exercise scale. J Strength Cond Res. 2006;20(2):252–6.

    PubMed  Google Scholar 

  37. Day ML, McGuigan MR, Brice G, Foster C. Monitoring exercise intensity during resistance training using the session RPE scale. J Strength Cond Res. 2004;18(2):353–8.

    PubMed  Google Scholar 

  38. Sweet TW, Foster C, McGuigan MR, Brice G. Quantitation of resistance training using the session rating of perceived exertion method. J Strength Cond Res. 2004;18(4):796–802.

    PubMed  Google Scholar 

  39. McGuigan MR, Foster C. A new approach to monitoring resistance training. Strength Cond J. 2004;26(6):42–7.

    Article  Google Scholar 

  40. Zourdos MC, Klemp A, Dolan C, Quiles JM, Schau KA, Jo E, et al. Novel resistance training–specific rating of perceived exertion scale measuring repetitions in reserve. J Strength Cond Res. 2016;30(1):267–75.

    Article  PubMed  Google Scholar 

  41. Hackett DA, Cobley SP, Halaki M. Estimation of repetitions to failure for monitoring resistance exercise intensity: building a case for application. J Strength Cond Res. 2018;32(5):1352–9.

    Article  PubMed  Google Scholar 

  42. Hackett DA, Cobley SP, Davies TB, Michael SW, Halaki M. Accuracy in estimating repetitions to failure during resistance exercise. J Strength Cond Res. 2017;31(8):2162–8.

    Article  PubMed  Google Scholar 

  43. Hackett DA, Johnson NA, Halaki M, Chow C-M. A novel scale to assess resistance-exercise effort. J Sports Sci. 2012;30(13):1405–13.

    Article  PubMed  Google Scholar 

  44. Helms ER, Byrnes RK, Cooke DM, Haischer MH, Carzoli JP, Johnson TK, et al. RPE vs percentage 1RM loading in periodized programs matched for sets and repetitions. Front Physiol. 2018;9:1–10.

  45. Ormsbee MJ, Carzoli JP, Klemp A, Allman BR, Zourdos MC, Kim J-S, et al. Efficacy of the repetitions in reserve-based rating of perceived exertion for the bench press in experienced and novice benchers. J Strength Cond Res. 2019;33(2):337–45.

    Article  PubMed  Google Scholar 

  46. Graham T, Cleather DJ. Autoregulation by "repetitions in reserve" leads to greater improvements in strength over a 12-week training program than fixed loading. J Strength Cond Res. Epub ahead of print. 2019. https://doi.org/10.1519/JSC.0000000000003952.

  47. Lovegrove S, Hughes LJ, Mansfield SK, Read PJ, Price P, Patterson SD. Repetitions in reserve is a reliable tool for prescribing resistance training load. J Strength Cond Res. Epub ahead of print. 2021. https://doi.org/10.1519/JSC.0000000000003952.

  48. Arede J, Vaz R, Gonzalo-Skok O, Balsalobre-Fernandéz C, Varela-Olalla D, Madruga-Parera M, et al. Repetitions in reserve vs maximum effort resistance training programs in youth female athletes. J Sports Med Phys Fitness. 2020;60:1231–9.

    Article  PubMed  Google Scholar 

  49. Barroso R, Cardoso RK, Carmo EC, Tricoli V. Perceived exertion in coaches and young swimmers with different training experience. Int J Sports Physiol Perform. 2014;9(2):212–6.

    Article  PubMed  Google Scholar 

  50. Zourdos MC, Goldsmith JA, Helms ER, Trepeck C, Halle JL, Mendez KM, et al. Proximity to failure and total repetitions performed in a set influences accuracy of intraset repetitions in reserve-based rating of perceived exertion. J Strength Cond Res. Epub ahead of print. 2019. https://doi.org/10.1519/JSC.0000000000002995.

  51. Stone MH, O'Bryant HS. Weight training: a scientific approach. Minneapolis: Burgess International; 1987.

  52. DeWeese BH, Hornsby G, Stone M, Stone MH. The training process: planning for strength–power training in track and field. Part 2: practical and applied aspects. J Sport Health Sci. 2015;4(4):318–24.

  53. Carroll KM, Bazyler CD, Bernards JR, Taber CB, Stuart CA, DeWeese BH, et al. Skeletal muscle fiber adaptations following resistance training using repetition maximums or relative intensity. Sports. 2019;7(7):169.

