Programming Interval Training to Optimize Time-Trial Performance: A Systematic Review and Meta-Analysis

Abstract

Background

Interval training has become an essential component of endurance training programs because it can facilitate a substantial improvement in endurance sport performance. Two forms of interval training that are commonly used to improve endurance sport performance are high-intensity interval training (HIIT) and sprint interval training (SIT). Despite extensive research, there is no consensus concerning the optimal method to manipulate the interval training programming variables to maximize endurance performance for differing individuals.

Objective

The objective of this manuscript was to perform a systematic review and meta-analysis of interval training studies to determine the influence that individual characteristics and training variables have on time-trial (TT) performance.

Data Sources

SPORTDiscus and Medline with Full Text were explored to conduct a systematic literature search.

Study Selection

The following criteria were used to select studies appropriate for the review: 1. the studies were prospective in nature; 2. included individuals between the ages of 18 and 65 years; 3. included an interval training (HIIT or SIT) program at least 2 weeks in duration; 4. included a TT test that required participants to complete a set distance; 5. and programmed HIIT by power or velocity.

Results

Twenty-nine studies met the inclusion criteria for the quantitative analysis with a total of 67 separate groups. The participants included males (n = 400) and females (n = 91) with a mean group age of 25 (range 19–45) years and mean \(V{\text{O}}_{{2{\text{max}}}}\) of 52 (range 32–70) mL·kg−1·min−1. The training status of the participants comprised of inactive (n = 75), active (n = 146) and trained (n = 258) individuals. Training status played a significant role in improvements in TT performance with trained individuals only seeing improvements of approximately 2% whereas individuals of lower training status demonstrated improvements as high as 6%. The change in TT performance with HIIT depended on the duration but not the intensity of the interval work-bout. There was a dose–response relationship with the number of HIIT sessions, training weeks and total work with changes in TT performance. However, the dose–response was not present with SIT.

Conclusion

Optimization of interval training programs to produce TT performance improvements should be done according to training status. Our analysis suggests that increasing interval training dose beyond minimal requirements may not augment the training response. In addition, optimal dosing differs between high intensity and sprint interval programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Bacon AP, Carter RE, Ogle EA, Joyner MJ. VO2max trainability and high intensity interval training in humans: a meta-analysis. PLoS ONE. 2013;8(9):e73182.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Milanović Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45(10):1469–81.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Rosenblat MA, Perrotta AS, Thomas SG. Effect of high-intensity interval training versus sprint interval training on time-trial performance: a systematic review and meta-analysis. Sports Med. 2020;50(6):1145–61.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Blondel N, Berthoin S, Lensel G. Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVo2max and velocity expressed relatively to critical velocity and maximal velocity. Int J Sports Med. 2000;22(1):27–33.

    Article  Google Scholar 

  5. 5.

    Demarie S, Koralsztein JP, Billat LV. Time limit and time at VO2max during a continuous and an intermittent run. J Sports Med Phys Fitness. 2000;40(2):96–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sports Sci Rev. 1996;24:35–71.

    CAS  Article  Google Scholar 

  7. 7.

    Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, et al. Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):1932–40.

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Lucía A, Hoyos J, Pérez M, Chicharro JL. Heart rate and performance parameters in elite cyclists: a longitudinal study. Med Sci Sports Exerc. 2000;32(10):1777–82.

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Caputo F, Denadai BS. The highest intensity and the shortest duration permitting attainment of maximal oxygen uptake during cycling: effects of different methods and aerobic fitness level. Eur J Appl Physiol. 2008;103(1):47–57.

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38.

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927–54.

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Zadow EK, Gordon N, Abbiss CR, Peiffer JJ. Pacing, the missing piece of the puzzle to high-intensity interval training. Int J Sports Med. 2015;36(3):215–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Rosenblat MA, Perrotta AS, Vicenzino B. Polarized vs. threshold training intensity distribution on endurance sport performance: A systematic review and meta-analysis of randomized controlled trials. J Strength Cond Res. 2019;33(12):3491–500.

  15. 15.

    Schoenmakers PJ, Hettinga FJ, Reed KE. The moderating role of recovery durations in high-intensity interval-training protocols. Int J Sports Physiol Perform. 2019;14(6):859–67.

