Skip to main content
Log in

Does Site Matter? Impact of Inertial Measurement Unit Placement on the Validity and Reliability of Stride Variables During Running: A Systematic Review and Meta-analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Inertial measurement units (IMUs) are used for running gait analysis in a variety of sports. These sensors have been attached at various locations to capture stride data. However, it is unclear if different placement sites affect the derived outcome measures.

Objective

The aim of this systematic review and meta-analysis was to investigate the impact of placement on the validity and reliability of IMU-derived measures of running gait.

Methods

Online databases SPORTDiscus with Full Text, CINAHL Complete, MEDLINE (EBSCOhost), EMBASE (Ovid) and Scopus were searched from the earliest record to 6 August 2020. Articles were included if they (1) used an IMU during running (2) reported spatiotemporal variables, peak ground reaction force (GRF) or vertical stiffness and (3) assessed validity or reliability. Meta-analyses were performed for a pooled validity estimate when (1) studies reported means and standard deviation for variables derived from the IMU and criterion (2) used the same IMU placement and (3) determined validity at a comparable running velocity (≤ 1 m·s−1 difference).

Results

Thirty-nine articles were included, where placement varied between the foot, tibia, hip, sacrum, lumbar spine (LS), torso and thoracic spine (TS). Initial contact, toe-off, contact time (CT), flight time (FT), step time, stride time, swing time, step frequency (SF), step length (SL), stride length, peak vertical and resultant GRF and vertical stiffness were analysed. Four variables (CT, FT, SF and SL) were meta-analysed, where CT was compared between the foot, tibia and LS placements and SF was compared between foot and LS. Foot placement data were meta-analysed for FT and SL. All data are the mean difference (MD [95%CI]). No significant difference was observed for any site compared to the criterion for CT (foot: − 11.47 ms [− 45.68, 22.74], p = 0.43; tibia: 22.34 ms [− 18.59, 63.27], p = 0.18; LS: − 48.74 ms [− 120.33, 22.85], p = 0.12), FT (foot: 11.93 ms [− 8.88, 32.74], p = 0.13), SF (foot: 0.45 step·min−1 [− 1.75, 2.66], p = 0.47; LS: − 3.45 step·min−1 [− 16.28, 9.39], p = 0.37) and SL (foot: 0.21 cm [− 1.76, 2.18], p = 0.69). Reliable derivations of CT (coefficient of variation [CV] < 9.9%), FT (CV < 11.6%) and SF (CV < 4.4%) were shown using foot- and LS-worn IMUs, while the CV was < 7.8% for foot-determined stride time, SL and stride length. Vertical GRF was reliable from the LS (CV = 4.2%) and TS (CV = 3.3%) using a spring-mass model, while vertical stiffness was moderately (r = 0.66) and nearly perfectly (r = 0.98) correlated with criterion measures from the TS.

Conclusion

Placement of IMUs on the foot, tibia and LS is suitable to derive valid and reliable stride data, suggesting measurement site may not be a critical factor. However, evidence regarding the ability to accurately detect stride events from the TS is unclear and this warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vanrenterghem J, Nedergaard N, Robinson MA, Drust B. Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017;47(11):2135–42.

    Article  PubMed  Google Scholar 

  2. Spencer M, Lawrence S, Rechichi C, Bishop D, Dawson B, Goodman C. Time–motion analysis of elite field hockey, with special reference to repeated-sprint activity. J Sport Sci. 2004;22(9):843–50.

    Article  Google Scholar 

  3. Aughey RJ. Applications of GPS technologies to field sports. Int J Sports Physiol Perform. 2011;6(3):295–310.

    Article  PubMed  Google Scholar 

  4. Buchheit M, Allen A, Poon TK, Modonutti M, Gregson W, Di Salvo V. Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies. J Sport Sci. 2014;32(20):1844–57.

    Article  Google Scholar 

  5. Stevens TG, de Ruiter CJ, van Niel C, van de Rhee R, Beek PJ, Savelsbergh GJ. Measuring acceleration and deceleration in soccer-specific movements using a local position measurement (LPM) system. Int J Sports Physiol Perform. 2014;9(3):446–56.