    Article  PubMed Central  Google Scholar 

  54. Suarez DG, Mizuguchi S, Hornsby WG, Cunanan AJ, Marsh DJ, Stone MH. Phase-specific changes in rate of force development and muscle morphology throughout a block periodized training cycle in weightlifters. Sports. 2019;7(6):129.

    Article  PubMed Central  Google Scholar 

  55. Suchomel TJ, McKeever SM, Comfort P. Training with weightlifting derivatives: the effects of force and velocity overload stimuli. J Strength Cond Res. 2020;34(7):1808–18.

    Article  PubMed  Google Scholar 

  56. Suchomel TJ, McKeever SM, McMahon JJ, Comfort P. The effect of training with weightlifting catching or pulling derivatives on squat jump and countermovement jump force-time adaptations. J Funct Morphol Kines. 2020;5:28.

    Article  Google Scholar 

  57. Hornsby WG, Gentles JA, MacDonald CJ, Mizuguchi S, Ramsey MW, Stone MH. Maximum strength, rate of force development, jump height, and peak power alterations in weightlifters across five months of training. Sports. 2017;5(4):78.

    Article  PubMed Central  Google Scholar 

  58. DeWeese BH, Sams ML, Serrano AJ. Sliding toward Sochi—part 1: a review of programming tactics used during the 2010–2014 quadrennial. Natl Strength Cond Assoc Coach. 2014;1(3):30–42.

    Google Scholar 

  59. Mann JB, Thyfault JP, Ivey PA, Sayers SP. The effect of autoregulatory progressive resistance exercise vs. linear periodization on strength improvement in college athletes. J Strength Cond Res. 2010;24(7):1718–23.

  60. DeLorme TL. Restoration of muscle power by heavy-resistance exercises. J Bone Joint Surg. 1945;27(4):645–67.

    Google Scholar 

  61. DeLorme TL, Ferris BG, Gallagher JR. Effect of progressive resistance exercise on muscle contraction time. Arch Phys Med Rehabil. 1952;33(2):86–92.

    CAS  Google Scholar 

  62. DeLorme TL, West FE, Shriber WJ. Influence of progressive-resistance exercises on knee function following femoral fractures. J Bone Joint Surg. 1950;32(4):910–24.

    Article  PubMed  Google Scholar 

  63. Knight KL. Knee rehabilitation by the daily adjustable progressive resistive exercise technique. Am J Sports Med. 1979;7(6):336–7.

    Article  CAS  PubMed  Google Scholar 

  64. Knight KL. Quadriceps strengthening with the DAPRE technique: case studies with neurological implications. Med Sci Sports Exerc. 1985;17(6):646–50.

    Article  CAS  PubMed  Google Scholar 

  65. Siff MC. Supertraining. 5th ed. Denver; 2000.

  66. Colquhoun RJ, Gai CM, Walters J, Brannon AR, Kilpatrick MW, D’Agostino DP, et al. Comparison of powerlifting performance in trained men using traditional and flexible daily undulating periodization. J Strength Cond Res. 2017;31(2):283–91.

    Article  PubMed  Google Scholar 

  67. McNamara JM, Stearne DJ. Flexible nonlinear periodization in a beginner college weight training class. J Strength Cond Res. 2010;24(8):2012–7.

    Article  PubMed  Google Scholar 

  68. Zhang X, Li H, Bi S, Cao Y, Zhang G. Auto-regulation method vs. fixed-loading method in maximum strength training for athletes: a systematic review and meta-analysis. Front Physiol. 2021;12:244.

  69. Mann JB. A programming comparison: the APRE vs. linear periodization in short term periods. University of Missouri-Columbia; 2011.

  70. Weber CJ. Effects of autoregulatory progressive resistance exercise periodization versus linear periodization on muscular strength and anaerobic power in collegiate wrestlers. University of Wisconsin-Whitewater; 2015.

  71. Herrick AB, Stone WJ. The effects of periodization versus progressive resistance exercise on upper and lower body strength in women. J Strength Cond Res. 1996;10(2):72–6.

    Google Scholar 

  72. Horschig AD, Neff TE, Serrano AJ. Utilization of autoregulatory progressive resistance exercise in transitional rehabilitation periodization of a high school football-player following anterior cruciate ligament reconstruction: a case report. Int J Sports Phys Ther. 2014;9(5):691–8.

