Skip to main content
Log in

Non-local Acute Passive Stretching Effects on Range of Motion in Healthy Adults: A Systematic Review with Meta-analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Stretching a muscle not only increases the extensibility or range of motion (ROM) of the stretched muscle or joint but there is growing evidence of increased ROM of contralateral and other non-local muscles and joints.

Objective

The objective of this meta-analysis was to quantify crossover or non-local changes in passive ROM following an acute bout of unilateral stretching and to examine potential dose–response relations.

Methods

Eleven studies involving 14 independent measures met the inclusion criteria. The meta-analysis included moderating variables such as sex, trained state, stretching intensity and duration.

Results

The analysis revealed that unilateral passive static stretching induced moderate magnitude (standard mean difference within studies: SMD: 0.86) increases in passive ROM with non-local, non-stretched joints. Moderating variables such as sex, trained state, stretching intensity, and duration did not moderate the results. Although stretching duration did not present statistically significant differences, greater than 240-s of stretching (SMD: 1.24) exhibited large magnitude increases in non-local ROM compared to moderate magnitude improvements with shorter (< 120-s: SMD: 0.72) durations of stretching.

Conclusion

Passive static stretching of one muscle group can induce moderate magnitude, global increases in ROM. Stretching durations greater than 240 s may have larger effects compared with shorter stretching durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab. 2016;41(1):1–11. https://doi.org/10.1139/apnm-2015-0235.

    Article  PubMed  Google Scholar 

  2. Behm DG, Chaouachi A. A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol. 2011;111(11):2633–51. https://doi.org/10.1007/s00421-011-1879-2.

    Article  PubMed  Google Scholar 

  3. Kay AD, Blazevich AJ. Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sports Exerc. 2012;44(1):154–64. https://doi.org/10.1249/MSS.0b013e318225cb27.

    Article  PubMed  Google Scholar 

  4. Chaabene H, Behm DG, Negra Y, Granacher U. Acute effects of static stretching on muscle strength and power: an attempt to clarify previous caveats. Front Physiol. 2019;10:1468. https://doi.org/10.3389/fphys.2019.01468.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Godges JJ, MacRae H, Longdon C, Tinberg C. The effects of two stretching procedures on the economy of walking and jogging. J Orthop Sport Physical Ther. 1989;7(3):350–7.

    Article  Google Scholar 

  6. Wilson G, Elliot B, Wood G. Stretching shorten cycle performance enhancement through flexibility training. Med Sci Sports Exerc. 1992;24:116–23.

    Article  CAS  PubMed  Google Scholar 

  7. Herda TJ, Cramer JT, Ryan ED, McHugh MP, Stout JR. Acute effects of static versus dynamic stretching on isometric peak torque, electromyography, and mechanomyography of the biceps femoris muscle. J Strength Cond Res. 2008;22(3):809–17.

    Article  PubMed  Google Scholar 

  8. McHugh MP, Nesse M. Effect of stretching on strength loss and pain after eccentric exercise. Med Sci Sports Exerc. 2008;40(3):566–73. https://doi.org/10.1249/MSS.0b013e31815d2f8c.

    Article  PubMed  Google Scholar 

  9. Nelson AG, Allen JD, Cornwell A, Kokkonen J. Inhibition of maximal voluntary isometric torque production by acute stretching is joint-angle specific. Res Q Exerc Sport. 2001;72(1):68–70. https://doi.org/10.1080/02701367.2001.10608934.

    Article  CAS  PubMed  Google Scholar 

  10. Balle SS, Magnusson SP, McHugh MP. Effects of contract-relax vs static stretching on stretch-induced strength loss and length-tension relationship. Scand J Med Sci Sports. 2015;25(6):764–9. https://doi.org/10.1111/sms.12399.

    Article  CAS  PubMed  Google Scholar 

  11. Kay AD, Blazevich AJ. Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J Appl Physiol. 2009;106(4):1249–56. https://doi.org/10.1152/japplphysiol.91476.2008.

    Article  PubMed  Google Scholar 

  12. Kay AD, Husbands-Beasley J, Blazevich AJ. Effects of contract-relax, static stretching, and isometric contractions on muscle-tendon mechanics. Med Sci Sports Exerc. 2015;47(10):2181–90. https://doi.org/10.1249/MSS.0000000000000632.