    Article  CAS  Google Scholar 

  6. Duffield R, Reid M, Baker J, Spratford W. Accuracy and reliability of GPS devices for measurement of movement patterns in confined spaces for court-based sports. J Sci Med Sport. 2010;13(5):523–5.

    Article  PubMed  Google Scholar 

  7. Jennings D, Cormack S, Coutts AJ, Boyd L, Aughey RJ. The validity and reliability of GPS units for measuring distance in team sport specific running patterns. Int J Sports Physiol Perform. 2010;5(3):328–41.

    Article  PubMed  Google Scholar 

  8. Varley MC, Fairweather IH, Aughey RJ. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. J Sport Sci. 2012;30(2):121–7.

    Article  Google Scholar 

  9. Gabbett T, Jenkins D, Abernethy B. Physical collisions and injury during professional rugby league skills training. J Sci Med Sport. 2010;13(6):578–83.

    Article  PubMed  Google Scholar 

  10. Boyd LJ, Ball K, Aughey RJ. Quantifying external load in Australian football matches and training using accelerometers. Int J Sports Physiol Perform. 2013;8(1):44–51.

    Article  PubMed  Google Scholar 

  11. Gastin PB, McLean O, Spittle M, Breed RV. Quantification of tackling demands in professional Australian football using integrated wearable athlete tracking technology. J Sci Med Sport. 2013;16(6):589–93.

    Article  PubMed  Google Scholar 

  12. Gastin PB, Mclean OC, Breed RV, Spittle M. Tackle and impact detection in elite Australian football using wearable microsensor technology. J Sport Sci. 2014;32(10):947–53.

    Article  Google Scholar 

  13. Glassbrook DJ, Fuller JT, Alderson JA, Doyle TL. Foot accelerations are larger than tibia accelerations during sprinting when measured with inertial measurement units. J Sport Sci. 2019;38:1–8. https://doi.org/10.1080/02640414.2019.1692997.

    Article  Google Scholar 

  14. Warman GE, Cole MH, Johnston RD, Chalkley D, Pepping G-J. Using microtechnology to quantify torso angle during match-play in field hockey. J Strength Cond Res. 2019;33(10):2648–54.

    Article  PubMed  Google Scholar 

  15. Boyd LJ, Ball K, Aughey RJ. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6(3):311–21.

    Article  PubMed  Google Scholar 

  16. Ammann R, Taube W, Wyss T. Accuracy of PARTwear inertial sensor and Optojump optical measurement system for measuring ground contact time during running. J Strength Cond Res. 2016;30(7):2057–63.

    Article  PubMed  Google Scholar 

  17. Gabbett TJ. Quantifying the physical demands of collision sports: does microsensor technology measure what it claims to measure? J Strength Cond Res. 2013;27(8):2319–22.

    Article  PubMed  Google Scholar 

  18. Bouten CV, Westerterp KR, Verduin M, Janssen JD. Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc. 1994;26(12):1516–23.

    Article  CAS  PubMed  Google Scholar 

  19. Bouten CV, Koekkoek KT, Verduin M, Kodde R, Janssen JD. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng. 1997;44(3):136–47.

    Article  CAS  PubMed  Google Scholar 

  20. Swartz AM, Strath SJ, Bassett DR, O’Brien WL, King GA, Ainsworth BE. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med Sci Sports Exerc. 2000;32(9):450–6.

    Article  Google Scholar 

  21. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.

    Article  Google Scholar 

  22. Skotte J, Korshøj M, Kristiansen J, Hanisch C, Holtermann A. Detection of physical activity types using triaxial accelerometers. J Phys Act Health. 2014;11(1):76–84.

    Article  PubMed  Google Scholar 

  23. McNamara DJ, Gabbett TJ, Chapman P, Naughton G, Farhart P. The validity of microsensors to automatically detect bowling events and counts in cricket fast bowlers. Int J Sports Physiol Perform. 2015;10(1):71–5.

    Article  PubMed  Google Scholar 

  24. Murray NB, Black GM, Whiteley RJ, Gahan P, Cole MH, Utting A, et al. Automatic detection of pitching and throwing events in baseball with inertial measurement sensors. Int J Sports Physiol Perform. 2017;12(4):533–7.