    PubMed  PubMed Central  Google Scholar 

  73. Mann JB. The APRE: the scientifically proven fastest way to get strong; 2011.

  74. Shattock K, Tee JC. Autoregulation in resistance training: a comparison of subjective versus objective methods. J Strength Cond Res. Epub ahead of print. 2020. https://doi.org/10.1519/JSC.0000000000003530.

  75. Weakley JJS, Mann JB, Banyard H, McLaren S, Scott T, Garcia-Ramos A. Velocity-based training: from theory to application. Strength Cond J. Epub ahead of print. 2020. https://doi.org/10.1519/SSC.0000000000000560.

  76. Argus CK, Gill ND, Keogh JWL, Hopkins WG. Acute effects of verbal feedback on upper-body performance in elite athletes. J Strength Cond Res. 2011;25(12):3282–7.

    Article  PubMed  Google Scholar 

  77. Weakley JJS, Wilson KM, Till K, Read DB, Scantlebury S, Sawczuk T, et al. Visual kinematic feedback enhances velocity, power, motivation and competitiveness in adolescent female athletes. J Aust Strength Cond. 2019;27(3):16–22.

    Google Scholar 

  78. Weakley JJS, Wilson KM, Till K, Read DB, Darrall-Jones J, Roe GAB, et al. Visual feedback attenuates mean concentric barbell velocity loss and improves motivation, competitiveness, and perceived workload in male adolescent athletes. J Strength Cond Res. 2019;33(9):2420–5.

    Article  PubMed  Google Scholar 

  79. Weakley JJS, Wilson KM, Till K, Banyard H, Dyson J, Phibbs PJ, et al. Show me, tell me, encourage me: the effect of different forms of feedback on resistance training performance. J Strength Cond Res. 2020;34(11):3157–63.

    Article  PubMed  Google Scholar 

  80. Banyard HG, Nosaka K, Haff GG. Reliability and validity of the load–velocity relationship to predict the 1RM back squat. J Strength Cond Res. 2017;31(7):1897–904.

    Article  PubMed  Google Scholar 

  81. Hughes LJ, Banyard HG, Dempsey AR, Scott BR. Using a load-velocity relationship to predict one repetition maximum in free-weight exercise: a comparison of the different methods. J Strength Cond Res. 2019;33(9):2409–19.

    Article  PubMed  Google Scholar 

  82. Ruf L, Chéry C, Taylor K-L. Validity and reliability of the load–velocity relationship to predict the one-repetition maximum in deadlift. J Strength Cond Res. 2018;32(3):681–9.

    Article  PubMed  Google Scholar 

  83. Hughes LJ, Banyard HG, Dempsey AR, Peiffer JJ, Scott BR. Using load–velocity relationships to quantify training-induced fatigue. J Strength Cond Res. 2019;33(3):762–73.

    Article  PubMed  Google Scholar 

  84. García-Ramos A, Barboza-González P, Ulloa-Díaz D, Rodriguez-Perea A, Martinez-Garcia D, Guede-Rojas F, et al. Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. J Sports Sci. 2019;37(19):2205–12.

    Article  PubMed  Google Scholar 

  85. Jiménez-Alonso A, García-Ramos A, Cepero M, Miras-Moreno S, Rojas FJ, Pérez-Castilla A. Velocity performance feedback during the free-weight bench press testing procedure: an effective strategy to increase the reliability and one repetition maximum accuracy prediction. J Strength Cond Res. Epub ahead print. 2020. https://doi.org/10.1519/JSC.0000000000003609

  86. Pérez-Castilla A, Suzovic D, Domanovic A, Fernandes JFT, García-Ramos A. Validity of different velocity-based methods and repetitions-to-failure equations for predicting the one-repetition maximum during two upper-body pulling exercises. J Strength Cond Res. Epub ahead of print. 2019. https://doi.org/10.1519/JSC.0000000000003076

  87. Hornsby WG, Fry AC, Haff GG, Stone MH. Addressing the confusion within periodization research. J Funct Morphol Kinesiol. 2020;5(3):68.

    Article  PubMed Central  Google Scholar 

  88. Matthews G, Joyner L, Gilliland K, Campbell S, Falconer S, Huggins J. Validation of a comprehensive stress state questionnaire: towards a state big three. Person Psychol Euro. 1999;7:335–50.