    Article  PubMed  Google Scholar 

  13. Magnusson SP. Passive properties of human skeletal muscle during stretch maneuvers. A review. Scand J Med Sci Sports. 1998;8(2):65–77.

    Article  CAS  PubMed  Google Scholar 

  14. Magnusson SP, Simonsen EB, Aagaard P, Boesen J, Johannsen F, Kjaer M. Determinants of musculoskeletal flexibility: viscoelastic properties, cross-sectional area, EMG and stretch tolerance. Scand J Med Sci Sports. 1997;7(4):195–202.

    Article  CAS  PubMed  Google Scholar 

  15. Magnusson SP, Simonsen EB, Aagaard P, Gleim GW, McHugh MP, Kjaer M. Viscoelastic response to repeated static stretching in the human hamstring muscle. Scand J Med Sci Sports. 1995;5(6):342–7.

    Article  CAS  PubMed  Google Scholar 

  16. Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M. A mechanism for altered flexibility in human skeletal muscle. J Physiol. 1996;497(Pt 1):291–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Magnusson SP, Simonsen EB, Dyhre-Poulsen P, Aagaard P, Mohr T, Kjaer M. Viscoelastic stress relaxation during static stretch in human skeletal muscle in the absence of EMG activity. Scand J Med Sci Sports. 1996;6(6):323–8.

    Article  CAS  PubMed  Google Scholar 

  18. Trajano GS, Nosaka K, Seitz LB, Blazevich AJ. Intermittent stretch reduces force and central drive more than continuous stretch. Med Sci Sports Exerc. 2014;46(5):902–10. https://doi.org/10.1249/MSS.0000000000000185.

    Article  PubMed  Google Scholar 

  19. Trajano GS, Seitz L, Nosaka K, Blazevich AJ. Contribution of central vs. peripheral factors to the force loss induced by passive stretch of the human plantar flexors. J Appl Physiol (1985). 2013;115(2):212–8. https://doi.org/10.1152/japplphysiol.00333.2013.

    Article  Google Scholar 

  20. Trajano GS, Seitz LB, Nosaka K, Blazevich AJ. Can passive stretch inhibit motoneuron facilitation in the human plantar flexors? J Appl Physiol (1985). 2014;117(12):1486–92. https://doi.org/10.1152/japplphysiol.00809.2014.

    Article  Google Scholar 

  21. Blazevich AJ, Cannavan D, Waugh CM, Fath F, Miller SC, Kay AD. Neuromuscular factors influencing the maximum stretch limit of the human plantar flexors. J Appl Physiol. 2012;113(9):1446–55. https://doi.org/10.1152/japplphysiol.00882.2012.

    Article  CAS  PubMed  Google Scholar 

  22. Blazevich AJ, Cannavan D, Waugh CM, Miller SC, Thorlund JB, Aagaard P, et al. Range of motion, neuromechanical, and architectural adaptations to plantar flexor stretch training in humans. J Appl Physiol (1985). 2014;117(5):452–62. https://doi.org/10.1152/japplphysiol.00204.2014.

    Article  CAS  Google Scholar 

  23. Behm DG, Cavanaugh T, Quigley P, Reid JC, Nardi PS, Marchetti PH. Acute bouts of upper and lower body static and dynamic stretching increase non-local joint range of motion. Eur J Appl Physiol. 2016;116(1):241–9. https://doi.org/10.1007/s00421-015-3270-1.

    Article  PubMed  Google Scholar 

  24. Behm DG, Lau RJ, O’Leary JJ, Rayner MCP, Burton EA, Lavers L. Acute effects of unilateral self-administered static stretching on contralateral limb performance. J Perform Health Res. 2019;3(1):1–7. https://doi.org/10.25036/jphr.2019.3.1.behm.

    Article  Google Scholar 

  25. Caldwell SL, Bilodeau RLS, Cox MJ, Peddle D, Cavanaugh T, Young JD, et al. Unilateral hamstrings static stretching can impair the affected and contralateral knee extension force but improve unilateral drop jump height. Eur J Appl Physiol. 2019;119(9):1943–9. https://doi.org/10.1007/s00421-019-04182-x.

    Article  CAS  PubMed  Google Scholar 

  26. Caldwell SL, Bilodeau RLS, Cox MJ, Behm DG. Cross education training effects are evident with twice daily, self-administered band stretch training. J Sport Sci Med. 2019;18:544–51.