    Article  PubMed  Google Scholar 

  25. Spangler R, Rantalainen T, Gastin PB, Wundersitz D. Inertial sensors are a valid tool to detect and consistently quantify jumping. Int J Sports Med. 2018;39(10):802–8. https://doi.org/10.1055/s-0044-100793.

    Article  PubMed  Google Scholar 

  26. Barrett S, Midgley A, Lovell R. PlayerLoad(TM): reliability, convergent validity, and influence of unit position during treadmill running. Int J Sports Physiol Perform. 2014;9(6):945–52.

    Article  PubMed  Google Scholar 

  27. Mooney MG, Cormack S, O’Brien BJ, Morgan WM, McGuigan M. Impact of neuromuscular fatigue on match exercise intensity and performance in elite Australian football. J Strength Cond Res. 2013;27(1):166–73.

    Article  PubMed  Google Scholar 

  28. Cormack SJ, Mooney MG, Morgan W, McGuigan MR. Influence of neuromuscular fatigue on accelerometer load in elite Australian football players. Int J Sports Physiol Perform. 2013;8(4):373–8.

    Article  PubMed  Google Scholar 

  29. McGrath D, Greene BR, O’Donovan KJ, Caulfield B. Gyroscope-based assessment of temporal gait parameters during treadmill walking and running. Sports Eng. 2012;15(4):207–13.

    Article  Google Scholar 

  30. Benson LC, Clermont CA, Watari R, Exley T, Ferber R. Automated accelerometer-based gait event detection during multiple running conditions. Sensors. 2019;19(7):1483. https://doi.org/10.3390/s19071483.

    Article  PubMed Central  Google Scholar 

  31. Aubol KG, Milner CE. Foot contact identification using a single triaxial accelerometer during running. J Biomech. 2020;105:109768. https://doi.org/10.1016/j.jbiomech.2020.109768.

    Article  PubMed  Google Scholar 

  32. Lee JB, Mellifont RB, Burkett BJ. The use of a single inertial sensor to identify stride, step, and stance durations of running gait. J Sci Med Sport. 2010;13(2):270–3.

    Article  PubMed  Google Scholar 

  33. Bergamini E, Picerno P, Pillet H, Natta F, Thoreux P, Camomilla V. Estimation of temporal parameters during sprint running using a trunk-mounted inertial measurement unit. J Biomech. 2012;45(6):1123–6.

    Article  PubMed  Google Scholar 

  34. Falbriard M, Meyer F, Mariani B, Millet GP, Aminian K. Accurate estimation of running temporal parameters using foot-worn inertial sensors. Front Physiol. 2018. https://doi.org/10.3389/fphys.2018.00610.

    Article  PubMed  PubMed Central  Google Scholar 

  35. García-Pinillos F, Latorre-Román PÁ, Soto-Hermoso VM, Párraga-Montilla JA, Pantoja-Vallejo A, Ramírez-Campillo R, et al. Agreement between the spatiotemporal gait parameters from two different wearable devices and high-speed video analysis. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0222872.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wundersitz DWT, Netto KJ, Aisbett B, Gastin PB. Validity of an upper-body-mounted accelerometer to measure peak vertical and resultant force during running and change-of-direction tasks. Sports Biomech. 2013;12(4):403–12.

    Article  PubMed  Google Scholar 

  37. Buchheit M, Gray A, Morin JB. Assessing stride variables and vertical stiffness with GPS-embedded accelerometers: preliminary insights for the monitoring of neuromuscular fatigue on the field. J Sports Sci Med. 2015;14:698–701.

    PubMed  PubMed Central  Google Scholar 

  38. Eggers TM, Massard TI, Clothier PJ, Lovell R. Measuring vertical stiffness in sport with accelerometers: exercise caution! J Strength Cond Res. 2018;32(7):1919–22.

