Recommendations for Hamstring Function Recovery After ACL Reconstruction

Abstract

It is important to optimise the functional recovery process to enhance patient outcomes after major injury such as anterior cruciate ligament reconstruction (ACLR). This requires in part more high-quality original research, but also an approach to translate existing research into practice to overcome the research to implementation barriers. This includes research on ACLR athletes, but also research on other pathologies, which with some modification can be valuable to the ACLR patient. One important consideration after ACLR is the recovery of hamstring muscle function, particularly when using ipsilateral hamstring autograft. Deficits in knee flexor function after ACLR are associated with increased risk of knee osteoarthritis, altered gait and sport-type movement quality, and elevated risk of re-injury upon return to sport. After ACLR and the early post-operative period, there are often considerable deficits in hamstring function which need to be overcome as part of the functional recovery process. To achieve this requires consideration of many factors including the types of strength to recover (e.g., maximal and explosive, multiplanar not just uniplanar), specific programming principles (e.g., periodised resistance programme) and exercise selection. There is a need to know how to train the hamstrings, but also apply this to the ACLR athlete. In this paper, the authors discuss the deficits in hamstring function after ACLR, the considerations on how to restore these deficits and align this information to the ACLR functional recovery process, providing recommendation on how to recover hamstring function after ACLR.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Modified from Buckthorpe and Della Villa [9]

Fig. 4

References

  1. 1.

    Ardern CL, Webster KE, Taylor NF, et al. Return to pre-injury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med. 2011;39:538–43.

    PubMed  Google Scholar 

  2. 2.

    Waldén M, Hägglund M, Magnusson H, Ekstrand J. ACL injuries in men’s professional football: a 15-year prospective study on time trends and return-to-play rates reveals only 65% of players still play at the top level 3 years after ACL rupture. Br J Sports Med. 2016;50(12):744–50.

    PubMed  Google Scholar 

  3. 3.

    Lai CCH, Feller JA, Webster KE. Fifteen-year audit of anterior cruciate ligament reconstructions in the Australian Football League from 1999 to 2013: return to play and subsequent ACL injury. Am J Sports Med. 2018;46(14):3353–60.

    PubMed  Google Scholar 

  4. 4.

    Webster KE, Feller JA. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(11):2827–32.

    PubMed  Google Scholar 

  5. 5.

    Ardern CL, Kvist J, Webster KE. Psychological aspects of anterior cruciate ligament injuries. Oper Tech Sports Med. 2016;24(1):77–83.

    Google Scholar 

  6. 6.

    Adams D, Logerstedt DS, Hunter-Giordano A, et al. Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther. 2012;42(7):601–14.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bien DP, Dubuque TJ. Considerations for late stage ACL rehabilitation and return to sport to limit re-injury risk and maximize athletic performance. Int J Sports Phys Ther. 2015;10(2):256–71.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Buckthorpe M. Optimising the late-stage rehabilitation and return-to-sport training and testing process after ACL reconstruction. Sports Med. 2019;49(7):1043–58.

    PubMed  Google Scholar 

  9. 9.

    Buckthorpe M, Della VF. Optimising the 'mid-stage’ training and testing process after ACL reconstruction. Sports Med. 2020;50(4):657–78.

    PubMed  Google Scholar 

  10. 10.

    Buckthorpe M, Frizziero A, Roi GS. Update on functional recovery process for the injured athlete: return to sport continuum redefined. Br J Sports Med. 2019;53(5):265–7.

    PubMed  Google Scholar 

  11. 11.

    Dingenen B, Gokeler A. Optimization of the return-to-sport paradigm after anterior cruciate ligament reconstruction: a critical step back to move forward. Sports Med. 2017;47(8):1487–500.

    PubMed  Google Scholar 

  12. 12.

    Hanson DW, Finch CF, Allegrante JP, et al. Closing the gap between injury prevention research and community safety promotion practice: revisiting the public health model. Public Health Rep. 2012;127(2):147–55.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Finch CF. A new framework for research leading to sports injury prevention. J Sci Med Sport. 2006;9:3–9.

    PubMed  Google Scholar 

  14. 14.

    Timpka T, Ekstrand J, Svanström L. From sports injury prevention to safety promotion in sports. Sports Med. 2006;36:733–45.

    PubMed  Google Scholar 

  15. 15.

    Verhagen E. If athletes will not adopt preventive measures, effective measures must adopt athletes. Curr Sports Med Rep. 2012;11:7–8.

    PubMed  Google Scholar 

  16. 16.

    Verhagen E, Voogt N, Bruinsma A, Finch CF. A knowledge transfer scheme to bridge the gap between science and practice: an integration of existing research frameworks into a tool for practice. Br J Sports Med. 2014;48:698–701.