    Google Scholar 

  27. Ce E, Coratella G, Bisconti AV, Venturelli M, Limonta E, Doria C, et al. Neuromuscular versus mechanical stretch-induced changes in contra- versus ipsilateral muscle. Med Sci Sports Exerc. 2020. https://doi.org/10.1249/MSS.0000000000002255.

    Article  PubMed  Google Scholar 

  28. Chaouachi A, Padulo J, Kasmi S, Othmen AB, Chatra M, Behm DG. Unilateral static and dynamic hamstrings stretching increases contralateral hip flexion range of motion. Clin Physiol Funct Imaging. 2017;37(1):23–9. https://doi.org/10.1111/cpf.12263.

    Article  PubMed  Google Scholar 

  29. Clark S, Christiansen A, Hellman DF, Hugunin JW, Hurst KM. Effects of ipsilateral anterior thigh soft tissue stretching on passive unilateral straight-leg raise. J Orthop Sports Phys Ther. 1999;29(1):4–9. https://doi.org/10.2519/jospt.1999.29.1.4 (discussion 10-2).

    Article  CAS  PubMed  Google Scholar 

  30. De-la-Cruz-Torres B, Carrasco-Iglesias C, Minaya-Munoz F, Romero-Morales C. Crossover effects of ultrasound-guided percutaneous neuromodulation on contralateral hamstring flexibility. Acupunct Med. 2020. https://doi.org/10.1177/0964528420920283.

    Article  PubMed  Google Scholar 

  31. Killen BS, Zelizney KL, Ye X. Crossover effects of unilateral static stretching and foam rolling on contralateral hamstring flexibility and strength. J Sport Rehabil. 2018. https://doi.org/10.1123/jsr.2017-0356.

    Article  Google Scholar 

  32. Lima BN, Lucareli PR, Gomes WA, Silva JJ, Bley AS, Hartigan EH, et al. The acute effects of unilateral ankle plantar flexors static- stretching on postural sway and gastrocnemius muscle activity during single-leg balance tasks. J Sports Sci Med. 2014;13(3):564–70.

    PubMed  PubMed Central  Google Scholar 

  33. Whalen A, Farrell K, Roberts S, Smith H, Behm DG. Topical analgesic improved or maintained ballistic hip flexion range of motion with treated and untreated legs. J Sports Sci Med. 2019;18(3):552–8.

    PubMed  PubMed Central  Google Scholar 

  34. Wilke J, Vogt L, Niederer D, Banzer W. Is remote stretching based on myofascial chains as effective as local exercise? A randomised-controlled trial. J Sports Sci. 2017;35(20):2021–7. https://doi.org/10.1080/02640414.2016.1251606.

    Article  CAS  PubMed  Google Scholar 

  35. Wilke J, Niederer D, Vogt L, Banzer W. Remote effects of lower limb stretching: preliminary evidence for myofascial connectivity? J Sports Sci. 2016;34(22):2145–8. https://doi.org/10.1080/02640414.2016.1179776.

    Article  PubMed  Google Scholar 

  36. Doix AC, Lefevre F, Colson SS. Time course of the cross-over effect of fatigue on the contralateral muscle after unilateral exercise. PLoS ONE. 2013;8(5):e64910. https://doi.org/10.1371/journal.pone.0064910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Doix AM, Wachholz F, Marterer N, Immler L, Insam K, Federolf PA. Is the cross-over effect of a unilateral high-intensity leg extension influenced by the sex of the participants? Biol Sex Differ. 2018;9(1):29. https://doi.org/10.1186/s13293-018-0188-4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Martin PG, Rattey J. Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflugers Archiv Eur J Physiol. 2007;454(6):957–69. https://doi.org/10.1007/s00424-007-0243-1.

    Article  CAS  Google Scholar 

  39. Rattey J, Martin PG, Kay D, Cannon J, Marino FE. Contralateral muscle fatigue in human quadriceps muscle: evidence for a centrally mediated fatigue response and cross-over effect. Pflugers Archiv Eur J Physiol. 2006;452(2):199–207. https://doi.org/10.1007/s00424-005-0027-4.

    Article  CAS  Google Scholar 

  40. Aboodarda SJ, Copithorne DB, Power KE, Drinkwater E, Behm DG. Elbow flexor fatigue modulates central excitability of the knee extensors. Appl Physiol Nutr Metab. 2015;40(9):924–30. https://doi.org/10.1139/apnm-2015-0088.