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Vollaard NB, Metcalfe RS, Williams S. Effect of number of sprints in an SIT session on change in VO2max: a meta-analysis. Med Sci Sports Exerc. 2017;49(6):1147–56.

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Foster C. VO2max and training indices as determinants of competitive running performance. J Sports Sci. 1983;1(1):13–22.

    Article  Google Scholar 

  18. 18.

    Coyle EF, Coggan AR, Hopper MK, Walters TJ. Determinants of endurance in well-trained cyclists. J Appl Physiol. 1988;64(6):2622–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Coyle EF, Feltner ME, Kautz SA, Hamilton MT, Montain SJ, Baylor AM, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc. 1991;23(1):93–107.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Laursen PB, Francis GT, Abbiss CR, Newton MJ, Nosaka K. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med Sci Sports Exerc. 2007;39(8):1374–9.

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;31(1):1–15.

    Article  Google Scholar 

  22. 22.

    Palmer GS, Dennis SC, Noakes TD, Hawley JA. Assessment of the reproducibility of performance testing on an air-braked cycle ergometer. Int J Sports Med. 1996;17(4):293–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Russell RD, Redmann SM, Ravussin E, Hunter GR, Larson-Meyer DE. Reproducibility of endurance performance on a treadmill using a preloaded time trial. Med Sci Sports Exerc. 2004;36(4):717–24.

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med. 2001;31(2):75–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;31(1):13–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Granata C, Jamnick NA, Bishop DJ. Principles of exercise prescription and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis. Sports Med. 2018;48(7):1541–59.

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Morton RH. Why peak power is higher at the end of steeper ramps: an explanation based on the “critical power” concept. J Sports Sci. 2011;29(3):307–9.

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Viechtbauer W. Conducting meta-analyses in R with metafor package. J Stat Soft. 2010;36(3):1–48.

    Article  Google Scholar 

  31. 31.

    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Akca F, Aras D. Comparison of rowing performance improvements following various high-intensity interval training. J Strength Cond Res. 2015;29(8):2249–54.

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Astorino TA, deRevere J, Anderson T, Kellogg E, Holstrom P, Ring S, et al. Change in VO2max and time trial performance in response to high-intensity interval training prescribed using ventilatory threshold. Eur J Appl Physiol. 2018;118(9):1811–20.

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Capostagno B, Lambert MI, Lamberts RP. Standardized versus customized high-intensity training: effects on cycling performance. Int J Sports Physiol Perform. 2014;9(2):292–301.

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Denadai BS, Ortiz MJ, Greco CC, de Mello MT. Interval training at 95% and 100% of the velocity at VO2max: effects on aerobic physiological indexes and running performance. Appl Physiol Nutr Metab. 2006;31(6):737–43.

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Denham J, Feros SA, O’Brien BJ. Four weeks of sprint interval training improves 5-km run performance. J Strength Cond Res. 2015;29(8):2137–41.

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Dolgener FA, Brooks WB. The effects of interval and continuous training on VO2max and performance in the mile run. J Sports Med Phys Fitness. 1978;18(4):345–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Driller MW, Fell JW, Gregory JR, Shing CM, Williams AD. The effects of high-intensity interval training in well-trained rowers. Int J Sports Physiol Perform. 2009;4(1):110–21.

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Dunham C, Harms CA. Effects of high-intensity interval training on pulmonary function. Eur J Appl Physiol. 2012;112(8):3061–8.

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Esfarjani F, Laursen PB. Manipulating high-intensity interval training: effects on VO2max, the lactate threshold and 3000 m running performance in moderately trained males. J Sci Med Sport. 2007;10(1):27–35.

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. Training intensity modulates changes in PGC-1alpha and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J. 2016;30(2):959–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Gross M, Swensen T, King D. Nonconsecutive- versus consecutive-day high-intensity interval training in cyclists. Med Sci Sports Exerc. 2007;39(9):1666–71.

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Hazell TJ, Macpherson RE, Gravelle BM, Lemon PW. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol. 2010;110(1):153–60.

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Inoue A, Impellizzeri FM, Pires FO, Pompeu FA, Deslandes AC, Santos TM. Effects of sprint versus high-intensity aerobic interval training on cross-country mountain biking performance: a randomized controlled trial. PLoS ONE. 2016;11(1):e0145298.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Kavaliauskas M, Steer TP, Babraj JA. Cardiorespiratory fitness and aerobic performance adaptations to a 4-week sprint interval training in young healthy untrained females. Sport Sci Health. 2017;13(1):17–23.

