Skip to main content

Advertisement

Log in

Strengthening the Case for Cluster Set Resistance Training in Aged and Clinical Settings: Emerging Evidence, Proposed Benefits and Suggestions

Sports Medicine Aims and scope Submit manuscript

Abstract

Resistance training (RT) is a fundamental component of exercise prescription aimed at improving overall health and function. RT techniques such as cluster set (CS) configurations, characterized by additional short intra-set or inter-repetition rest intervals, have been shown to maintain acute muscular force, velocity, and ‘power’ outputs across a RT session, and facilitate positive longer-term neuromuscular adaptations. However, to date CS have mainly been explored from a human performance perspective despite potential for application in health and clinical exercise settings. Therefore, this current opinion piece aims to highlight emerging evidence and provide a rationale for why CS may be an advantageous RT technique for older adults, and across several neurological, neuromuscular, cardiovascular and pulmonary settings. Specifically, CS may minimize acute fatigue and adverse physiologic responses, improve patient tolerance of RT and promote functional adaptations (i.e., force, velocity, and power). Moreover, we propose that CS may be a particularly useful exercise rehabilitation technique where injury or illness, persistent fatigue, weakness and dysfunction exist. We further suggest that CS offer an alternative RT strategy that can be easily implemented alongside existing exercise/rehabilitation programs requiring no extra cost, minimal upskilling and/or time commitment for the patient and professional. In light of the emerging evidence and likely efficacy in clinical exercise practice, future research should move toward further direct investigation of CS-based RT in a variety of adverse health conditions and across the lifespan given the already demonstrated benefits in healthy populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

adapted from Latella et al. [25] comparing a traditional set (TS) structure (a) and commonly used cluster set (CS) structures: intra-set rest (b), inter-repetition rest (c), rest-pause (d) and rest-redistribution (e) methods. *s = Inter-repetition rest is calculated by dividing the total rest usually allowed across all sets in a TS paradigm. E.g. 3 × 10 with 120 s rest between sets = 360 s) and dividing this by 30 (e.g., 12 s). One set of 30 repetitions with 12 s inter-repetition rest is then used. Rep N = Repetitions would continue until prescribed number is completed

Fig. 2
Fig. 3

Notes

  1. The term ‘power’ is commonly referred to in sport, exercise, and physical activity settings. Despite this, there are some suggestions that this term is often used incorrectly and rather ‘impulse’ would be more appropriate in such contexts (refer to Winter et al. [11] for in depth discussion). However, given its wide colloquial use to refer to such applications, we continue to use the term ‘power’ here for ease of communication given the primary intention of this article is not to debate terminology.

  2. Possibly due to the typical lack of standardization in the application self report perceptual scales such as for perception of effort or affect within our field (see [32]).

References

  1. Bahat G, Kilic C, Eris S, Karan MA. Power versus sarcopenia: Associations with functionality and physical performance measures. J Nutr Health Aging. 2020. https://doi.org/10.1007/s12603-020-1544-8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatric Soc. 2004;52(7):1121–9.

    Google Scholar 

  3. Rantanen T, Harris T, Leveille SG, Visser MM, Foley D, Masaki K, Guralink JM. Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J Gerenotol Ser A. 2000;55(3):M168–73.

    CAS  Google Scholar 

  4. Moens K, Higginson IJ, Harding R. Are there differences in the prevalence of palliative care-related problems in people living with advanced cancer and eight non-cancer conditions? A systematic review. J Pain Symptom Manage. 2014;48(4):660–77.

    PubMed  Google Scholar 

  5. Hayen A, Herigstad M, Pattinson KT. Understanding dyspnea as a complex individual experience. Maturitas. 2013;76(1):45–50.

    PubMed  Google Scholar 

  6. Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigare R, et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189(9):e15-62.

    PubMed  PubMed Central  Google Scholar 

  7. Reardon JZ, Lareau SC, ZuWallack R. Functional status and quality of life in chronic obstructive pulmonary disease. Am J Med. 2006;119(10 Suppl 1):32–7.

    PubMed  Google Scholar 

  8. Garcia-Hermoso A, Cavero-Redondo I, Ramirez-Velez R, Ruiz JR, Ortega FB, Lee DC, et al. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. 2018;99(10):2100–13.

    PubMed  Google Scholar 

  9. De Backer IC, Schep G, Backx FJ, Vreugdenhil G, Juipers H. Resistance training in cancer survivors: a systematic review. Int J Sports Med. 2009;30(10):703–12.

    PubMed  Google Scholar 

  10. Fairman CM, Hyde PN, Focht BC. Resistance training interventions across the cancer continuum: a systematic review of the implementation of resistance training principles. Br J Sports Med. 2017;51(8):677–85.

    CAS  PubMed  Google Scholar 

  11. Winter EM, Abt G, Brookes CFB, Challis JH, Fowler NE, Knudson DV, et al. Misuse of “power” and other mechanical terms in sports an exercise sciences research. J Strength Cond Res. 2016;30(1):292–300.

    PubMed  Google Scholar 

  12. Pareja-Blanco F, Rodriguez-Rosell D, Aagaard P, Sanchez-Medina L, Ribas-Serna J, Mora-Custodio R, et al. Time course of recovery from resistance exercise with different set configurations. J Strength Cond Res. 2018. https://doi.org/10.1519/JSC.0000000000002756.

    Article  PubMed  Google Scholar 

  13. Latella C, Teo W-P, Harris D, Major B, Vanderwesthuizen D, Hendy AM. Effects of acute resistance training modality on corticospinal excitability, intra-cortical and neuromuscular responses. Eur J Appl Physiol. 2017;117(11):2211–24.

    PubMed  Google Scholar 

  14. Marshall PWM, Cross R, Haynes M. The fatigue of a full body resistance exercise session in trained men. J Sci Med Sport. 2018;21(4):422–6.

    PubMed  Google Scholar 

  15. Moran-Navarro R, Perez CE, Mora-Rodriguez R, de la Cruz-Sanchez E, Gonzalez-Badillo JJ, Sanchez-Medina L, et al. Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol. 2017;117:2387–99.

    CAS  PubMed  Google Scholar 

  16. Steele J. What is (perception of) effort? Objective and subjective effort during task performance. PsyArXiv. https://doi.org/10.31234/osf.io/kbyhm.

  17. Rhodes RE, Kates A. Can the affective response to exercise predict future motives and physical activity behaviour? A systematic review of published evidence. Ann Behav Med. 2015;49(5):715–31.