    PubMed  Google Scholar 

  17. 17.

    Draganich LF, Vahey JW. An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces. J Orthop Res. 1990;8:57–63.

    CAS  PubMed  Google Scholar 

  18. 18.

    More RC, Karras BT, Neiman R, et al. Hamstrings—an anterior cruciate ligament protagonist. An in vitro study. Am J Sports Med. 1993;21:231–7.

    CAS  PubMed  Google Scholar 

  19. 19.

    Harput G, Kilinc HE, Ozer HE, et al. Quadriceps and hamstring strength recovery during early neuromuscular rehabilitation after ACL hamstring-tendon autograft reconstruction. J Sport Rehabil. 2015;24(4):398–404.

    PubMed  Google Scholar 

  20. 20.

    Ardern CL, Webster KE, Taylor NF, Feller JA. Hamstring strength recovery after hamstring tendon harvest for anterior cruciate ligament reconstruction: a comparison between graft types. Arthroscopy. 2010;26(4):462–9.

    PubMed  Google Scholar 

  21. 21.

    Nomura Y, Kuramochi R, Kukubayashi T. Evaluation of hamstring muscle strength and morphology after anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2015;25(3):301–7.

    CAS  PubMed  Google Scholar 

  22. 22.

    Tengman E, Brax Olofsson L, Stensdotter AK, et al. Anterior cruciate ligament injury after more than 20 years. II. Concentric and eccentric knee muscle strength. Scand J Med Sci Sports. 2014;24(6):e501–9.

    CAS  PubMed  Google Scholar 

  23. 23.

    Timmins RG, Bourne MN, Shield AJ, et al. Biceps femoris architecture and strength in athletes with a previous anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2016;48:337–45.

    PubMed  Google Scholar 

  24. 24.

    Vairo GL. Knee flexor strength and endurance profiles after ipsilateral hamstring tendons anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2014;95(3):552–61.

    PubMed  Google Scholar 

  25. 25.

    Bourne MN, Bruder AM, Mentiplay BF, et al. Eccentric knee flexor weakness in elite female footballers 1–10 years following anterior cruciate ligament reconstruction. Phys Ther Sport. 2019;37:144–9.

    PubMed  Google Scholar 

  26. 26.

    Messer DJ, Shield AJ, Williams MD, et al. Hamstring muscle activation and morphology are significantly altered 1–6 years after anterior cruciate ligament reconstruction with semitendinosus graft. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):433–41.

    Google Scholar 

  27. 27.

    Kim HJ, Lee JH, Ahn SE, et al. Influence of anterior cruciate ligament tear on thigh muscle strength and hamstring-to-quadriceps ratio: a meta-analysis. PLoS ONE. 2016;11(1):e0146234.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Cristiani R, Mikkelsen C, Forssblad M, et al. Only one patient out of five achieves symmetrical knee function 6 months after primary anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(11):3461–70.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kyristis P, Bahr R, Landreau P, et al. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med. 2016;50:946–51.

    Google Scholar 

  30. 30.

    Verrall GM, Slavotinek JP, Barnes PG, et al. Clinical risk factors for hamstring muscle strain injury: a prospective study with correlation of injury by magnetic resonance imaging. Br J Sports Med. 2001;35(6):435–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bittencourt NFN, Meeuwisse WH, Mendonça LD, et al. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition—narrative review and new concept. Br J Sports Med. 2016;50:1309–14.

    CAS  PubMed  Google Scholar 

  32. 32.

    Cook C. Predicting future physical injury in sports: it’s a complicated dynamic system. Br J Sports Med. 2016;50:1356–7.

    PubMed  Google Scholar 

  33. 33.

    Arnason A, Sigurdsson SB, Gudmundsson A, et al. Risk factors for injuries in football. Am J Sports Med. 2004;32:5–16.

    Google Scholar 

  34. 34.

    Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: a systematic review and meta-analysis. Br J Sports Med. 2013;47:351–8.

    PubMed  Google Scholar 

  35. 35.

    Hägglund M, Waldén M, Ekstrand J. Previous injury as a risk factor for injury in elite football: a prospective study over two consecutive seasons. Br J Sports Med. 2006;40:767–72.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Engebretsen AH, Myklebust G, Holme I, et al. Intrinsic risk factors for hamstring injuries among male soccer players: a prospective cohort study. Am J Sports Med. 2010;38:1147–53.

    PubMed  Google Scholar 

  37. 37.

    Gabbe BJ, Bennell KL, Finch CF. Why are older Australian football players at greater risk of hamstring injury? J Sci Med Sport. 2006;9:327–33.