    Article  PubMed  Google Scholar 

  39. Nedergaard NJ, Verheul J, Drust B, Etchells T, Lisboa P, Robinson MA, et al. The feasibility of predicting ground reaction forces during running from a trunk accelerometry driven mass-spring-damper model. PeerJ. 2018. https://doi.org/10.7717/peerj.6105.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Raper DP, Witchalls J, Philips EJ, Knight E, Drew MK, Waddington G. Use of a tibial accelerometer to measure ground reaction force in running: a reliability and validity comparison with force plates. J Sci Med Sport. 2018;21(1):84–8.

    Article  PubMed  Google Scholar 

  41. Dugan SA, Bhat KP. Biomechanics and analysis of running gait. Phys Med Rehabil Clin N Am. 2005;16(3):603–21.

    Article  PubMed  Google Scholar 

  42. Nedergaard NJ, Robinson MA, Eusterwiemann E, Drust B, Lisboa PJ, Vanrenterghem J. The relationship between whole-body external loading and body-worn accelerometry during team-sport movements. Int J Sports Physiol Perform. 2017;12(1):18–26.

    Article  PubMed  Google Scholar 

  43. Edwards S, White S, Humphreys S, Robergs R, O’Dwyer N. Caution using data from triaxial accelerometers housed in player tracking units during running. J Sport Sci. 2019;37(7):810–8.

    Article  Google Scholar 

  44. Glassbrook DJ, Fuller JT, Alderson JA, Doyle TL. Measurement of lower-limb asymmetry in professional rugby league: a technical note describing the use of inertial measurement units. PeerJ. 2020;8:e9366. https://doi.org/10.7717/peerj.9366.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lafortune MA, Lake MJ, Hennig EM. Differential shock transmission response of the human body to impact severity and lower limb posture. J Biomech. 1996;29(12):1531–7.

    Article  CAS  PubMed  Google Scholar 

  46. Derrick TR, Hamill J, Caldwell GE. Energy absorption of impacts during running at various stride lengths. Med Sci Sports Exerc. 1998;30(1):128–35. https://doi.org/10.1097/00005768-199801000-00018.

    Article  CAS  PubMed  Google Scholar 

  47. Lucas-Cuevas AG, Encarnación-Martínez A, Camacho-García A, Llana-Belloch S, Pérez-Soriano P. The location of the tibial accelerometer does influence impact acceleration parameters during running. J Sport Sci. 2017;35(17):1734–8. https://doi.org/10.1080/02640414.2016.1235792.

    Article  Google Scholar 

  48. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

    Article  Google Scholar 

  49. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52(6):377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cummins C, Orr R, O’Connor H, West C. Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports Med. 2013;43(10):1025–42.

    Article  PubMed  Google Scholar 

  51. Glassbrook DJ, Doyle TL, Alderson JA, Fuller JT. The demands of professional rugby league match-play: a meta-analysis. Sports Med. 2019;5:1–20. https://doi.org/10.1186/s40798-019-0197-9.

    Article  Google Scholar 

  52. Chew D-K, Ngoh KJ, Gouwanda D, Gopalai AA. Estimating running spatial and temporal parameters using an inertial sensor. Sports Eng. 2018;21(2):115–22.

    Article  Google Scholar 

  53. Watari R, Hettinga B, Osis S, Ferber R. Validation of a torso-mounted accelerometer for measures of vertical oscillation and ground contact time during treadmill running. J Appl Biomech. 2016;32(3):306–10. https://doi.org/10.1123/jab.2015-0200.

    Article  PubMed  Google Scholar 

  54. Kenneally-Dabrowski CJ, Serpell BG, Spratford W. Are accelerometers a valid tool for measuring overground sprinting symmetry? Int J Sports Sci Coach. 2018;13(2):270–7.

    Article  Google Scholar 

  55. Dorschky E, Nitschke M, Seifer A-K, van den Bogert AJ, Eskofier BM. Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models. J Biomech. 2019;95:109278. https://doi.org/10.1016/j.jbiomech.2019.07.022.

    Article  PubMed  Google Scholar 

  56. Ngoh KJ, Gouwanda D, Gopalai AA, Chong YZ. Estimation of vertical ground reaction force during running using neural network model and uniaxial accelerometer. J Biomech. 2018;76:269–73. https://doi.org/10.1016/j.jbiomech.2018.06.006.