    PubMed  Google Scholar 

  18. Fairman CM, Nilsen TS, Newton RU, Taaffe DR, Spry N, Joseph D, et al. Reporting of resistance training dose, adherence, and tolerance in exercise oncology. Med Sci Sports Exerc. 2019;52(2):315–22.

    Google Scholar 

  19. Coletta AM, Marquez G, Thomas P, Thoman W, Bevers T, Brewster AM, et al. Clinical factors associated with adherence to aerobic and resistance physical activity guidelines among cancer prevention patients and survivors. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.220814.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Oliver JM, Kreutzer A, Jenke S, Phillips MD, Mitchell JB, Jones MT. Acute responses to cluster sets in trained and untrained men. Eur J Appl Physiol. 2015;115:2383–93.

    PubMed  Google Scholar 

  21. Tufano JJ, Conlon JA, Nimphius S, Brown LE, Seitz LB, Williamson BD, et al. Maintenance of velocity and power with cluster sets during high volume back squats. Int J Sports Physiol Perform. 2016;11:885–92.

    PubMed  Google Scholar 

  22. Oliver JM, Kreutzer A, Jenke SC, Phillips MD, Mitchell JB, Jones MT. Velocity drives greater power observed during back squat using cluster sets. J Strength Cond Res. 2016;30(1):235–43.

    PubMed  Google Scholar 

  23. Tufano JJ, Conion JA, Nimpius S, Brown LE, Banyard HG, Williamson BD, et al. Cluster sets: permitting greater mechanical stress without decreasing relative velocity. Int J Sports Physiol Perform. 2017;12:463–9.

    PubMed  Google Scholar 

  24. Latella C, Teo W-P, Drinkwater EJ, Kendall K, Haff GG. The acute neuromuscular responses to cluster set resistance training: a systematic review and meta-analysis. Sports Med. 2019;49:1861–77.

    PubMed  PubMed Central  Google Scholar 

  25. Kassiano W, Costa D, de Lima-Junior D, Gantois P, Fonseca F, Da Cunha CM, de Sousa FL. Parasympathetic nervous activity responses to different resistance training systems. Int J Sports Med. 2020;41:1–8.

    Google Scholar 

  26. Haff GG, Hobbs RT, Haff EE, Sands WA, Pierce KC, Stone MH. Cluster training: a novel method for introducing training program variation. Strength Cond J. 2008;30(1):67–76.

    Google Scholar 

  27. Tufano JJ, Brown LE, Haff GG. Theoretical and practical aspects of different cluster set structures: a systematic review. J Strength Cond Res. 2017;31(3):848–67.

    PubMed  Google Scholar 

  28. Halperin I, Emanuel A. Rating of perceived effort: methodological concerns and future directions. Sports Med. 2020;50:679–87.

    PubMed  Google Scholar 

  29. Vasconcelos GC, De Vasconcelos Costa BD, Damorim IR, Santos TM, Cyrino ES, de Lima-Junior D, et al. Do traditional and cluster-set resistance training systems alter the pleasure and effort perception in trained men? J Phys Educ Sport. 2019;10(3):823–8.

    Google Scholar 

  30. Hardee JP, Lawrence MM, Utter AC, Triplett NT, Zwetsloot KA, McBride JM. Effect of inter-repetition rest on ratings of perceived exertion during multiple sets of the power clean. Eur J Appl Physiol. 2012;112(8):3141–7.

    PubMed  Google Scholar 

  31. Cuevas-Aburto J, Jukic I, Gonzalez Hernandez JM, Janicijevic D, Barboza-Gonzalez P,Chirosa L, et al. Effect of resistance training programs differing in the set configuration on maximal strength and explosive actions performance. Int J Sports Physiol Perform. In press.

  32. Jukic I, Tufano JJ. Shorter but more frequent rest periods: No effect on velocity and power compared to traditional sets not performed to failure. J Hum Kinet. 2019;66:257–68.

    PubMed  PubMed Central  Google Scholar 

  33. Folland JP, Irish CS, Roberts JC, Tarr JE, Jones DA. Fatigue is not a necessary stimulus for strength gains during resistance training. Br J Sports Med. 2002;36:370–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Viera JG, Dias MRC, Lacio M, Schimitz G, Nascimento G, Panza P, et al. Resistance training with repetition to failure or not on muscle strength and perceptual responses. 2019;22(4):165–75.

  35. Dankel SJ, Mattocks KT, Jessee MB, Buckner SL, Mouser JG, Loenneke JP. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy? Eur J Appl Physiol. 2017;117:2125–35.

    CAS  PubMed  Google Scholar 

  36. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(12):3508–23.

    PubMed  Google Scholar 

  37. Stuart C, Steele J, Gentil P, Giessing J, Fisher JP. Fatigue and perceptual responses to heavier- and lighter-load isolated lumbar extension resistance exercise in males and females. Peer J. 2018;6:e4523.

    PubMed  PubMed Central  Google Scholar 

  38. Fisher JP, Farrow J, Steele J. Acute fatigue, and perceptual responses to resistance exercise. Muscle Nerve. 2017;56(6):E141–6.

    PubMed  Google Scholar 

  39. Farrow J, Steele J, Behm DG, Skivington M, Fisher JP. Lighter-load exercise produces greater acute- and prolonged-fatigue in exercised and non-exercised limbs. Res Q Exerc Sport. 2020:1–11.

  40. Davies TB, Halaki M, Orr R, Helms ER, Hackett DA. Changes in bench press velocity and power after 8 weeks of high-load cluster- or traditional-set structures. J Strength Cond Res. 2020;34(10):2734–42.

    PubMed  Google Scholar 

  41. Stragier S, Baudry S, Carpentier A, Duchateau J. Efficacy of a new strength training design: the 3/7 method. Eur J Appl Physiol. 2019;119:1093–104.

    PubMed  Google Scholar 

  42. Davies TB, Tran DL, Hogan CM, Haff GG, Latella C. Chronic effects of altering resistance training set configurations using cluster sets: a systematic review and meta-analysis. Sports Med. 2021;51(4):707–36.

    PubMed  Google Scholar 

  43. DeLorme TA, Watkins AL. Technics of progressive resistance training. Arch Phys Med Rehabil. 1948;29:263–73.

    CAS  PubMed  Google Scholar 

  44. Todd JS, Shurley JP, Todd TC, Thomas L. DeLorme and the science of progressive resistance exercise. J Strength Cond Res. 2012;26(11):2913–23.