    Google Scholar 

  89. Anderson CA, Carnagey NL. Causal effects of violent sports video games on aggression: is it competitiveness or violent content? J Exp Soc Psychol. 2009;45(4):731–9.

    Article  Google Scholar 

  90. Wulf G, Lewthwaite R. Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon Bull Rev. 2016;23(5):1382–414.

    Article  PubMed  Google Scholar 

  91. Mulloy F, Irwin G, Williams GKR, Mullineaux DR. Quantifying bi-variate coordination variability during longitudinal motor learning of a complex skill. J Biomech. 2019;95:109295.

  92. Winchester JB, Erickson TM, Blaak JB, McBride JM. Changes in bar-path kinematics and kinetics after power-clean training. J Strength Cond Res. 2005;19(1):177–83.

    PubMed  Google Scholar 

  93. MacKenzie SJ, Lavers RJ, Wallace BB. A biomechanical comparison of the vertical jump, power clean, and jump squat. J Sports Sci. 2014;32(16):1576–85.

    Article  PubMed  Google Scholar 

  94. Izquierdo M, González-Badillo JJ, Häkkinen K, Ibáñez J, Kraemer WJ, Altadill A, et al. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med. 2006;27(9):718–24.

    Article  CAS  PubMed  Google Scholar 

  95. Weakley JJS, Chalkley D, Johnston R, García-Ramos A, Townshend A, Dorrell H, et al. Criterion validity, and interunit and between-day reliability of the FLEX for measuring barbell velocity during commonly used resistance training exercises. J Strength Cond Res. 2020;34(6):1519–24.

    Article  PubMed  Google Scholar 

  96. Suchomel TJ, Beckham GK, Wright GA. Effect of various loads on the force-time characteristics of the hang high pull. J Strength Cond Res. 2015;29(5):1295–301.

    Article  PubMed  Google Scholar 

  97. Suchomel TJ, Beckham GK, Wright GA. The impact of load on lower body performance variables during the hang power clean. Sports Biomech. 2014;13(1):87–95.

    Article  PubMed  Google Scholar 

  98. Suchomel TJ, Beckham GK, Wright GA. Lower body kinetics during the jump shrug: impact of load. J Trainol. 2013;2:19–22.

    Article  Google Scholar 

  99. Conceição F, Fernandes J, Lewis M, Gonzaléz-Badillo JJ, Jimenéz-Reyes P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci. 2016;34(12):1099–106.

    Article  PubMed  Google Scholar 

  100. García-Ramos A, Pestaña-Melero FL, Pérez-Castilla A, Rojas FJ, Haff GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res. 2018;32(5):1273–9.

  101. González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31:347–52.

    Article  PubMed  Google Scholar 

  102. Sánchez-Medina L, González-Badillo JJ, Perez CE, Pallarés JG. Velocity-and power-load relationships of the bench pull vs. bench press exercises. Int J Sports Med. 2014;35(3):209–16.

  103. Helms ER, Storey A, Cross MR, Brown SR, Lenetsky S, Ramsay H, et al. RPE and velocity relationships for the back squat, bench press, and deadlift in powerlifters. J Strength Cond Res. 2017;31(2):292–7.

    Article  PubMed  Google Scholar 

  104. Thompson SW, Rogerson D, Dorrell HF, Ruddock A, Barnes A. The reliability and validity of current technologies for measuring barbell velocity in the free-weight back squat and power clean. Sports. 2020;8(7):94.

    Article  PubMed Central  Google Scholar 

  105. García-Ramos A, Pestana-Melero FL, Pérez-Castilla A, Rojas FJ, Haff GG. Differences in the load–velocity profile between 4 bench-press variants. Int J Sports Physiol Perform. 2018;13(3):326–31.

    Article  PubMed  Google Scholar 

  106. Pérez-Castilla A, García-Ramos A, Padial P, Morales-Artacho AJ, Feriche B. Load-velocity relationship in variations of the half-squat exercise: Influence of execution technique. J Strength Cond Res. 2020;34(4):1024–31.