    Article  PubMed  Google Scholar 

  41. Aboodarda SJ, Sambaher N, Millet GY, Behm DG. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle. Neuroscience. 2017;340:477–86. https://doi.org/10.1016/j.neuroscience.2016.10.065.

    Article  CAS  PubMed  Google Scholar 

  42. Ben Othman A, Chaouachi A, Hammami R, Chaouachi MM, Kasmi S, Behm DG. Evidence of nonlocal muscle fatigue in male youth. Appl Physiol Nutr Metab. 2017;42(3):229–37. https://doi.org/10.1139/apnm-2016-0400.

    Article  PubMed  Google Scholar 

  43. Halperin I, Aboodarda SJ, Behm DG. Knee extension fatigue attenuates repeated force production of the elbow flexors. Eur J Sport Sci. 2014;14(8):823–9. https://doi.org/10.1080/17461391.2014.911355.

    Article  PubMed  Google Scholar 

  44. Halperin I, Copithorne D, Behm DG. Unilateral isometric muscle fatigue decreases force production and activation of contralateral knee extensors but not elbow flexors. Appl Physiol Nutr Metab. 2014;39(12):1338–44. https://doi.org/10.1139/apnm-2014-0109.

    Article  PubMed  Google Scholar 

  45. Halperin I, Chapman DW, Behm DG. Non-local muscle fatigue: effects and possible mechanisms. Eur J Appl Physiol. 2015;115(10):2031–48. https://doi.org/10.1007/s00421-015-3249-y.

    Article  PubMed  Google Scholar 

  46. Grant MC, Robergs R, Baird MF, Baker JS. The effect of prior upper body exercise on subsequent wingate performance. Biomed Res Int. 2014;2014:329328. https://doi.org/10.1155/2014/329328.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elmer SJ, Amann M, McDaniel J, Martin DT, Martin JC. Fatigue is specific to working muscles: no cross-over with single-leg cycling in trained cyclists. Eur J Appl Physiol. 2013;113(2):479–88. https://doi.org/10.1007/s00421-012-2455-0.

    Article  PubMed  Google Scholar 

  48. Donti O, Tsolakis C, Bogdanis GC. Effects of baseline levels of flexibility and vertical jump ability on performance following different volumes of static stretching and potentiating exercises in elite gymnasts. J Sports Sci Med. 2014;13(1):105–13.

    PubMed  PubMed Central  Google Scholar 

  49. Marchetti PH, Miyatake MMS, Magalhaes RA, Gomes WA, Da Silva JJ, Brigatto FA, et al. Different volumes and intensities of static stretching affect the range of motion and muscle force output in well-trained subjects. Sports Biomech. 2019. https://doi.org/10.1080/14763141.2019.1648540.

    Article  PubMed  Google Scholar 

  50. Kurtdere MK, Curt C, Ozsu Nebioglu I. Acute static stretching with different volumes improves hamstring flexibility but not reactive strength index and leg stiffness in well trained judo athletes. J Hum Sport Exerc. 2020. https://doi.org/10.14198/jhse.2021.164.03.

    Article  Google Scholar 

  51. Roberts JM, Wilson K. Effect of stretching duration on active and passive range of motion in the lower extremity. Br J Sports Med. 1999;33(4):259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bandy WD, Irion JM. The effect of time on the static stretch of the hamstrings muscles. Phys Ther. 1994;74(9):845–50.

    Article  CAS  PubMed  Google Scholar 

  53. Feland JB, Myrer JW, Schulthies SS, Fellingham GW, Measom GW. The effect of duration of stretching of the hamstring muscle group for increasing range of motion in people aged 65 years or older. Phys Ther. 2001;81(5):1110–7.

    Article  CAS  PubMed  Google Scholar 

  54. Chan SP, Hong Y, Robinson PD. Flexibility and passive resistance of the hamstrings of young adults using two different static stretching protocols. Scand J Med Sci. 2001;11:81–6.

    Article  CAS  Google Scholar 

  55. Knudson D, Bennett K, Corn R, Leick D, Smith C. Acute effects of stretching are not evident in the kinematics of the vertical jump. J Strength Cond Res. 2001;15(1):98–101.

    CAS  PubMed  Google Scholar 

  56. Manoel ME, Harris-Love MO, Danoff JV, Miller TA. Acute effects of static, dynamic, and proprioceptive neuromuscular facilitation stretching on muscle power in women. J Strength Cond Res. 2008;22(5):1528–34 (Available from PM:18714235).