    Article  PubMed  Google Scholar 

  57. Gurchiek RD, McGinnis RS, Needle AR, McBride JM, van Werkhoven H. The use of a single inertial sensor to estimate 3-dimensional ground reaction force during accelerative running tasks. J Biomech. 2017;61:263–8. https://doi.org/10.1016/j.jbiomech.2017.07.035.

    Article  PubMed  Google Scholar 

  58. Mitschke C, Heß T, Milani TL. Which method detects foot strike in rearfoot and forefoot runners accurately when using an inertial measurement unit? Appl Sci. 2017;7(9):959. https://doi.org/10.3390/app7090959.

    Article  Google Scholar 

  59. Mitschke C, Zaumseil F, Milani TL. The influence of inertial sensor sampling frequency on the accuracy of measurement parameters in rearfoot running. Comput Methods Biomech Biomed Engin. 2017;20(14):1502–11. https://doi.org/10.1080/10255842.2017.1382482.

    Article  PubMed  Google Scholar 

  60. Pairot de Fontenay B, Roy J, Dubois B, Bouyer L, Esculier J. Validating commercial wearable sensors for running gait parameters estimation. IEEE Sens J. 2020;20(14):7783–91. https://doi.org/10.1109/JSEN.2020.2982568.

    Article  Google Scholar 

  61. Pogson M, Verheul J, Robinson MA, Vanrenterghem J, Lisboa P. A neural network method to predict task- and step-specific ground reaction force magnitudes from trunk accelerations during running activities. Med Eng Phys. 2020;78:82–9. https://doi.org/10.1016/j.medengphy.2020.02.002.

    Article  PubMed  Google Scholar 

  62. Sinclair J, Hobbs SJ, Protheroe L, Edmundson CJ, Greenhalgh A. Determination of gait events using an externally mounted shank accelerometer. J Appl Biomech. 2013;29(1):118–22.

    Article  PubMed  Google Scholar 

  63. Tan HX, Aung NN, Tian J, Chua MCH, Yang YO. Time series classification using a modified LSTM approach from accelerometer-based data: a comparative study for gait cycle detection. Gait Posture. 2019;74:128–34. https://doi.org/10.1016/j.gaitpost.2019.09.007.

    Article  PubMed  Google Scholar 

  64. Winter SC, Lee JB, Leadbetter RI, Gordon SJ. Validation of a single inertial sensor for measuring running kinematics overground during a prolonged run. J Fit Res. 2016;5(1):14–23.

    Google Scholar 

  65. Zrenner M, Gradl S, Jensen U, Ullrich M, Eskofier BM. Comparison of different algorithms for calculating velocity and stride length in running using inertial measurement units. Sensors. 2018;18(12):4194. https://doi.org/10.3390/s18124194.

    Article  PubMed Central  Google Scholar 

  66. Neugebauer JM, Collins KH, Hawkins DA. Ground reaction force estimates from ActiGraph GT3X+ hip accelerations. PLoS ONE. 2014;9(6):e99023. https://doi.org/10.1371/journal.pone.0099023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hall JP, Barton C, Jones PR, Morrissey D. The biomechanical differences between barefoot and shod distance running: a systematic review and preliminary meta-analysis. Sports Med. 2013;43(12):1335–53.

    Article  PubMed  Google Scholar 

  68. Gindre C, Lussiana T, Hebert-Losier K, Morin J-B. Reliability and validity of the Myotest for measuring running stride kinematics. J Sport Sci. 2016;34(7):664–70.

    Article  Google Scholar 

  69. Mo S, Chow DH. Accuracy of three methods in gait event detection during overground running. Gait Posture. 2018;59:93–8. https://doi.org/10.1016/j.gaitpost.2017.10.009.

    Article  PubMed  Google Scholar 

  70. Fadillioglu C, Stetter BJ, Ringhof S, Krafft FC, Sell S, Stein T. Automated gait event detection for a variety of locomotion tasks using a novel gyroscope-based algorithm. Gait Posture. 2020;81:102–8. https://doi.org/10.1016/j.gaitpost.2020.06.019.