    Article  PubMed  Google Scholar 

  107. Balsalobre-Fernández C, García-Ramos A, Jiménez-Reyes P. Load–velocity profiling in the military press exercise: Effects of gender and training. Int J Sports Sci Coach. Epub ahead of print. 2017. https://doi.org/10.1177/1747954117738243

  108. Torrejón A, Balsalobre-Fernández C, Haff GG, García-Ramos A. The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports Biomech. 2019;18(3):245–55.

    Article  PubMed  Google Scholar 

  109. Balsalobre-Fernández C, Marchante D, Baz-Valle E, Alonso-Molero I, Jiménez SL, Muñóz-López M. Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Front Physiol. 2017;8:649.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fernandes J, Lamb KL, Clark C, Moran J, Drury B, Garcia-Ramos A, et al. A comparison of the FitroDyne and GymAware rotary encoders for quantifying peak and mean velocity during traditional multi-jointed exercises. J Strength Cond Res. Epub ahead of print. 2018. https://doi.org/10.1519/JSC.0000000000002952

  111. Pérez-Castilla A, Piepoli A, Delgado-García G, Garrido-Blanca G, García-Ramos A. Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. J Strength Cond Res. 2019;33(5):1258–65.

    Article  PubMed  Google Scholar 

  112. Pestaña-Melero FL, Haff GG, Rojas FJ, Pérez-Castilla A, García-Ramos A. Reliability of the load–velocity relationship obtained through linear and polynomial regression models to predict the 1-repetition maximum load. J Appl Biomech. 2018;34(3):184–90.

    Article  PubMed  Google Scholar 

  113. García-Ramos A, Suzovic D, Pérez-Castilla A. The load-velocity profiles of three upper-body pushing exercises in men and women. Sports Biomech. Epub ahead of print. 2019. https://doi.org/10.1080/14763141.2019.1597155

  114. Fernandes JFT, Dingley AF, Garcia-Ramos A, Perez-Castilla A, Tufano JJ, Twist C. Prediction of one repetition maximum using reference minimum velocity threshold values in young and middle-aged resistance-trained males. Behav Sci. 2021;11(5):71.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tufano JJ, Conlon JA, Nimphius S, Brown LE, Seitz LB, Williamson BD, et al. Maintenance of velocity and power with cluster sets during high-volume back squats. Int J Sports Physiol Perform. 2016;11(7):885–92.

    Article  PubMed  Google Scholar 

  116. Weakley JJS, Till K, Read DB, Phibbs PJ, Roe G, Darrall-Jones J, et al. The effects of superset configuration on kinetic, kinematic, and perceived exertion in the barbell bench press. J Strength Cond Res. 2020;34(1):65–72.

    Article  PubMed  Google Scholar 

  117. Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):1725–34.

    Article  PubMed  Google Scholar 

  118. González-Badillo JJ, Yañez-García JM, Mora-Custodio R, Rodríguez-Rosell D. Velocity loss as a variable for monitoring resistance exercise. Int J Sports Med. 2017;38(3):217–25.

    Article  PubMed  Google Scholar 

  119. Weakley JJS, McLaren S, Ramirez-Lopez C, García-Ramos A, Dalton-Barron N, Banyard H, et al. Application of velocity loss thresholds during free-weight resistance training: responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. J Sports Sci. 2020;38(5):477–85.

    Article  Google Scholar 

  120. Weakley JJS, Ramirez-Lopez C, McLaren S, Dalton-Barron N, Weaving D, Jones B, et al. The effects of 10%, 20%, and 30% velocity loss thresholds on kinetic, kinematic, and repetition characteristics during the barbell back squat. Int J Sports Physiol Perform. 2020;15(2):180–8.

    Article  PubMed  Google Scholar 

  121. Mann JB. Developing explosive athletes: use of velocity based training in athletes. 3rd ed. Michigan: Ultimate Athlete Concepts; 2016.

  122. Holsbeeke L, Ketelaar M, Schoemaker MM, Gorter JW. Capacity, capability, and performance: different constructs or three of a kind? Arch Phys Med Rehab. 2009;90(5):849–55.

    Article  Google Scholar 

  123. Knudson D. Qualitative biomechanical principles for application in coaching. Sports Biomech. 2007;6(1):109–18.

    Article  PubMed  Google Scholar 

  124. Moras G, Fernández-Valdés B, Vázquez-Guerrero J, Tous-Fajardo J, Exel J, Sampaio J. Entropy measures detect increased movement variability in resistance training when elite rugby players use the ball. J Sci Med Sport. 2018;21(12):1286–92.