    PubMed  Google Scholar 

  45. Haff GG, Whitley A, McCoy LB, O’Bryant HS, Kilgore JL, Haff EE, et al. Effects of different set configurations on barbell velocity and displacement during a clean pull. J Strength Cond Res. 2003;17(1):95–103.

    PubMed  Google Scholar 

  46. Haff GG, Burgess S, Stone MH. Cluster training: theoretical and practical applications for the strength and conditioning professional. Prof Strength Cond. 2008;12:12–7.

    Google Scholar 

  47. Garcia-Ramos A, Padial P, Haff GG, Arguelles-Cienfuegos J, Garcia-Ramos M, Conde-Pipo J, et al. Effect of different interrepetition rest periods on barbell velocity during the ballistic bench press exercise. 2015;29(9):2388–96.

  48. Nickerson BS, Williams TD, Snarr RL, Park K-S. Individual and combined effect of inter-repetition rest and elastic bands on jumping potentiation in resistance-trained men. J Strength Cond Res. 2019;33(8):2087–93.

    PubMed  Google Scholar 

  49. Lawton TW, Cronin JB, Lindsell RP. Effect of interrepetition rest intervals on weight training repetition power output. J Strength Cond Res. 2006;20(1):172–6.

    PubMed  Google Scholar 

  50. Giessing J, Fisher J, Steele J, Rothe F, Raubold K, Eichmann B. The effects of low-volume resistance training with and without advanced techniques in trained subjects. J Sports Med Phys Fitness. 2016;56(3):249–58.

    Google Scholar 

  51. Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and Strength Loss. Muscles Ligaments Tendons J. 2014;3(4):346–50.

    PubMed  PubMed Central  Google Scholar 

  52. McKinnon NB, Connelly DM, Rice CL, Hunter SW, Doherty TJ. Neuromuscular contributions to the age-related reduction in muscle power: mechanisms and potential role of high velocity power training. Ageing Res Rev. 2017;35:147–54.

    PubMed  Google Scholar 

  53. Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, et al. Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res. 2019;33(8):2019–52.

    PubMed  Google Scholar 

  54. Orr R, de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Fiatarone-Singh MA. Power training improves balance in healthy older adults. J Gerontol Ser A Biol Sci Med Sci. 2006;61(1):78–85.

    Google Scholar 

  55. Bean J, Leveille S, Kiely D, Bandinelli S, Guralnik JM, Ferrucci L. A comparison of leg power and leg strength within the InCHIANTI study: which influences mobility more? J Gerontol Ser A Biol Sci Med Sci. 2003;58:728–33.

    Google Scholar 

  56. Suzuki T, Bean JF, Fielding RA. Muscle power of the ankle flexors predicts functional performance in community-dwelling older women. J Am Geriatr Soc. 2001;49(9):1161–7.

    CAS  PubMed  Google Scholar 

  57. Steib S, Schoene D, Pfeifer K. Dose-response relationship of resistance training in older adults: a meta-analysis. Med Sci Sports Exerc. 2010;42(5):902–14.

    PubMed  Google Scholar 

  58. Straight CR, Lindheimer JB, Brady AO, Dishman RK, Evans EM. Effects of resistance training on lower-extremity muscle power in middle-aged and older adults: a systematic review and meta-analysis of randomized controlled trials. Sports Med. 2016;46(3):353–64.

    PubMed  Google Scholar 

  59. American College of Sports Medicine, Chodzko-Zajko WJ, Proctor DN, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):1510–30.

  60. Sayers SP, Gibson K. High-speed power training in older adults: a shift of the external resistance at which peak power is produced. J Strength Cond Res. 2014;28(3):616–21.

    PubMed  PubMed Central  Google Scholar 

  61. Sayers SP, Gibson K. effects of high-speed power training on muscle performance and braking speed in older adults. J Aging Res. 2012;2012:426278.

    PubMed  PubMed Central  Google Scholar 

  62. Ramirez-Campillo R, Castillo A, de la Fuente C, Campos-Jara C, Andrade DC, Alvarez C, et al. High-speed resistance training is more effective than low-speed resistance training to increase functional capacity and muscle performance in older women. Exp Gerentol. 2014;58:51–7.

    Google Scholar 

  63. Miszko TA, Cress, Slade JM, Covey CJ, Agrawal SK, Doerr CE. effect of strength and power training on physical function in community-dwelling older adults. J Gerontol Ser A Biol Sci Med Sci. 2003;58(2):171–5.

  64. Bottaro M, Machado SN, Nogueira W, Scales R, Veloso J. Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. Eur J Appl Physiol. 2007;99(3):257–64.

    PubMed  Google Scholar 

  65. Hvid LG, Strotmeyer ES, Skjødt M, Magnussen LV, Andersen M, Caserotti P. voluntary muscle activation improves with power training and is associated with changes in gait speed in mobility-limited older adults—a randomized controlled trial. Exp Gerontol. 2016;80:51–6.

    PubMed  Google Scholar 

  66. Kirn DR, Reid KF, Hau C, Phillips EM, Fielding RA. What is a clinically meaningful improvement in leg-extensor power for mobility-limited older adults? J Gerontol Ser A Biol Sci Med Sci. 2016;71(5):632–6.

    Google Scholar 

  67. Reid KF, Martin KI, Doros G, Clark DJ, Hau C, Patten C, et al. Comparative effects of light or heavy resistance power training for improving lower extremity power and physical performance in mobility-limited older adults. J Gerontol Ser A Biol Sci Med Sci. 2015;70(3):372–8.

    Google Scholar 

  68. De Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, Singh MAF. Optimal load for increasing muscle power during explosive resistance training in older adults. J Gerontol Ser A Biol Sci Med Sci. 2005;60(5):638–47.

    Google Scholar 

  69. De Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, Singh MAF. Effect of power-training intensity on the peak contribution of force and velocity to peak power in older adults. J Aging Phys Act. 2008;16(4):393–407.

    PubMed  Google Scholar 

  70. Glenn JM, Gray M, Binns A. The effects of loaded and unloaded high-velocity resistance training on functional fitness among community-dwelling older adults. Age Ageing. 2015;44(6):926–31.

    PubMed  Google Scholar 

  71. Dello Iacono A, Martone D, Hayes L. Acute mechanical, physiological and perceptual responses in older men to traditional-set or different cluster-set configuration resistance training protocols. Eur J Appl Physiol. 2020. https://doi.org/10.1007/s00421-020-04453-y.

    Article  Google Scholar 

  72. Miller CT, Teychenne M, Maple J-L. The perceived feasibility and acceptability of a conceptually challenging exercise training program in older adults. Clin Int Aging. 2018;13:451–61.