    Article  PubMed  Google Scholar 

  71. García-Pinillos F, Roche-Seruendo LE, Marcén-Cinca N, Marco-Contreras LA, Latorre-Román PA. Absolute reliability and concurrent validity of the Stryd system for the assessment of running stride kinematics at different velocities. J Strength Cond Res. 2018. https://doi.org/10.1519/jsc.0000000000002595.

    Article  PubMed  Google Scholar 

  72. Machulik C, Hamacher D, Lindlein K, Zech A, Hollander K. Validation of an inertial measurement unit based magnetic timing gate system during running and sprinting. Ger J Sports Med. 2020;71(3):69–75. https://doi.org/10.5960/dzsm.2020.426.

    Article  Google Scholar 

  73. Simon SR. Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems. J Biomech. 2004;37(12):1869–80.

    Article  PubMed  Google Scholar 

  74. Lienhard K, Schneider D, Maffiuletti NA. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med Eng Phys. 2013;35(4):500–4.

    Article  PubMed  Google Scholar 

  75. Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors. 2014;14(2):3362–94.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schwarzer G. meta: an R package for meta-analysis. R News. 2007;7(3):40–5.

    Google Scholar 

  77. Borenstein M, Higgins JP. Meta-analysis and subgroups. Prev Sci. 2013;14(2):134–43.

    Article  PubMed  Google Scholar 

  78. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Br Med J. 2003;327(7414):557–60.

    Article  Google Scholar 

  79. Viechtbauer W, Cheung MWL. Outlier and influence diagnostics for meta-analysis. Res Synth Methods. 2010;1(2):112–25.

    Article  PubMed  Google Scholar 

  80. Quintana DS. From pre-registration to publication: a non-technical primer for conducting a meta-analysis to synthesize correlational data. Front Physiol. 2015. https://doi.org/10.3389/fpsyg.2015.01549.

    Article  Google Scholar 

  81. Schwarzer G, Carpenter JR, Rücker G. Meta-analysis with R. Use R! 1st ed. Cham: Springer International Publishing Switzerland; 2015.

    Book  Google Scholar 

  82. Lewis S, Clarke M. Forest plots: trying to see the wood and the trees. Br Med J. 2001;322(7300):1479–80.

    Article  CAS  Google Scholar 

  83. Gouttebarge V, Wolfard R, Griek N, de Ruiter CJ, Boschman JS, van Dieën JH. Reproducibility and validity of the Myotest for measuring step frequency and ground contact time in recreational runners. J Hum Kinet. 2015;45:19–26.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Norris M, Kenny IC, Anderson R. Comparison of accelerometry stride time calculation methods. J Biomech. 2016;49(13):3031–4.

    Article  PubMed  Google Scholar 

  85. Brahms C, Zhao Y, Gerhard D, Barden JM. Stride length determination during overground running using a single foot-mounted inertial measurement unit. J Biomech. 2018;71:302–5.

    Article  PubMed  Google Scholar 

  86. Buchheit M, Lacome M, Cholley Y, Simpson BM. Neuromuscular responses to conditioned soccer sessions assessed via GPS-embedded accelerometers: insights into tactical periodization. Int J Sports Physiol Perform. 2018;13:577–83.

    Article  PubMed  Google Scholar 

  87. Wouda FJ, Giuberti M, Bellusci G, Maartens E, Reenalda J, van Beijnum B-JF, et al. Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors. Front Physiol. 2018;9:218. https://doi.org/10.3389/fphys.2018.00218.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Technol. 2011;2(1):37–63.

    Google Scholar 

  89. Hreljac A, Marshall RN. Algorithms to determine event timing during normal walking using kinematic data. J Biomech. 2000;33(6):783–6.

    Article  CAS  PubMed  Google Scholar 

  90. Zeni J Jr, Richards J, Higginson J. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27(4):710–4.

    Article  PubMed  Google Scholar 

  91. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97–111. https://doi.org/10.1002/jrsm.12.

    Article  PubMed  Google Scholar 

  92. Cavanagh PR, Lafortune MA. Ground reaction forces in distance running. J Biomech. 1980;13(5):397–406. https://doi.org/10.1016/0021-9290(80)90033-0.

    Article  CAS  PubMed  Google Scholar 

  93. Keller TS, Weisberger A, Ray J, Hasan SS, Shiavi RG, Spengler DM. Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clin Biomech. 1996;11(5):253–9.