    Article  PubMed  Google Scholar 

  125. Fernández-Valdés B, Sampaio J, Exel J, González J, Tous-Fajardo J, Jones B, et al. The influence of functional flywheel resistance training on movement variability and movement velocity in elite rugby players. Front Psychol. 2020;11:1–9.

    Article  Google Scholar 

  126. Rice PE, Nimphius S. When task constraints delimit movement strategy: implications for isolated joint training in dancers. Front Sports Act Liv. 2020;2:49.

    Article  Google Scholar 

  127. Shishov N, Melzer I, Bar-Haim S. Parameters and measures in assessment of motor learning in neurorehabilitation: a systematic review of the literature. Front Hum Neurosci. 2017;11:1–26.

    Article  Google Scholar 

  128. Preatoni E, Hamill J, Harrison AJ, Hayes K, Van Emmerik REA, Wilson C, et al. Movement variability and skills monitoring in sports. Sports Biomech. 2013;12(2):69–92.

    Article  PubMed  Google Scholar 

  129. Wren TAL, O’Callahan B, Katzel MJ, Zaslow TL, Edison BR, VandenBerg CD, et al. Movement variability in pre-teen and teenage athletes performing sports related tasks. Gait Posture. 2020;80:228–33.

    Article  PubMed  Google Scholar 

  130. Sánchez CC, Moreno FJ, Vaíllo RR, Romero AR, Coves Á, Murillo DB. The role of motor variability in motor control and learning depends on the nature of the task and the individual’s capabilities. Eur J Hum Mov. 2017;38:12–26.

    Google Scholar 

  131. Suchomel TJ, Comfort P, Lake JP. Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength Cond J. 2017;39(1):10–20.

    Article  Google Scholar 

  132. Suchomel TJ, Comfort P, Stone MH. Weightlifting pulling derivatives: rationale for implementation and application. Sports Med. 2015;45(6):823–39.

    Article  PubMed  Google Scholar 

  133. Soriano MA, Suchomel TJ, Comfort P. Weightlifting overhead pressing derivatives: a review of the literature. Sports Med. 2019;49(6):867–85.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Arabatzi F, Kellis E. Olympic weightlifting training causes different knee muscle-coactivation adaptations compared with traditional weight training. J Strength Cond Res. 2012;26(8):2192–201.

    Article  PubMed  Google Scholar 

  135. Hori N, Newton RU, Nosaka K, Stone MH. Weightlifting exercises enhance athletic performance that requires high-load speed strength. Strength Cond J. 2005;27(4):50–5.

    Article  Google Scholar 

  136. Stone MH, Fry AC, Ritchie M, Stoessel-Ross L, Marsit JL. Injury potential and safety aspects of weightlifting movements. Strength Cond J. 1994;16(3):15–21.

    Article  Google Scholar 

  137. Garhammer J, Gregor R. Propulsion forces as a function of intensity for weightlifting and vertical jumping. J Strength Cond Res. 1992;6(3):129–34.

    Google Scholar 

  138. Suchomel TJ, Wagle JP, Douglas J, Taber CB, Harden M, Haff GG, et al. Implementing eccentric resistance training—part 1: a brief review of existing methods. J Funct Morphol Kines. 2019;4(2):38.

    Article  Google Scholar 

  139. Suchomel TJ, Wagle JP, Douglas J, Taber CB, Harden M, Haff GG, et al. Implementing eccentric resistance training—part 2: practical recommendations. J Funct Morphol Kines. 2019;4(3):55.

    Article  Google Scholar 

  140. Douglas J, Pearson S, Ross A, McGuigan MR. Chronic adaptations to eccentric training: a systematic review. Sports Med. 2017;47:917–41.

    Article  PubMed  Google Scholar 

  141. Douglas J, Pearson S, Ross A, McGuigan MR. Eccentric exercise: physiological characteristics and acute responses. Sports Med. 2017;47:663–75.

    Article  PubMed  Google Scholar 

  142. Wagle JP, Taber CB, Cunanan AJ, Bingham GE, Carroll K, DeWeese BH, et al. Accentuated eccentric loading for training and performance: a review. Sports Med. 2017;47:2473–95.