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Koral J, Oranchuk DJ, Herrera R, Millet GY. Six sessions of sprint interval training improves running performance in trained athletes. J Strength Cond Res. 2018;32(3):617–23.

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc. 2002;34(11):1801–7.

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Lindsay FH, Hawley JA, Myburgh KH, Schomer HH, Noakes TD. Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc. 1996;28(11):1427–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Macpherson RE, Hazell TJ, Olver TD, Paterson DH, Lemon PW. Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc. 2011;43(1):115–22.

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    McKie GL, Islam H, Townsend LK, Robertson-Wilson J, Eys M, Hazell TJ. Modified sprint interval training protocols: physiological and psychological responses to four weeks of training. Appl Physiol Nutr Metab. 2018;43(6):595–601.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Ní Chéilleachair NJ, Harrison AJ, Warrington GD. HIIT enhances endurance performance and aerobic characteristics more than high-volume training in trained rowers. J Sports Sci. 2017;35(11):1052–8.

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Scalzo RL, Peltonen GL, Binns SE, Shankaran M, Giordano GR, Hartley DA, et al. Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J. 2014;28(6):2705–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Siahkouhian M, Khodadadi D, Shahmoradi K. Effects of high-intensity interval training on aerobic and anaerobic indices: Comparison of physically active and inactive men. Sci Sports. 2013;28(5):e119–25.

    Article  Google Scholar 

  54. 54.

    Smith TP, Coombes JS, Geraghty DP. Optimising high-intensity treadmill training using the running speed at maximal O(2) uptake and the time for which this can be maintained. Eur J Appl Physiol. 2003;89(3–4):337–43.

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Stepto NK, Hawley JA, Dennis SC, Hopkins WG. Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc. 1999;31(5):736–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Stevens AW, Olver TT, Lemon PW. Incorporating sprint training with endurance training improves anaerobic capacity and 2,000-m erg performance in trained oarsmen. J Strength Cond Res. 2015;29(1):22–8.

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Swart J, Lamberts RP, Derman W, Lambert MI. Effects of high-intensity training by heart rate or power in well-trained cyclists. J Strength Cond Res. 2009;23(2):619–25.

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Westgarth-Taylor C, Hawley JA, Rickard S, Myburgh KH, Noakes TD, Dennis SC. Metabolic and performance adaptations to interval training in endurance-trained cyclists. Eur J Appl Physiol. 1996;75(4):298–304.

    Article  Google Scholar 

  59. 59.

    Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol. 1997;75(1):7–13.

    CAS  Article  Google Scholar 

  60. 60.

    Willoughby TN, Thomas MP, Schmale MS, Copeland JL, Hazell TJ. Four weeks of running sprint interval training improves cardiorespiratory fitness in young and middle-aged adults. J Sports Sci. 2016;34(13):1207–14.

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Kavaliauskas M, Aspe RR, Babraj JA. High-intensity cycling training: the effect of work-to-rest intervals on running performance measures. J Strength Cond Res. 2015;29(8):2229–36.

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Esbjörnsson-Liljedahl M, Sundberg CJ, Norman B, Jansson E. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J Appl Physiol. 1999;87(4):1326–32.

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Schmitz B, Niehues H, Thorwesten L, Klose A, Kruger M, Brand SM. Sex differences in high-intensity interval training-are HIIT protocols interchangeable between females and males? Front Physiol. 2020;11:38.

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Weston M, Taylor KL, Batterham AM, Hopkins WG. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: a meta-analysis of controlled and non-controlled trials. Sports Med. 2014;44(7):1005–17.

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Støren Ø, Helgerud J, Saebo M, Støa EM, Bratland-Sanda S, Unhjem RJ, et al. The effect of age on the VO2max response to high-intensity interval training. Med Sci Sports Exerc. 2017;49(1):78–85.

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Hetlelid KJ, Plews DJ, Herold E, Laursen PB, Seiler S. Rethinking the role of fat oxidation: substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners. BMJ Open Sport Exerc Med. 2015;1(1):e000047.