    Article  PubMed  Google Scholar 

  57. Young W, Elias G, Power J. Effects of static stretching volume and intensity on plantar flexor explosive force production and range of motion. 73. J Sports Med Phys Fit. 2006;46(3):403–11.

    CAS  Google Scholar 

  58. Apostolopoulos N. Performance flexibility. In: Foran B, editor. High-performance sports conditioning. Champaign: Human Kinetics; 2001. p. 49–61.

    Google Scholar 

  59. Warren CG, Lehmann JF, Koblanski JN. Elongation of rat tail tendon: effect of load and temperature. Arch Phys Med Rehabil. 1971;52(10):465–474 passim. Available from https://www.ncbi.nlm.nih.gov/pubmed/5116032.

  60. Turner HM, Bernard RM. Calculating and synthesizing effect sizes. Contemp Issues Commun Sci Disord. 2006;33(1):42–55.

    Article  Google Scholar 

  61. Deeks JJ, Higgins JP, Altman DG. Analysing data and undertaking meta-analyses. Cochrane handbook for systematic reviews of interventions. Cochrane Book Series; 2008. p. 243–96.

  62. Kontopantelis E, Springate DA, Reeves D. A re-analysis of the Cochrane Library data: the dangers of unobserved heterogeneity in meta-analyses. PLoS ONE. 2013;8(7):e69930. https://doi.org/10.1371/journal.pone.0069930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12. https://doi.org/10.1249/Mss.0b013e31818cb278.

    Article  PubMed  Google Scholar 

  64. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1-34. https://doi.org/10.1016/j.jclinepi.2009.06.006.

    Article  PubMed  Google Scholar 

  65. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.

    Article  PubMed  Google Scholar 

  67. Takeuchi K, Nakamura M. Influence of high intensity 20-second static stretching on the flexibility and strength of hamstrings. J Sports Sci Med. 2020;19(2):429–35.

    PubMed  PubMed Central  Google Scholar 

  68. Santos CXB, Barros Beltro N, Torres Piraua AL, Quagliotto Durigan JL, Behm DG, Cappato de Araujo R. Static stretching intensity does not influence acute range of motion, passive torque, and muscle architecture. J Sport Rehabil. 2020;29:1–6.

    Article  PubMed  Google Scholar 

  69. de Araujo VA, Oleivera Soares B, Remigio Calcacante B, Barros Beltrao N, Santos Nascimeto VY, Rodarti Pitangui AC, Cappato de Araujo R. Does the stretching intensity matter when targeting a range of motion gains? A Randomized trial. Motriz Rio Claro. 2020;26(2):26–31. https://doi.org/10.1590/s1980-6574202000018019.

    Article  Google Scholar 

  70. Cui J, Blaha C, Moradkhan R, Gray KS, Sinoway LI. Muscle sympathetic nerve activity responses to dynamic passive muscle stretch in humans. J Physiol. 2006;576(Pt 2):625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kamibayashi K, Nakazawa K, Ogata H, Obata H, Akai M, Shinohara M. Invariable H-reflex and sustained facilitation of stretch reflex with heightened sympathetic outflow. J Electromyogr Kinesiol. 2009;19(6):1053–60.

    Article  PubMed  Google Scholar 

  72. Ray CA, Mark AL. Sympathetic nerve activity to nonactive muscle of the exercising and nonexercising limb. Med Sci Sports Exerc. 1995;27(2):183–7.

    Article  CAS  PubMed  Google Scholar 

  73. Guissard N, Duchateau J. Neural aspects of muscle stretching. Exerc Sport Sci Rev. 2006;34(4):154–8.

    Article  PubMed  Google Scholar 

  74. Roatta S, Arendt-Nielsen L, Farina D. Sympathetic-induced changes in discharge rate and spike-triggered average twitch torque of low-threshold motor units in humans. J Physiol. 2008;586(Pt 22):5561–74. https://doi.org/10.1113/jphysiol.2008.160770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moayedi M, Davis KD. Theories of pain: from specificity to gate control. J Neurophysiol. 2013;109(1):5–12. https://doi.org/10.1152/jn.00457.2012.

    Article  PubMed  Google Scholar 

  76. Berne RM, Levy MN. Physiology. Toronto: C.V. Mosby Publishers; 1983. p. 112–65.

    Google Scholar 

  77. Donadio V, Karlsson T, Elam M, Wallin BG. Interindividual differences in sympathetic and effector responses to arousal in humans. J Physiol. 2002;544(Pt 1):293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mense S. Neurobiological concepts of fibromyalgia—the possible role of descending spinal tracts. Scand J Rheumatol Suppl. 2000;113:24–9.