    Google Scholar 

  73. Ramirez-Campillo R, Alvarez C, Garcia-Hermoso A, Celis-Morales C, Ramirez-Velez R, Gentil P, et al. High-speed resistance training in elderly women: effects of cluster training sets on functional performance and quality of life. Exp Gerontol. 2018;110:216–22.

    PubMed  Google Scholar 

  74. Dias RKN, Penna EM, Noronha ASN, Calandrini de Azevedo AB, Barbalho M, Gentil PV, et al. Cluster-sets resistance training induce similar functional and strength improvements than the traditional method in post menopausal and elderly women. Exp Gerentol. 2020. https://doi.org/10.1016/j.exger.2020.111011.

    Article  Google Scholar 

  75. Carneiro MAS, de Oliveira Junior GN, de Sousa JFR, Souza MVC, Orsatti FL. Cluster training sets is an important stimulus for promoting gains in muscle power regardless of resistance training program design in older women. Sci Sports. In Press. https://doi.org/10.1016/j.scispo.2019.08.003.

  76. Sezer N, Akkus S, Ugurlu FG. Chronic complications of spinal cord injury. World J Orthop. 2015;6(1):24–33.

    PubMed  PubMed Central  Google Scholar 

  77. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Snadri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280(17):4294–314.

    CAS  PubMed  Google Scholar 

  78. Liu Y, Yan T, Man-Tak Chu J, Chen Y, Dunnett S, Ho Y-S, et al. The beneficial effects of physical exercise in the brain and related pathophysiological mechanisms in neurodegenerative diseases. Lab Invest. 2019;99:943–57.

    PubMed  Google Scholar 

  79. Smith E, Fitzpatrick P, Murtagh J, Lyons F, Morris S, Synnott K. Epidemiology of traumatic spinal cord injury in Ireland, 2010–2015. Neuroepidemiol. 2018;51:19–24.

    Google Scholar 

  80. Lystad RP, Curtis K, Soundappan SSV, Mitchell R. Trends of traumatic spinal injury-related hospitalizations in Australian children over a 10-year period: a nationwide population-based cohort study. Spine J. 2020;20(6):896–904.

    PubMed  Google Scholar 

  81. Gorgey AS, Dudley GA. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord. 2007;45:304–9.

    CAS  PubMed  Google Scholar 

  82. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:17018.

    PubMed  Google Scholar 

  83. Marino RJ, Ditunno JF Jr, Donovan WH, Maynard F Jr. Neurologic recovery after traumatic spinal cord injury: data from the model spinal cord injury systems. Arch Phys Med Rehabil. 1999;80(11):1391–6.

    CAS  PubMed  Google Scholar 

  84. Tweedy SM, Beckman EM, Geraghty TJ, Theisen D, Perret C, Harvey LA, et al. Exercise and sports science Australia (ESSA) position statement on exercise and spinal cord injury. J Sci Med Sport. 2017;20(2):108–15.

    PubMed  Google Scholar 

  85. Gregory CM, Bowden MG, Jayaraman A, Shah P, Behrman A, Kautz SA, et al. Resistance training and locomotor recovery after incomplete spinal cord injury: a case series. Spinal Cord. 2007;45(7):522–30.

    CAS  PubMed  Google Scholar 

  86. Bye EA, Harvey LA, Gambhir A, Kataria C, Glinsky JV, Bowden JL, et al. Strength training for partially paralysed muscles in people with recent spinal cord injury: a within-participant randomized controlled trial. Spinal Cord. 2017;55:460–5.

    CAS  PubMed  Google Scholar 

  87. Stone WJ, Stevens SL, Fuller DK, Caputo JL. Eccentric resistance training in adults with and without spinal cord injuries. Int J Exerc Sci. 2017;10(1):154–65.

    Google Scholar 

  88. Hicks AL, Martin KA, Ditor DS, Latimer AE, Craven C, Bugaresti J, et al. Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord. 2003;41:34–43.

    CAS  PubMed  Google Scholar 

  89. Gollie JM. Fatigability during volitional walking in incomplete spinal cord injury: cardiorespiratory and motor performance considerations. Neural Regen Res. 2018;13(5):786–90.

    PubMed  PubMed Central  Google Scholar 

  90. Burkett LN, Chisum J, Stone W, Fernhall B. Exercise capacity of untrained spinal cord injured individuals and the relationship of peak oxygen uptake to level of injury. Spinal Cord. 1990;28:512–21.

    CAS  Google Scholar 

  91. Jacobs PL, Nash MS. Exercise recommendations for individuals with spinal cord injury. Sports Med. 2004;34(11):727–51.

    PubMed  Google Scholar 

  92. Ojaghihaghighi S, Vahdati SS, Mikaeilpour A, Ramouz A. Comparison of neurological clinical manifestation in patients with hemorrhagic and ischemic stroke. World J Emerg Med. 2017;8(1):34–8.

    PubMed  PubMed Central  Google Scholar 

  93. Memetoglu OG, Taraktas A, Badur NB, Ozkan FU. Impact of stroke etiology on clinical symptoms and functional status. North Clin Istan. 2014;1(2):1010–105.

    Google Scholar 

  94. Tolhurst R, Rowlands I. Stroke long-term management. Clin Pharm. 2011;3:209–12.

    Google Scholar 

  95. Kamper DG, Fischer HC, Cruz EG, Rymer WZ. Weakness is the primary contributor to finger impairment in chronic stroke. Arch Phys Med Rehabil. 2006;87(9):1262–9.

    PubMed  Google Scholar 

  96. Sommerfeld DK, Gripenstedt U, Welmer A-K. Spasticity after stroke: an overview of prevalence, test instruments, and treatments. Am J Phys Med Rehabil. 2012;91(9):814–20.

    PubMed  Google Scholar 

  97. Warlow CP. Epidemiology of stroke. Lancet. 1998;352:S1-4.

    Google Scholar 

  98. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006;367(0524):1747–57.

    PubMed  Google Scholar 

  99. Gordon NF, Gulanick M, Costa F, Fletcher G, Franklin BA, Roth EJ, et al. Physical activity and exercise recommendations for stroke survivors. An American heart association scientific statement from the council on clinical cardiology, subcommittee on exercise, cardiac rehabilitation, and prevention; the council on cardiovascular nursing; the council on nutrition, physical activity, and metabolism; and the stroke council. Stroke. 2004;35:1230–40.