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Wang E, Naess MS, Hoff J, Albert TL, Pham Q, Richardson RS, et al. Exercise-training-induced changes in metabolic capacity with age: the role of central cardiovascular plasticity. Age. 2014;36(2):665–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112(5):674–82.

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Ekblom B, Wilson G, Åstrand PO. Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol. 1976;40(3):379–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276–91.

    PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strength Cond Res. 2005;19(3):527–33.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Moore IS, Jones AM, Dixon SJ. Mechanisms for improved running economy in beginner runners. Med Sci Sports Exerc. 2012;44(9):1756–63.

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Swinnen W, Kipp S, Kram R. Comparison of running and cycling economy in runners, cyclists, and triathletes. Eur J Appl Physiol. 2018;118(7):1331–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Londeree BR. Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc. 1997;29(6):837–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Bishop DJ, Botella J, Genders AJ, Lee MJ, Saner NJ, Kuang J, et al. High-intensity exercise and mitochondrial biogenesis: current controversies and future research directions. Physiology. 2019;34(1):56–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Rønnestad BR, Hansen J, Nygaard H, Lundby C. Superior performance improvements in elite cyclists following short-interval vs effort-matched long-interval training. Scand J Med Sci Sports. 2020;30(5):849–57.

    PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Rønnestad BR, Hansen J, Vegge G, Tonnessen E, Slettalokken G. Short intervals induce superior training adaptations compared with long intervals in cyclists—an effort-matched approach. Scand J Med Sci Sports. 2015;25(2):143–51.

    PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Sandbakk Ø, Sandbakk S, Ettema G, Welde B. Effects of intensity and duration in aerobic high-intensity interval training in highly trained junior cross-country skiers. J Strength Cond Res. 2013;27(7):1974–80.

    PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Seiler S, Jøranson K, Olesen BV, Hetlelid KJ. Adaptations to aerobic training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23(1):74–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Chidnok W, DiMenna FJ, Fulford J, Bailey SJ, Skiba PF, Vanhatalo A, et al. Muscle metabolic responses during high-intensity intermittent exercise measured by (31)P-MRS: relationship to the critical power concept. Am J Physiol Regul Integr Comp Physiol. 2013;305(9):R1085–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Ahmaidi S, Granier P, Taoutaou Z, Mercier J, Dubouchaud H, Prefaut C. Effects of active recovery on plasma lactate and anaerobic power following repeated intensive exercise. Med Sci Sports Exerc. 1996;28(4):450–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Wahl P, Mathes S, Kohler K, Achtzehn S, Bloch W, Mester J. Effects of active vs. passive recovery during Wingate-based training on the acute hormonal, metabolic and psychological response. Growth Horm IGF Res. 2013;23(6):201–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Spencer M, Bishop D, Dawson B, Goodman C, Duffield R. Metabolism and performance in repeated cycle sprints: active versus passive recovery. Med Sci Sports Exerc. 2006;38(8):1492–9.

    PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Spencer M, Dawson B, Goodman C, Dascombe B, Bishop D. Performance and metabolism in repeated sprint exercise: effect of recovery intensity. Eur J Appl Physiol. 2008;103(5):545–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Dupont G, Berthoin S. Time spent at a high percentage of VO2max for short intermittent runs: active versus passive recovery. Can J Appl Physiol. 2004;29(Suppl):S3–16.

    PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Dupont G, Blondel N, Berthoin S. Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol. 2003;89(6):548–54.

    PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Laurent CM, Vervaecke LS, Kutz MR, Green M. Sex-specific responses to self-paced, high-intensity interval trainign with variable recovery periods. J Strength Cond Res. 2014;28(4):920–7.

    PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Seiler S, Hetlelid KJ. The impact of rest duration on work intensity and RPE during interval training. Med Sci Sports Exerc. 2005;37(9):1601–7.

    PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Smilios I, Myrkos A, Zafeiridis A, Toubekis AG, Spassis A, Tokmakidis SP. The effects of recovery duration during high-intensity interval exercise on time spent at high rates of oxygen consumption, oxygen kinetics, and blood lactate. J Strength Cond Res. 2018;32(9):2183–9.