    Article  CAS  PubMed  Google Scholar 

  79. Sigurdsson A, Maixner W. Effects of experimental and clinical noxious counterirritants on pain perception. Pain. 1994;57(3):265–75.

    Article  PubMed  Google Scholar 

  80. Pud D, Granovsky Y, Yarnitsky D. The methodology of experimentally induced diffuse noxious inhibitory control (DNIC)-like effect in humans. Pain. 2009;144(1–2):16–9. https://doi.org/10.1016/j.pain.2009.02.015.

    Article  PubMed  Google Scholar 

  81. Le Bars D, Villanueva L, Bouhassira D, Willer JC. Diffuse noxious inhibitory controls (DNIC) in animals and in man. Patol Fiziol Eksp Ter. 1992;4:55–65.

    Google Scholar 

  82. Stove MP, Hirata RP, Palsson TS. Muscle stretching—the potential role of endogenous pain inhibitory modulation on stretch tolerance. Scand J Pain. 2019;19(2):415–22. https://doi.org/10.1515/sjpain-2018-0334.

    Article  PubMed  Google Scholar 

  83. Reid JC, Greene R, Young JD, Hodgson DD, Blazevich AJ, Behm DG. The effects of different durations of static stretching within a comprehensive warm-up on voluntary and evoked contractile properties. Eur J Appl Physiol. 2018;118(7):1427–45. https://doi.org/10.1007/s00421-018-3874-3.

    Article  PubMed  Google Scholar 

  84. Schleip R. Fascial plasticity—a new neurobiological explanation: Part I. J Bodyw Mov Ther. 2003;7(1):11–9.

    Article  Google Scholar 

  85. Schleip R. Fascial plasticity—a new neurobiological explanation: Part 2. J Bodyw Mov Ther. 2003;7(2):104–16.

    Article  Google Scholar 

  86. Kruger L. Cutaneous sensory system. Encyclopedia of neuroscience. Boston: Birkhauser; 1987. p. 64–127.

    Google Scholar 

  87. Jenner JR, Stephens JA. Cutaneous reflex responses and thier central nervous pathways studied in man. J Physiol. 1982;333:405–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kearney RE, Chan CWY. Reflex response of human arm muscles to cutaneous stimulation of the foot. Brain Res. 1999;170:214–7.

    Article  Google Scholar 

  89. Wu G, Ekedahl R, Stark B, Carlstedt T, Nilsson B, Hallin RG. Clustering of Pacinian corpuscle afferent fibres in the human median nerve. Exper Brain Res. 1999;126:399–409.

    Article  CAS  Google Scholar 

  90. Canedo A. Primary motor cortex influences on the descending and ascending systems. Prog Neurobiol. 1997;51(3):287–335.

    Article  CAS  PubMed  Google Scholar 

  91. Cleland CL, Hayward L, Rymer WZ. Neural mechanisms underlying the clasp-knife reflex in the cat. II. Stretch-sensitive muscular-free nerve endings. J Neurophysiol. 1990;64(4):1319–30. https://doi.org/10.1152/jn.1990.64.4.1319.

    Article  CAS  PubMed  Google Scholar 

  92. Cleland CL, Rymer WZ. Neural mechanisms underlying the clasp-knife reflex in the cat. I. Characteristics of the reflex. J Neurophysiol. 1990;64(4):1303–18. https://doi.org/10.1152/jn.1990.64.4.1303.

    Article  CAS  PubMed  Google Scholar 

  93. Cleland CL, Rymer WZ. Functional properties of spinal interneurons activated by muscular free nerve endings and their potential contributions to the clasp-knife reflex. J Neurophysiol. 1993;69(4):1181–91. https://doi.org/10.1152/jn.1993.69.4.1181.

    Article  CAS  PubMed  Google Scholar 

  94. Behm DG, Bambury A, Cahill F, Power K. Effect of acute static stretching on force, balance, reaction time, and movement time. Med Sci Sports Exerc. 2004;36(8):1397–402.

    Article  PubMed  Google Scholar 

  95. Behm DG, Button DC, Butt JC. Factors affecting force loss with prolonged stretching. Can J Appl Physiol. 2001;26(3):261–72.