    PubMed  Google Scholar 

  38. 38.

    Gabbe BJ, Bennell KL, Finch CF, et al. Predictors of hamstring injury at the elite level of Australian football. Scand J Med Sci Sports. 2006;16:7–13.

    CAS  PubMed  Google Scholar 

  39. 39.

    Orchard JW. Intrinsic and extrinsic risk factors for muscle strains in Australian football. Am J Sports Med. 2001;29:300–3.

    CAS  PubMed  Google Scholar 

  40. 40.

    Evangelidis PE, Massey GJ, Pain MT, et al. Biceps femoris aponeurosis size: a potential risk factor for strain injury? Med Sci Sports Exerc. 2015;47:1383–9.

    PubMed  Google Scholar 

  41. 41.

    Fiorentino NM, Blemker SS. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. J Biomech. 2014;47:3325–33.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Rehorn MR, Blemker SS. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech. 2010;43:2574–81.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Timmins RG, Bourne MN, Shield AJ, et al. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50:1524–35.

    PubMed  Google Scholar 

  44. 44.

    Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech. 2007;40:3555–62.

    PubMed  Google Scholar 

  45. 45.

    Cummings G, Scholz JP, Barnes K. The effect of imposed leg length difference on pelvic bone symmetry. Spine. 1993;18:368–73.

    CAS  PubMed  Google Scholar 

  46. 46.

    Fousekis K, Tsepis E, Poulmedis P, et al. Intrinsic risk factors of non-contact quadriceps and hamstring strains in soccer: a prospective study of 100 professional players. Br J Sports Med. 2011;45:709–14.

    PubMed  Google Scholar 

  47. 47.

    Schuermans J, Van Tiggelen D, Palmans T, et al. Deviating running kinematics and hamstring injury susceptibility in male soccer players: cause or consequence? Gait Posture. 2017;57:270–7.

    PubMed  Google Scholar 

  48. 48.

    Sherry MA, Best TM. A comparison of 2 rehabilitation programs in the treatment of acute hamstring strains. J Orthop Sports Phys Ther. 2004;34:116–25.

    PubMed  Google Scholar 

  49. 49.

    Blanch P, Gabbett TJ. Has the athlete trained enough to return to play safely? The acute: chronic workload ratio permits clinicians to quantify a player’s risk of subsequent injury. Br J Sports Med. 2016;50:471–5.

    PubMed  Google Scholar 

  50. 50.

    Bowen L, Gross AS, Gimpel M, et al. Accumulated workloads and the acute: chronic workload ratio relate to injury risk in elite youth football players. Br J Sports Med. 2017;51:452–9.

    PubMed  Google Scholar 

  51. 51.

    Duhig S, Shield AJ, Opar D, et al. Effect of high-speed running on hamstring strain injury risk. Br J Sports Med. 2016;50:1536–40.

    PubMed  Google Scholar 

  52. 52.

    Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50:273–80.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Hulin BT, Gabbett TJ, Caputi P, et al. Low chronic workload and the acute: chronic workload ratio are more predictive of injury than between-match recovery time: a two-season prospective cohort study in elite rugby league players. Br J Sports Med. 2016;50:1008–12.

    PubMed  Google Scholar 

  54. 54.

    Malone S, Roe M, Doran DA, et al. High chronic training loads and exposure to bouts of maximal velocity running reduce injury risk in elite Gaelic football. J Sci Med Sport. 2017;20:250–4.

    PubMed  Google Scholar 

  55. 55.

    Opar D, Williams M, Timmins R, et al. Eccentric hamstring strength and hamstring injury risk in Australian Footballers. Med Sci Sports Exerc. 2015;47(4):857–65.

    PubMed  Google Scholar 

  56. 56.

    Welling W, Benjaminse A, Lemmink K, et al. Progressive strength training restores quadriceps and hamstring muscle strength within 7 months after ACL reconstruction in amateur male soccer players. Phys Ther Sport. 2019;9(40):10–8.

    Google Scholar 

  57. 57.

    Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ. Knee strength deficits after hamstring tendon and patellar tendon anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2000;32(8):1472–9.

    CAS  PubMed  Google Scholar 

  58. 58.

    Huber R, Viecelli C, Bizzini M, et al. Knee extensor and flexor strength before and after anterior cruciate ligament reconstruction in a large sample of patients: influence of graft type. Phys Sportsmed. 2019;47(1):85–90.

    PubMed  Google Scholar 

  59. 59.