    PubMed  Google Scholar 

  100. Hatem SM, Saussez G, della Faille M, Prist V, Zhang X, Dispa D, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016;10:442.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Veerbeek JM, van Wegan E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy post stroke? A systematic review and meta-analysis. PLoS ONE. 2014;9(2):e87987.

    PubMed  PubMed Central  Google Scholar 

  102. Moreland J, Goldsmith C, Huijbregts M, Anderson R, Prentice D, Brunton KB. Progressive resistance strengthening exercises after stroke: a single-blind randomized controlled trial. Arch Phys Med Rehabil. 2003;84:1433–40.

    PubMed  Google Scholar 

  103. Cooke EV, Tallis RC, Clark A, Pomeroy VM. Efficacy of functional strength training on restoration of lower-limb motor function early after stroke: phase I randomized controlled trial. Neurorehabil Neural Repair. 2010;24(1):88–96.

    PubMed  Google Scholar 

  104. Singh S. Closed versus open kinematic chain exercises on gait performance in subacute stroke patients. Physiother Occup Ther J. 2008;1:73–89.

    Google Scholar 

  105. Glasser L. Effects of isokinetic training on the rate of movement during ambulation in hemiparetic patients. Phys Ther. 1986;66(5):673–6.

    CAS  PubMed  Google Scholar 

  106. Sims J, Galea M, Taylor N, Dodd K, Jespersen S, Joubert L, et al. Regenerate: assessing the feasibility of a strength-training program to enhance the physical and mental health of chronic post stroke patients with depression. Int J Geriatr Psychiatry. 2009;24(1):76–83.

    CAS  PubMed  Google Scholar 

  107. Page SJ, Levine P, Teepen J, Hartman EC. Resistance-based, reciprocal upper and lower limb locomotor training in chronic stroke: a randomized, controlled crossover study. Clin Rehabil. 2008;22(7):610–7.

    PubMed  Google Scholar 

  108. Morris SL, Dodd KJ, Morris ME. Outcomes of progressive resistance strength training following stroke: a systematic review. Clin Rehab. 2004;18(1):27–39.

    Google Scholar 

  109. Flansbjer U-B, Miller M, Downham D, Lexell J. Progressive resistance training after stroke: effects on muscle strength, muscle tone, gait performance and perceived participation. J Rehab Med. 2008;40(1):42–8.

    Google Scholar 

  110. Dorsch S, Ada L, Alloggia D. Progressive resistance training increases strength after stroke but this may not carry over to activity: a systematic review. J Physiotherap. 2018;64(2):84–90.

    Google Scholar 

  111. Ada L, Dorsch S, Canning CG. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust J Physiother. 2006;52(4):241–8.

    PubMed  Google Scholar 

  112. Ehrensberger M, Simpson D, Broderick P, Monaghan K. Cross-education of strength has a positive impact on post-stroke rehabilitation: a systematic literature review. Top Stroke Rehabil. 2016;23(2):126–35.

    PubMed  Google Scholar 

  113. Urbin MA, Harris-Love ML, Carter AR, Lang CE. High-intensity, unilateral resistance training of a non-paretic muscle group increases active range of motion in a severely paretic upper extremity muscle group after stroke. Front Neurol. 2015;6:119.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim CY, Lee JS, Kim HD, Kim JS. The effect of progressive task-oriented training on a supplementary tilt table on lower extremity muscle strength and gait recovery in patients with hemiplegic stroke. Gait Posture. 2014;41(2):425–30.

    PubMed  Google Scholar 

  115. Dragert K, Zehr PE. High-intensity unilateral dorsiflexor resistance training results in bilateral neuromuscular plasticity after stroke. Exp Brain Res. 2013;225(1):93–104.

    PubMed  Google Scholar 

  116. Sun Y, Zehr PE. Training-induced neural plasticity and strength are amplified after stroke. Exerc Sport Sci Rev. 2019;47(4):223–9.

    PubMed  PubMed Central  Google Scholar 

  117. Breinesse LA, Emerson MN. Effects of resistance training for people with Parkinson’s disease: a systematic review. J Am Med Dir Assoc. 2013;14(4):236–41.

    Google Scholar 

  118. Bologna M, Leodori G, Stirpe P, Paparella G, Colella D, Belvisi D. Bradykinesia in early and advanced Parkinson’s disease. J Neurol Sci. 2016;369:286–91.

    PubMed  Google Scholar 

  119. Ramazzina I, Bernazzoli B, Costantino C. Systematic review on strength training in Parkinson’s disease: an unsolved question. Clin Interv Aging. 2017;12:619–28.

    PubMed  PubMed Central  Google Scholar 

  120. Vasta R, Nicoletti A, Mostile G, Diblio V, Sciacca G, Contrafatto D, et al. Side effects induced by the acute levodopa challenge in Parkinson’s disease and atypical parkinsonisms. PLoS ONE. 2017;12(2):e0172145.

    PubMed  PubMed Central  Google Scholar 

  121. Lima LO, Scianni A, Rodrigues-de-Paula F. Progressive resistance exercise improves strength and physical performance in people with mild to moderate Parkinson’s disease: a systematic review. J Physiother. 2013;59(1):7–13.

    PubMed  Google Scholar 

  122. Svensson M, Lexell J, Deierberg T. Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behaviour: what can we learn from animal models in clinical settings. Neurorehabil Neural Repair. 2015;29(6):577–89.

    PubMed  Google Scholar 

  123. Leal LC, Abrahin O, Rodrigues RP, da Silva MC, Araujo AP, de Sousa EC, et al. Low-volume resistance training improves the functional capacity of older individuals with Parkinson’s disease. Geriatr Gerontol Int. 2019;19(7):635–40.

    PubMed  Google Scholar 

  124. Shen X, Mak MK. Balance and gait training with augmented feedback improves balance confidence in people with Parkinson’s disease: a randomized controlled trial. Neurorehabil Neural Repair. 2014;28(6):524–35.

    PubMed  Google Scholar 

  125. Shen X, Mak MK. Technology-assisted balance and gait training reduces falls in patients with Parkinson’s disease: a randomized controlled trial with 12-month follow-up. Neurorehabil Neural Repair. 2015;29(2):103–11.

    PubMed  Google Scholar 

  126. Paul SS, Canning CG, Song J, Fung VS, Sherrington C. Leg muscle power is enhanced by training in people with Parkinson’s disease: a randomized controlled trial. Clin Rehabil. 2014;28(3):275–88.