    Article  CAS  PubMed  Google Scholar 

  96. Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC. Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol (1985). 2006;101(5):1514–22. https://doi.org/10.1152/japplphysiol.00531.2006.

    Article  Google Scholar 

  97. Hortobagyi T. Cross education and the human central nervous system: Mechanisms of unilateral interventions producing contralateral adaptations. IEEE Eng Med Biol. 2005;24:22–8.

    Article  Google Scholar 

  98. Hortobagyi T, Richardson SP, Lomarev M, Shamim E, Meunier S, Russman H, et al. Interhemispheric plasticity in humans. Med Sci Sports Exerc. 2011;43(7):1188–99. https://doi.org/10.1249/MSS.0b013e31820a94b8.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Prochazka A, Ellaway P. Sensory systems in the control of movement. Compr Physiol. 2012;2(4):2615–27. https://doi.org/10.1002/cphy.c100086.

    Article  PubMed  Google Scholar 

  100. Phillips C, Powell T, Wiesendanger M. Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex. J Physiol. 1971;217(2):419–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rathelot J-A, Strick PL. Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci. 2009;106(3):918–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pulverenti TS, Trajano GS, Kirk BJ, Blazevich AJ. The loss of muscle force production after muscle stretching is not accompanied by altered corticospinal excitability. Eur J Appl Physiol. 2019;119(10):2287–99.

    Article  CAS  PubMed  Google Scholar 

  103. Budini F, Gallasch E, Christova M, Rafolt D, Rauscher AB, Tilp M. One minute static stretch of plantar flexors transiently increases H reflex excitability and exerts no effect on corticospinal pathways. Exper Physiol. 2017;102(8):901–10.

    Article  CAS  Google Scholar 

  104. Budini F, Kemper D, Christova M, Gallasch E, Rafolt D, Tilp M. Five minutes static stretching influences neural responses at spinal level in the background of unchanged corticospinal excitability. J Musculoskelet Neuronal Interact. 2019;19(1):30.

    PubMed  PubMed Central  Google Scholar 

  105. Pulverenti TS, Trajano GS, Walsh A, Kirk BJC, Blazevich AJ. Lack of cortical or Ia-afferent spinal pathway involvement in muscle force loss after passive static stretching. J Neurophysiol. 2020;123(5):1896–906. https://doi.org/10.1152/jn.00578.2019.

    Article  PubMed  Google Scholar 

  106. Opplert J, Paizis C, Papitsa A, Blazevich AJ, Cometti C, Babault N. Static stretch and dynamic muscle activity induce acute similar increase in corticospinal excitability. PLoS ONE. 2020;15(3):e0230388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wilke J, Krause F, Vogt L, Banzer W. What is evidence-based about myofascial chains: a systematic review. Arch Phys Med Rehabil. 2016;97(3):454–61. https://doi.org/10.1016/j.apmr.2015.07.023.

    Article  PubMed  Google Scholar 

  108. Schleip R, Duerselen L, Vleeming A, Naylor IL, Lehmann-Horn F, Zorn A, et al. Strain hardening of fascia: static stretching of dense fibrous connective tissues can induce a temporary stiffness increase accompanied by enhanced matrix hydration. J Bodyw Mov Ther. 2012;16(1):94–100. https://doi.org/10.1016/j.jbmt.2011.09.003.

    Article  PubMed  Google Scholar 

  109. Yahia LH, Pigeon P, DesRosiers EA. Viscoelastic properties of the human lumbodorsal fascia. J Biomed Eng. 1993;15(5):425–9. https://doi.org/10.1016/0141-5425(93)90081-9.

    Article  CAS  PubMed  Google Scholar 

  110. Norton-Old KJ, Schache AG, Barker PJ, Clark RA, Harrison SM, Briggs CA. Anatomical and mechanical relationship between the proximal attachment of adductor longus and the distal rectus sheath. Clin Anat. 2013;26(4):522–30. https://doi.org/10.1002/ca.22116.

    Article  PubMed  Google Scholar 

  111. van Wingerden JP, Vleeming A, Snijders CJ, Stoeckart R. A functional-anatomical approach to the spine-pelvis mechanism: interaction between the biceps femoris muscle and the sacrotuberous ligament. Eur Spine J. 1993;2(3):140–4. https://doi.org/10.1007/BF00301411.