    Baumgart C, Welling W, Hoppe MW, Freiwald J, Gokeler A. Angle-specific analysis of isokinetic quadriceps and hamstring torques and ratios in patients after ACL-reconstruction. BMC Sports Sci Med Rehabil. 2018;10:23. https://doi.org/10.1186/s13102-018-0112-6 ((eCollection 2018)).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Angelozzi M, Madama M, Corsica C, et al. Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):772–80.

    PubMed  Google Scholar 

  61. 61.

    Kadija M, Knezević OM, Milovanović D, et al. The effect of anterior cruciate ligament reconstruction on hamstring and quadriceps muscle function outcome ratios in male athletes. Srp Arh Celok Lek. 2016;144(3–4):151–7.

    PubMed  Google Scholar 

  62. 62.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501.

    PubMed  Google Scholar 

  63. 63.

    Krosshaug T, Steffen K, Kristianslund E, et al. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med. 2016;44(4):874–83.

    PubMed  Google Scholar 

  64. 64.

    Konrath JM, Vertullo CJ, Kennedy BA, et al. Morphologic characteristics and strength of the hamstring muscles remain altered at 2 years after use of a hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44:2589–98.

    PubMed  Google Scholar 

  65. 65.

    Segawa H, Omori G, Koga Y, et al. Rotational muscle strength of the limb after anterior cruciate ligament reconstruction using semitendinosus and gracilis tendon. Arthroscopy. 2002;18(2):177–82.

    PubMed  Google Scholar 

  66. 66.

    Scanlan SF, Chaudhari AMW, Dyrby CO. Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees. J Biomech. 2010;43(9):1817–22.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Noorkoiv M, Nosaka K, Blazevich AJ. Neuromuscular adaptations associated with knee joint angle-specific force change. Med Sci Sports Exerc. 2014;46(8):1525–37.

    PubMed  Google Scholar 

  68. 68.

    Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc. 2004;36(3):379–87.

    PubMed  Google Scholar 

  69. 69.

    Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys J. 1990;57(2):209–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Myer GD, Ford KR, Barber Foss KD, et al. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sports Med. 2009;9(1):3–8.

    Google Scholar 

  71. 71.

    Della Villa F, Andriolo L, Ricci M, et al. Compliance in post-operative rehabilitation is a key factor for return to sport after revision anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2020;28(2):463–9.

    PubMed  Google Scholar 

  72. 72.

    Tol JL, Hamilton B, Eirale C, et al. At return to play following hamstring injury the majority of professional football players have residual isokinetic deficits. Br J Sports Med. 2014;48:1364–9.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Wangensteen A, Tol JL, Witvrouw E, et al. Hamstring reinjuries occur at the same location and early after return to sport: a descriptive study of MRI-confirmed reinjuries. Am J Sports Med. 2016;44(8):2112–21.

    PubMed  Google Scholar 

  74. 74.

    Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–30.

    PubMed  Google Scholar 

  75. 75.

    Opar DA, Williams MD, Timmins RG, et al. Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings. J Electromyogr Kinesiol. 2013;23(3):696–703.

    PubMed  Google Scholar 

  76. 76.

    Opar DA, Williams MD, Timmins RG, et al. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med Sci Sports Exerc. 2014;47(4):857–65.

    Google Scholar 

  77. 77.

    Choi JY, Ha JK, Kim YW, et al. Relationships among tendon regeneration on MRI, flexor strength, and functional performance after anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med. 2012;40(1):152–62.

    PubMed  Google Scholar 

  78. 78.

    Snow BJ, Wilcox JJ, Burks RT, Greis PE. Evaluation of muscle size and fatty infiltration with MRI nine to eleven years following hamstring harvest for ACL reconstruction. J Bone Jt Surg Am. 2012;94:1274–82.

    Google Scholar 

  79. 79.

    Papandrea P, Vulpiani MC, Ferretti A, Conteduca F. Regeneration of the semitendinosus tendon harvested for anterior cruciate ligament reconstruction evaluation using ultrasonography. Am J Sports Med. 2000;28:556–61.

    CAS  PubMed  Google Scholar 

  80. 80.

    Vertullo CJ, Konrath JM, Kennedy B, et al. Hamstring morphology and strength remain altered 2 years following a hamstring graft in ACL reconstruction. Orthop J Sports Med. 2017;5(5 suppl 5):2325967117S00181.

    PubMed Central  Google Scholar 

  81. 81.

    Irie K, Tomatsu T. Atrophy of semitendinosus and gracilis and flexor mechanism function after hamstring tendon harvest for anterior cruciate ligament reconstruction. Orthopedics. 2002;25:491–5.

    PubMed  Google Scholar 

  82. 82.