    PubMed  Google Scholar 

  127. Carvalho A, Barbirato D, Araujo N, Martins JV, Sa Cavalcanti JL, Santos TM, et al. Comparison of strength training, aerobic training, and additional physical therapy as supplementary treatments for Parkinson’s disease: Pilot study. Clin Interv Aging. 2015;10:183–91.

    PubMed  PubMed Central  Google Scholar 

  128. Ni M, Signorile JF, Balachandran A, Potiaumpai M. Power training induced change in bradykinesia and muscle power in Parkinson’s disease. Parkinsonism Relat Disord. 2016;23:37–44.

    PubMed  Google Scholar 

  129. Ni M, Signorile JF. High-speed resistance training modifies load-velocity and load-power relationships in Parkinson’s disease. J Strength Cond Res. 2017;31(10):2866–75.

    PubMed  Google Scholar 

  130. Leigh PN, Abrahams S, Al-Chalabi A, Ampong M-A, Goldstein LH, Johnson J, et al. The management of motor neurone disease. J Neurol Neurosurgery Psychiatry. 2003;74:32–47.

    Google Scholar 

  131. Howard RS, Orrell RW. Management of motor neurone disease. Postgrad Med J. 2002;78:736–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chio A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E, et al. Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler. 2009;10(5–6):310–23.

    PubMed  PubMed Central  Google Scholar 

  133. Tsitkanou S, Dell Gatta P, Foletta V, Russell A. The role of exercise as a non-pharmacological therapeutic approach for amyotrophic lateral sclerosis: beneficial or detrimental? Front Neurol. 2019. https://doi.org/10.3389/fneur.2019.00783.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Harwood CA, McDermott CJ, Shaw PJ. Physical activity as an exogenous risk factor in motor neuron disease (MND): a review of the evidence. Amyotroph Lateral Scler. 2009;10(4):191–204.

    PubMed  Google Scholar 

  135. Drory VE, Goltsman E, Reznik JG, Mosek A, Korczyn AD. The value of muscle exercise in patients with amyotrophic lateral sclerosis. J Neurol Sci. 2001;191(1–2):133–7.

    CAS  PubMed  Google Scholar 

  136. Blasco H, Mavel S, Corcia P, Gorden PH. The glutamate hypothesis in ALS: pathophysiology and drug development. Curr Med Chem. 2014;21(31):3551–75.

    CAS  PubMed  Google Scholar 

  137. Manca A, Dragone D, Dvir Z, Deriu F. Cross-education of muscular strength following unilateral resistance training: a meta-analysis. Eur J Appl Physiol. 2017;117:235–54.

    Google Scholar 

  138. Farinas J, Mayo X, Giraldez-Garcia MA, Carballeira E, Fernandez-del-Olmo M, Riasl-Vasquez J, et al. Set configuration in strength training programs modulates the cross education phenomenon. J Strength Cond Res. 2019. https://doi.org/10.1519/JSC.0000000000003189.

    Article  Google Scholar 

  139. Iglesias-Soler E, Mayo X, Rio-Rodriguez D, Carballeira E, Farinas J, Fernandez-del-olmo M. Inter-repetition rest training and traditional set configuration produce similar strength gains without cortical adaptations. J Sports Sci. 2016;34(15):1473–84.

    PubMed  Google Scholar 

  140. Iglesias-Soler E, Carballeira E, Sanchez-Otero T, Mayo X, Fernandez-del-olmo M. Performance of maximum number of repetitions with cluster-set configuration. Int J Sports Physiol Perform. 2014;9(4):637–42.

    PubMed  Google Scholar 

  141. Latella C, Kidgell DJ, Pearce AJ. Reduction in corticospinal inhibition in the trained and untrained limb following unilateral leg strength training. Eur J Appl Physiol. 2012;112(8):3097–107.

    PubMed  Google Scholar 

  142. Fimland MS, Helgerud J, Solstad GM, Iversen VM, Leivseth G, Hoff J. Neural adaptations underlying cross-education after unilateral strength training. Eur J Appl Physiol. 2009;107(6):723–30.

    PubMed  Google Scholar 

  143. Ruddy KL, Carson RG. Neural pathways mediating cross education of motor function. Front Hum Neurosci. 2013;7:397.

    PubMed  PubMed Central  Google Scholar 

  144. Jenkins NDM, Miramonti AA, Hill EC, Smith CM, Cochrane-Snyman KC, Housh TJ, et al. Greater neural adaptations following high- vs. low-load resistance training. Front Physiol. 2017;8:331.

    PubMed  PubMed Central  Google Scholar 

  145. Shi A, Tao Z, Wei P, Zhao J. Epidemiological aspects of heart diseases. Exp Ther Med. 2016;12(3):1645–50.

    PubMed  PubMed Central  Google Scholar 

  146. McNamara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Interg Pharm Res Pract. 2019;8:1–11.

    Google Scholar 

  147. Hajar R. Risk factors for coronary artery disease: historical perspectives. Heart Views. 2017;18(3):109–14.

    PubMed  PubMed Central  Google Scholar 

  148. Lavie CJ, Thomas RJ, Squires RW, Allison TG, Milani RV. Exercise training and cardiac rehabilitation in primary and secondary prevention of coronary heart disease. Mayo Clin Proc. 2009;84(4):373–83.

    PubMed  PubMed Central  Google Scholar 

  149. Lavie CJ, Milani RV. Cardiac rehabilitation and exercise training in secondary coronary heart disease prevention. Prog Cardiovasc Dis. 2011;53(6):397–403.

    PubMed  Google Scholar 

  150. MacDougall JD, McKelvie RS, Moroz DE, Sale DG, McCartney N, Buick F. Factors affecting blood pressure during heavy weight lifting and static contractions. J Appl Physiol. 1992;73:1590–7.

    CAS  PubMed  Google Scholar 

  151. MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol. 1985;58:785–90.

    CAS  PubMed  Google Scholar 

  152. Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update. A Scientific Statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2007;116(5):572–84.

    PubMed  Google Scholar 

  153. Mitchell JH, Payne FC, Saltin B, Schibye B. The role of muscle mass in the cardiovascular response to static contractions. J Physiol. 1980;309:45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lind AR, McNicol GW. Muscular factors which determine the cardiovascular responses to sustained and rhythmic exercise. Can Med Assoc J. 1967;96:706–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Harman EA, Frykman PN, Clagett ER, Kraemer WJ. Intra-abdominal and intra-thoracic pressures during lifting and jumping. Med Sci Sports Exerc. 1988;20:195–201.