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Glaister M, Stone MH, Stewart AM, Hughes M, Moir GL. The influence of recovery duration on multiple sprint cycling performance. J Strength Cond Res. 2005;19(4):831–7.

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Gosselin LE, Kozlowski KF, DeVinney-Boymel L, Hambridge C. Metabolic response of difference high-intensity aerobic interval exercise protocols. J Strength Cond Res. 2012;26(10):2866–71.

    PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Raleigh JP, Giles MD, Islam H, Nelms M, Bentley RF, Jones JH, et al. Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training. Appl Physiol Nutr Metab. 2018;43(10):1059–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, et al. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp Physiol. 2014;99(5):782–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Seiler S, Kjerland GO. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16(1):49–56.

    PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Stöggl TL, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol. 2014;5:33.

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Rønnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sports. 2014;24(4):603–12.

    PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Kristoffersen M, Sandbakk O, Ronnestad BR, Gundersen H. Comparison of short-sprint and heavy strength training on cycling performance. Front Physiol. 2019;10:1132.

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Kamen G, Knight CA. Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci. 2004;59(12):1334–8.

    PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Granata C, Jamnick NA, Bishop DJ. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Med. 2018;48(8):1809–28.

    PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Parry HA, Roberts MD, Kavazis AN. Human skeletal muscle mitochondrial adaptations following resistance exercise training. Int J Sports Med. 2020;41(6):349–59.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Turnes T, de Aguiar RA, de Oliveira Cruz RS, Pereira K, Salvador AF, Caputo F. High-intensity interval training in the boundaries of the severe domain: effects of sprint and endurance performance. Int J Sports Med. 2016;37(12):944–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Borszcz FK, Tramontin AF, de Souza KM, Carminatti LJ, Costa VP. Physiological correlations with short, medium, and long cycling time-trial performance. Res Q Exerc Sport. 2018;89(1):120–5.

    PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Tu YK, Gilthorpe MS. Revisiting the relation between change and initial value: a review and evaluation. Stat Med. 2007;26(2):443–57.

    PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Laursen PB, Shing CM, Jenkins DG. Reproducibility of a laboratory-based 40-km cycle time-trial on a stationary wind-trainer in highly trained cyclists. Int J Sports Med. 2003;24(7):481–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Laursen PB, Shing CM, Jenkins DG. Reproducibility of the cycling time to exhaustion at VO2peak in highly trained cyclists. Can J Appl Physiol. 2003;28(4):605–15.

    PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Balmer J, Davison RC, Bird SR. Peak power predicts performance power during outdoor 16.1-km cycling time trial. Med Sci Sports Exerc. 2000;32(8):1485–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Hebisz P, Hebisz R, Zaton M, Ochmann B, Mielnik N. Concomitant application of sprint and high-intensity interval training on maximal oxygen uptake and work output in well-trained cyclists. Eur J Appl Physiol. 2016;116(8):1495–502.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Astorino TA, Edmunds RM, Clark A, King L, Gallant RA, Namm S, et al. High-intensity interval training increases cardiac output and VO2max. Med Sci Sports Exerc. 2017;49(2):265–73.

    PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Montero D, Diaz-Canestro C, Lundby C. Endurance training and VO2max: role of maximal cardiac output and oxygen extraction. Med Sci Sports Exerc. 2015;47(10):2024–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael A. Rosenblat.

Ethics declarations

Authorship Contributions

MR conceived and designed the study, performed the literature search, screening, study selection, data extraction, assessed study quality and bias, statistical analysis, and manuscript preparation. EL participated in study selection, data extraction and assessed study quality and bias. BC participated in the statistical analysis and manuscript preparation. ST participated in the study design and manuscript preparation.

Conflicts of Interest

Michael Rosenblat, Edward Lin, Bruno da Costa and Scott Thomas declare that they have no conflicts of interest relevant to the content of this review.

Data Availability Statement

All data supporting the results in this manuscript are available in the results section or in the supplementary material.

Funding

No sources of funding were used to assist in the preparation of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (CSV 16 kb)

Supplementary file2 (DOCX 74 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosenblat, M.A., Lin, E., da Costa, B.R. et al. Programming Interval Training to Optimize Time-Trial Performance: A Systematic Review and Meta-Analysis. Sports Med (2021). https://doi.org/10.1007/s40279-021-01457-2

Download citation