    Article  PubMed  Google Scholar 

  112. Vleeming A, Pool-Goudzwaard AL, Stoeckart R, van Wingerden JP, Snijders CJ. The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. Spine (Phila Pa 1976). 1995;20(7):753–8.

    Article  CAS  Google Scholar 

  113. Benetazzo L, Bizzego A, De Caro R, Frigo G, Guidolin D, Stecco C. 3D reconstruction of the crural and thoracolumbar fasciae. Surg Radiol Anat. 2011;33(10):855–62. https://doi.org/10.1007/s00276-010-0757-7.

    Article  CAS  PubMed  Google Scholar 

  114. Eng CM, Pancheri FQ, Lieberman DE, Biewener AA, Dorfmann L. Directional differences in the biaxial material properties of fascia lata and the implications for fascia function. Ann Biomed Eng. 2014;42(6):1224–37. https://doi.org/10.1007/s10439-014-0999-3.

    Article  PubMed  Google Scholar 

  115. Myers TW. Anatomy trains: myofascial meridians for manual and movement therapists. Edinburgh: Chirchill Livingstone Publishers; 2001.

    Google Scholar 

  116. Huijing PA, van de Langenberg RW, Meesters JJ, Baan GC. Extramuscular myofascial force transmission also occurs between synergistic muscles and antagonistic muscles. J Electromyogr Kinesiol. 2007;17(6):680–9. https://doi.org/10.1016/j.jelekin.2007.02.005.

    Article  PubMed  Google Scholar 

  117. Maas H, Baan GC, Huijing PA. Intermuscular interaction via myofascial force transmission: effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle. J Biomech. 2001;34(7):927–40. https://doi.org/10.1016/s0021-9290(01)00055-0.

    Article  CAS  PubMed  Google Scholar 

  118. Maas H, Meijer HJ, Huijing PA. Intermuscular interaction between synergists in rat originates from both intermuscular and extramuscular myofascial force transmission. Cells Tissues Organs. 2005;181(1):38–50. https://doi.org/10.1159/000089967.

    Article  PubMed  Google Scholar 

  119. Meijer HJ, Rijkelijkhuizen JM, Huijing PA. Myofascial force transmission between antagonistic rat lower limb muscles: effects of single muscle or muscle group lengthening. J Electromyogr Kinesiol. 2007;17(6):698–707. https://doi.org/10.1016/j.jelekin.2007.02.006.

    Article  PubMed  Google Scholar 

  120. Krause F, Wilke J, Vogt L, Banzer W. Intermuscular force transmission along myofascial chains: a systematic review. J Anat. 2016;228(6):910–8. https://doi.org/10.1111/joa.12464.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Marshall PW, Siegler JC. Lower hamstring extensibility in men compared to women is explained by differences in stretch tolerance. BMC Musculoskelet Disord. 2014;15:223. https://doi.org/10.1186/1471-2474-15-223.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hoge KM, Ryan ED, Costa PB, Herda TJ, Walter AA, Stout JR, et al. Gender differences in musculotendinous stiffness and range of motion after an acute bout of stretching. J Strength Cond Res. 2010;24(10):2618–26. https://doi.org/10.1519/JSC.0b013e3181e73974.

    Article  PubMed  Google Scholar 

  123. Fillingim RB, Edwards RR, Powell T. The relationship of sex and clinical pain to experimental pain responses. Pain. 1999;83(3):419–25. https://doi.org/10.1016/s0304-3959(99)00128-1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David G. Behm or Jason Moran.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

David G. Behm, Shahab Alizadeh, Saman Hadjizadeh Anvar, Ben Drury, Urs Granacher and Jason Moran declare that they have no conflicts of interest relevant to the content of this review.

Authorship contributions

DGB, SA, SHA conducted the literature search and collected and collated the data. DGB wrote the first draft of the manuscript. JM analyzed and interpreted the data. BD and UG provided input into the analysis and revised the original manuscript. All authors read and approved the final manuscript.

Data availability statement

All pertinent data are provided in the listed tables (PEDro scale analysis, individual and mean study characteristics and moderator analyses) and figures (PRISMA flow chart and funnel plots).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behm, D.G., Alizadeh, S., Anvar, S.H. et al. Non-local Acute Passive Stretching Effects on Range of Motion in Healthy Adults: A Systematic Review with Meta-analysis. Sports Med 51, 945–959 (2021). https://doi.org/10.1007/s40279-020-01422-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01422-5

Navigation