    CAS  PubMed  Google Scholar 

  156. Haykowsky MJ, Teo KK, Quinney AH, Humen DP, Taylor DA. Effects of long term resistance training on left ventricular morphology. Can J Cardiol. 2000;16(1):35–8.

    CAS  PubMed  Google Scholar 

  157. Lentini AC, McKelvie RS, McCartney N, Tomlinson CW, MacDougall JD. Left ventricular response in healthy young men during heavy-intensity weight-lifting exercise. J Appl Physiol. 1993;75:2703–10.

    CAS  PubMed  Google Scholar 

  158. Gaffney FA, Sjogaard G, Saltin B. Cardiovascular and metabolic responses to static contraction in man. Acta Physiol Scand. 1990;138:249–58.

    CAS  PubMed  Google Scholar 

  159. Wisloff U, Stoylen A, Loennechenm JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115:3086–94.

    PubMed  Google Scholar 

  160. Meyer K, Samek L, Schwaibold M, Westbrook S, Hajric R, Beneke R, Lehman M, et al. Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures. Med Sci Sports Exerc. 1997;29:306–12.

    CAS  PubMed  Google Scholar 

  161. Way KL, Visal-Almela S, Keast M-L, Hans H, Al P, Reed JL. The feasibility of implementing high-intensity interval training in cardiac rehabilitation settings: a retrospective analysis. BMC Sports Med Rehab. 2020. https://doi.org/10.1186/s13102-020-00186-9.

    Article  Google Scholar 

  162. Harrington D, Anker SD, Chua TP, Webb-Peploe KM, Ponikowski PP, Poole-Wilson PA, et al. Skeletal muscle function and its relation to exercise tolerance in chronic heart failure. J Am Coll Cardiol. 1997;30(7):1758–64.

    CAS  PubMed  Google Scholar 

  163. Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Foundation Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2007;116(5):572–84.

    PubMed  Google Scholar 

  164. McLeod JC, Stokes T, Phillips SM. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front Physiol. 2019;10:645.

    PubMed  PubMed Central  Google Scholar 

  165. Hollings M, Mavros Y, Freeston J, Singh MF. The effect of progressive resistance training on aerobic fitness and strength in adults with coronary heart disease: a systematic review and meta-analysis of randomised trials. Eur J Prev Cardiol. 2017;24(12):1249–59.

    Google Scholar 

  166. Zhao M, Veeranki SP, Magnussen CG, Xi B. Recommended physical activity and all cause and cause specific mortality in US adults: prospective cohort study. BMJ. 2020;370:m2031.

    PubMed  PubMed Central  Google Scholar 

  167. Rua-Alonso M, Mayo X, Mota J, Kingsley D, Iglesias-Soler E. A short set configuration attenuates the cardiac parasympathetic withdrawal after a whole-body resistance training session. Eur J Appl Physiol. 2020;120(8):1905–19.

    CAS  PubMed  Google Scholar 

  168. Hansen D, Abreu A, Doherty P, Voller H. Dynamic strength training intensity in cardiovascular rehabilitation: Is it time to reconsider clinical practice? A systematic review. Eur J Prev Cardiol. 2019;26(14):1483–92.

    PubMed  Google Scholar 

  169. Rio-Rodriguez D, Iglesias-Soler E, Fernandez-del-Olmo M. Set configuration in resistance exercise: muscle fatigue and cardiovascular effects. PLoS ONE. 2016;11(3):e0151163.

    PubMed  PubMed Central  Google Scholar 

  170. Selig SE, Levinger I, Williams AD, Smart N, Holland DJ, Maiorana A, et al. Exercise & sports sciences Australia position statement on exercise training and chronic heart failure. J Med Sci Sport. 2020;13:288–94.

    Google Scholar 

  171. Vale AF, Carneiro JA, Jardim PCV, Jardim TV, Steele J, Fisher JP, Gentil P. Acute effects of different resistance training loads on cardiac autonomic modulation in hypertensive postmenopausal women. J Transl Med. 2018;16:240.

    PubMed  PubMed Central  Google Scholar 

  172. Mayo X, Iglesias-Soler E, Carballeira-Fernandez E, Fernandez-del-olmo F. A shorter set reduces the loss of cardiac autonomic and baroreflex control after resistance exercise. Eur J Sports Sci. 2016;16(8):996–1004.

    Google Scholar 

  173. Mayo X, Iglesias-Soler E, Kingsley JD, Dopico X. Interrepetition rest lacks the V-shape systolic pressure response advantage during resistance exercise. Sports. 2017;5(4):90.

    PubMed Central  Google Scholar 

  174. Massafari R, Matos-Santos L, Farinatti P, Monteiro WD. Hemodynamic responses and perceived exertion during continuous and discontinuous resistance exercise. Int J Sports Med. 2015;36(15):1052–7.

    Google Scholar 

  175. Baum K, Ruther T, Essfeld D. Reduction of blood pressure response during strength training through intermittent muscle relaxations. Int J Sports Med. 2003;24(6):441–5.

    CAS  PubMed  Google Scholar 

  176. Riberio-Torres O, de Sousa AFM, Iglesias-Soler E, Fontes-Villalba M, Zouhal H, Carre F, et al. Lower cardiorespiratory stress during resistance training performed with inter-repetition rests in elderly coronary patients. Medicina. 2020;56:264.

    Google Scholar 

  177. Giuliano C, Levinger I, Vogrin S, Neil CJ, Allen JD. PRIME-HF: Novel exercise for older patients with heart failure. A pilot randomized controlled study. J Am Geriatr Soc. 2020;68(9):1954–61.

    PubMed  PubMed Central  Google Scholar 

  178. Armstrong M, Vogiatzis I. Personalized exercise training in chronic lung diseases. Respirology. 2019;24(9):854–62.

    PubMed  Google Scholar 

  179. Christensen JF, Jones LW, Andersen JL, Daugaard G, Rorth M, Hojman P. Muscle dysfunction in cancer patients. Ann Oncol. 2014;25(5):947–58.

    CAS  PubMed  Google Scholar 

  180. Kapella MC, Larson JL, Covey MK, Alex CG. Functional performance in chronic obstructive pulmonary disease declines with time. Med Sci Sports Exerc. 2011;43(2):218–24.

    PubMed  PubMed Central  Google Scholar 

  181. Eisner MD, Blanc PD, Yelin EH, Sidney S, Katz PP, Ackerson L, et al. COPD as a systematic disease: impact on physical function limitations. Am J Med. 2008;121(9):789–96.