    Article  CAS  Google Scholar 

  94. Hunter JP, Marshall RN, McNair PJ. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J Appl Biomech. 2005;21(1):31–43.

    Article  PubMed  Google Scholar 

  95. Verheul J, Nedergaard NJ, Vanrenterghem J, Robinson MA. Measuring biomechanical loads in team sports—from lab to field. Sci Med Footb. 2020;4:1–7.

    Google Scholar 

  96. Morin J-B, Dalleau G, Kyröläinen H, Jeannin T, Belli A. A simple method for measuring stiffness during running. J Appl Biomech. 2005;21(2):167–80.

    Article  PubMed  Google Scholar 

  97. Ruddy JD, Cormack SJ, Whiteley R, Williams MD, Timmins RG, Opar DA. Modeling the risk of team sport injuries: a narrative review of different statistical approaches. Front Physiol. 2019. https://doi.org/10.3389/fphys.2019.00829.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  99. Cormack SJ, Newton RU, McGuigan MR, Doyle TL. Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform. 2008;3(2):131–44.

    Article  PubMed  Google Scholar 

  100. Thorborg K, Petersen J, Magnusson SP, Hölmich P. Clinical assessment of hip strength using a hand-held dynamometer is reliable. Scand J Med Sci Sports. 2010;20(3):493–501.

    Article  CAS  PubMed  Google Scholar 

  101. Garrett J, Graham SR, Eston RG, Burgess DJ, Garrett LJ, Jakeman J, et al. A novel method of assessment for monitoring neuromuscular fatigue in Australian rules football players. Int J Sports Physiol Perform. 2018;14(5):598–605.

    Article  Google Scholar 

  102. Rowell AE, Aughey RJ, Clubb J, Cormack SJ. A standardized small sided game can be used to monitor neuromuscular fatigue in professional A-League football players. Front Physiol. 2018. https://doi.org/10.3389/fphys.2018.01011.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Walker EJ, McAinch AJ, Sweeting A, Aughey RJ. Inertial sensors to estimate the energy expenditure of team-sport athletes. J Sci Med Sport. 2016;19(2):177–81.

    Article  PubMed  Google Scholar 

  104. Wundersitz DW, Gastin PB, Richter C, Robertson SJ, Netto KJ. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running. Eur J Sport Sci. 2015;15(5):382–90.

    Article  PubMed  Google Scholar 

  105. Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. Br Med J. 2016;352:i1981. https://doi.org/10.1136/bmj.i1981.

    Article  Google Scholar 

  106. Lin L. Bias caused by sampling error in meta-analysis with small sample sizes. PLoS ONE. 2018;13(9):e0204056. https://doi.org/10.1371/journal.pone.0204056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all those authors of reviewed papers who provided additional data that made some of the analyses reported in this manuscript possible.

Author information

Authors and Affiliations

Authors

Contributions

BJH, PJT, JD and SJC contributed to the development of the review and implementation of the search strategy. BJH carried out the meta-analysis with assistance from NM. BJH, PJT, NM and SJC collectively interpreted the results of the systematic review and meta-analysis, while BJH drafted the manuscript. All authors contributed to editing and revising the manuscript and approved the final version prior to submission.

Corresponding author

Correspondence to Benjamin J. Horsley.

Ethics declarations

Conflict of interest

Benjamin Horsley, Paul Tofari, Shona Halson, Justin Kemp, Jessica Dickson, Nirav Maniar and Stuart Cormack declare that they have no conflicts of interest relevant to the content of this review.

Ethics approval

Not applicable.

Funding

This review received no funding.

Availability of data and materials

The dataset and code used for meta-analysis are available from the corresponding author on request.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 174 KB)

Supplementary file2 (XLSX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horsley, B.J., Tofari, P.J., Halson, S.L. et al. Does Site Matter? Impact of Inertial Measurement Unit Placement on the Validity and Reliability of Stride Variables During Running: A Systematic Review and Meta-analysis. Sports Med 51, 1449–1489 (2021). https://doi.org/10.1007/s40279-021-01443-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01443-8

Navigation