    Article  PubMed  Google Scholar 

  143. Maroto-Izquierdo S, García-López D, Fernandez-Gonzalo R, Moreira OC, González-Gallego J, de Paz JA. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J Sci Med Sport. 2017;20(10):943–51.

    Article  PubMed  Google Scholar 

  144. Walker S, Blazevich AJ, Haff GG, Tufano JJ, Newton RU, Häkkinen K. Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Front Physiol. 2016;7:1–12.

    Article  Google Scholar 

  145. Duchateau J, Hainaut K. Isometric or dynamic training: differential effects on mechanical properties of a human muscle. J Appl Physiol. 1984;56(2):296–301.

    Article  CAS  PubMed  Google Scholar 

  146. Lum D, Barbosa TM. Brief review: effects of isometric strength training on strength and dynamic performance. Int J Sports Med. 2019;40(6):363–75.

    Article  PubMed  Google Scholar 

  147. Oranchuk DJ, Storey AG, Nelson AR, Cronin JB. Isometric training and long-term adaptations: Effects of muscle length, intensity, and intent: a systematic review. Scand J Med Sci Sports. 2019;29(4):484–503.

    Article  PubMed  Google Scholar 

  148. Ebben WP, Suchomel TJ, Garceau LR. The effect of plyometric training volume on jumping performance. In: Sato K, Sands WA, Mizuguchi S, editors. XXXIInd International Conference of Biomechanics in Sports; 2014; Johnson City, TN, USA; 2014. p. 566–9.

  149. James LP, Haff GG, Kelly VG, Connick M, Hoffman B, Beckman EM. The impact of strength level on adaptations to combined weightlifting, plyometric and ballistic training. Scand J Med Sci Sports. 2018;28(5):1494–505.

    Article  CAS  PubMed  Google Scholar 

  150. Andrade DC, Manzo O, Beltrán AR, Alvares C, Del Rio R, Toledo C, et al. Kinematic and neuromuscular measures of intensity during plyometric jumps. J Strength Cond Res. 2020;34(12):3395–402.

    Article  PubMed  Google Scholar 

  151. Van Lieshout KG, Anderson JG, Shelburne KB, Davidson BS. Intensity rankings of plyometric exercises using joint power absorption. Clin Biomech. 2014;29(8):918–22.

    Article  Google Scholar 

  152. Ebben WP, Fauth ML, Garceau LR, Petushek EJ. Kinetic quantification of plyometric exercise intensity. J Strength Cond Res. 2011;25(12):3288–98.

    Article  PubMed  Google Scholar 

  153. Lake JP, Mundy PD, Comfort P, McMahon JJ, Suchomel TJ, Carden P. The effect of barbell load on vertical jump landing force-time characteristics. J Strength Cond Res. 2021;35(1):25–32.

    Article  PubMed  Google Scholar 

  154. Suchomel TJ, McKeever SM, Sijuwade O, Carpenter L, McMahon JJ, Loturco I, et al. The effect of load placement on the power production characteristics of three lower extremity jumping exercises. J Hum Kinet. 2019;68:109–22.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Swinton PA, Stewart AD, Lloyd R, Agouris I, Keogh JW. Effect of load positioning on the kinematics and kinetics of weighted vertical jumps. J Strength Cond Res. 2012;26(4):906–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Figure 2 was reprinted from DeWeese BH, Hornsby WG, Stone M, and Stone MH. The training process: Planning for strength–power training in track and field. Part 2: Practical and applied aspects. J Sport Health Sci. 2015; 4: 318–324 [52], with permission from Elsevier. Figures 3 and 4 were reprinted from Mann JB. Section II in: The APRE: The Scientifically Proven Fastest Way to Get Strong. 2012; 10–21 [73], with permission from Dr. J. Bryan Mann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Suchomel.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Timothy Suchomel, Sophia Nimphius, Christopher Bellon, W. Guy Hornsby, and Michael Stone declare that they have no conflicts of interest relevant to the content of this review.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authorship contributions

All authors wrote the first draft of the manuscript. TS, SN, and MS revised the original manuscript. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suchomel, T.J., Nimphius, S., Bellon, C.R. et al. Training for Muscular Strength: Methods for Monitoring and Adjusting Training Intensity. Sports Med 51, 2051–2066 (2021). https://doi.org/10.1007/s40279-021-01488-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01488-9

Navigation