    PubMed  PubMed Central  Google Scholar 

  182. American Thoracic Society. Dyspnea. Mechanisms, assessment, and management: a consensus statement. American Thoracic Society. Am J Respir Crit Care Med. 1999:159(1):321–40.

  183. Hanania NA, O’Donnell DE. Activity-related dyspnea in chronic obstructive pulmonary disease: physical and psychological consequences, unmet needs, and future directions. Int J Chron Obstruct Pulmon Dis. 2019;14:1127–38.

    PubMed  PubMed Central  Google Scholar 

  184. Parshall MB, Schwartzstein RM, Adams L, Banzett RB, Manning HL, Bourbeau J, et al. An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med. 2012;185(4):435–52.

    PubMed  PubMed Central  Google Scholar 

  185. Pelletier C, Lapointe L, LeBlanc P. Effects of lung resection on pulmonary function and exercise capacity. Thorax. 1990;45(7):497–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Travers J, Dudgeon DJ, Amjadi K, McBride I, Dillon K, Laveneziana P, et al. Mechanisms of exertional dyspnea in patients with cancer. J Appl Physiol. 2007;104(1):57–66.

    PubMed  Google Scholar 

  187. O’Donnell DE, Bertley JC, Chau LK, Webb KA. Qualitative aspects of exertional breathlessness in chronic airflow limitation: pathophysiologic mechanisms. Am J Respir Crit Care Med. 1997;155(1):109–15.

    CAS  PubMed  Google Scholar 

  188. Granger CL, McDonald CF, Irving L, Clark RA, Gough K, Murnane A, et al. Low physical activity levels and functional decline in individuals with lung cancer. Lung Cancer. 2014;83(2):292–9.

    PubMed  Google Scholar 

  189. Singer J, Yelin EH, Katz PP, Sanchez G, Iribarren C, Eisner MD, et al. Respiratory and skeletal muscle strength in chronic obstructive pulmonary disease: Impact on exercise capacity and lower extremity function. J Cardiopulm Rehabil Prev. 2011;31(2):111–9.

    PubMed  PubMed Central  Google Scholar 

  190. Santos M, Kitzman DW, Matsushita K, Loehr L, Sueta CA, Shah AM. Prognostic importance of dyspnea for cardiovascular outcomes and mortality in persons without prevalent cardiopulmonary disease: the atherosclerosis risk in communities study. PLoS ONE. 2016;11(10):e0165111.

    PubMed  PubMed Central  Google Scholar 

  191. Pesola GR, Ahsan H. Dyspnea as an independent predictor of mortality. Clin Respir J. 2016;10(2):142–52.

    PubMed  Google Scholar 

  192. Koelwyn GJ, Jones LW, Hornsby W, Eves ND. Exercise therapy in the management of dyspnea in patients with cancer. Curr Opin Support Palliat Care. 2012;6(2):129–37.

    PubMed  PubMed Central  Google Scholar 

  193. Wittink H, Engelbert R, Takken T. The dangers of inactivity; exercise and inactivity physiology for the manual therapist. Man Ther. 2011;16(3):209–16.

    CAS  PubMed  Google Scholar 

  194. Painter P. Exercise for patients with chronic disease: physician responsibility. Curr Sports Med Rep. 2003;2:173–80.

    PubMed  Google Scholar 

  195. Daabis RHM, Zidan M. Endurance and strength training in pulmonary rehabilitation for COPD patients. Egypt J Chest Dis Tubercul. 2017;66(2):231–6.

    Google Scholar 

  196. Kortianou EA, Nasis IG, Spetsioti ST, Daskalakis AM, Vogiatzis I. Effectiveness of interval exercise training in patients with COPD. Cardiopulm Phys Ther J. 2010;21(3):12–9.

    PubMed  PubMed Central  Google Scholar 

  197. Bernard S, Ribeiro F, Maltais F, Saey D. Prescribing exercise training in pulmonary rehabilitation: a clinical experience. Rev Port Pneumol. 2014;20(2):92–100.

    CAS  PubMed  Google Scholar 

  198. Troosters T, Gosselink R, Janssens W, Decramer M. Exercise training and pulmonary rehabilitation: new insights and remaining challenges. Eur Respir Rev. 2010;19(115):24–9.

    CAS  PubMed  Google Scholar 

  199. Louvaris Z, Chynkiamis N, Spetsioti S, Asimakos A, Zakynthinos S, Wagner PD. Greater exercise tolerance in COPD during acute interval, compared to equivalent constant-load, cycle exercise: physiological mechanisms. J Physiol. 2020. https://doi.org/10.1113/JP279531.

    Article  PubMed  Google Scholar 

  200. Latella C. Lift, stop, rest, repeat: The potential of ‘cluster sets’ as interval resistance exercise for COPD. J Phys. 2020;598(23):5307–9.

    CAS  Google Scholar 

  201. Stendardi L, Binazzi B, Scano G. Exercise dyspnea in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2007;2(4):429–39.

    PubMed  PubMed Central  Google Scholar 

  202. Zeng Y, Jiang F, Chen Y, Chen P, Cai S. Exercise assessments and trainings of pulmonary rehabilitation in COPD: a literature review. Int J Chron Obstruct Pulmon Dis. 2018;13:2013–23.

    PubMed  PubMed Central  Google Scholar 

  203. Mayo X, Iglesias-Soler E, Fernandez-del-Olmo M. Effects of set configuration of resistance exercise on perceived exertion. Percept Mot Skills Mot Skills Ergonom. 2014;119(3):825–37.

    Google Scholar 

  204. Peddle-McIntyre CJ, Singh F, Thomas R, Newton R, Galvao D, Cavalheri V. Exercise training for advanced lung cancer. Cochrane Database of Syst Rev. 2019;11(2):012685.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Latella.

Ethics declarations

Funding

No financial support was received for the conduct of this article or for the preparation of this manuscript.

Conflict of interest

The authors declare that they had no conflicts of interest.

Ethical approval

Due to the nature of the study, ethical approval was not required.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material:

Not applicable.

Code availability

Not applicable.

Author contributions

CL, CF and KK conceptualised the article. CL, CF, LM, JS drafted the article and KK and CP-M provided critical review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latella, C., Peddle-McIntyre, C., Marcotte, L. et al. Strengthening the Case for Cluster Set Resistance Training in Aged and Clinical Settings: Emerging Evidence, Proposed Benefits and Suggestions. Sports Med 51, 1335–1351 (2021). https://doi.org/10.1007/s40279-021-01455-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01455-4

Navigation