    Williams GN, Snyder-Mackler L, Barrance PJ, Axe MJ, Buchanan TS. Muscle and tendon morphology after reconstruction of the anterior cruciate ligament with autologous semitendinosus-gracilis graft. J Bone Jt Surg Am. 2004;86:1936–46.

    Google Scholar 

  83. 83.

    Glasgow P, Phillips N, Bleakley C. Optimal loading: key variables and mechanisms. Br J Sports Med. 2015;49:278–9.

    PubMed  Google Scholar 

  84. 84.

    Lorenz DS, Reiman MP, Walker JC. Periodization: current review and suggested implementation for athletic rehabilitation. Sports Health. 2010;2:509–18.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Lorenz D, Morrison S. Current concepts in periodization of strength and conditioning for the sports physiotherapist. Int J Sports Phys Ther. 2015;10:734–47.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    American College of Sports Medicine. Position stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34:364–80.

    Google Scholar 

  87. 87.

    Guex K, Degache F, Gremion G, Millet GP. Effect of hip flexion angle on hamstring optimum length after a single set of concentric contractions. J Sports Sci. 2013;31(14):1545–52.

    PubMed  Google Scholar 

  88. 88.

    McDonagh MJ, Davies CT. Adaptive response of mammalian skeletal muscle to exercise with high loads. Eur J Appl Physiol Occup Physiol. 1984;52(2):139–55.

    CAS  PubMed  Google Scholar 

  89. 89.

    Fry A. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004;34:663–79.

    PubMed  Google Scholar 

  90. 90.

    Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68.

    PubMed  Google Scholar 

  91. 91.

    Anderson T, Kearney JT. Effects of three resistance training programs on muscular strength and absolute and relative endurance. Res Q Exerc Sport. 1982;53:1–7.

    CAS  PubMed  Google Scholar 

  92. 92.

    Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60.

    PubMed  Google Scholar 

  93. 93.

    Harber MP, Fry AC, Rubin MR, et al. Skeletal muscle and hormonal adaptations to circuit weight training in untrained men. Scand J Med Sci Sports. 2004;14:176–85.

    PubMed  Google Scholar 

  94. 94.

    Aagaard P, Simonsen E, Andersen JL, et al. Neural inhibition during maximal eccentric and concentric quadricep contraction: effects of resistance training. J Appl Physiol. 2000;89:2249–57.

    CAS  PubMed  Google Scholar 

  95. 95.

    Andersen LL, Andersen JL, Kebis MK, Aagaard P. Early and late rate of force development: differential adaptive responses to resistance training? Scand J Med Sci Sports. 2010;20(1):e162–9.

    CAS  PubMed  Google Scholar 

  96. 96.

    Mangine GT, Hoffman JR, Wang R, et al. Resistance training intensity and volume affect changes in rate of force development in resistance-trained men. Eur J Appl Physiol. 2016;116:2367–74.

    PubMed  Google Scholar 

  97. 97.

    Tillin NA, Folland JP. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur J Appl Physiol. 2014;114(12):365–74.

    PubMed  Google Scholar 

  98. 98.

    Schoenfeld BJ, Contreras B, Krieger J, et al. Resistance training volume enhances muscle hypertrophy but not strength in trained men. Med Sci Sports Exerc. 2019;51(1):94–103.

    PubMed  Google Scholar 

  99. 99.

    Burd NA, West DW, Staples AW, et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than low volume resistance exercise in young men. PLoS ONE. 2010;5:e12033.

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Goto K, Ishii N, Kizuka T, et al. The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc. 2005;37:955–63.

    CAS  PubMed  Google Scholar 

  101. 101.

    Cuthbert M, Ripley N, McMahon JJ, et al. The effect of Nordic hamstring exercise intervention volume on eccentric strength and muscle architecture adaptations: a systematic review and meta-analyses. Sports Med. 2020;50(1):83–99.

    PubMed  Google Scholar 

  102. 102.

    Buckthorpe M, La Rosa G, Villa FD. Restoring knee extensor strength after anterior cruciate ligament reconstruction: a clinical commentary. Int J Sports Phys Ther. 2019;14(1):159–72.

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Reiman MP, Lorenz DS. Integration of strength and conditioning principles into a rehabilitation program. Int J Sports Phys Ther. 2011;6:241–53.

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Carofino B, Fulkerson J. Medial hamstring tendon regeneration following harvest for anterior cruciate ligament reconstruction: fact, myth and clinical application. Arthroscopy. 2005;21:1257–65.

    PubMed  Google Scholar 

  105. 105.

    Escamilla RF, Macleod TD, Wilk KE, et al. Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. J Orthop Sports Phys Ther. 2012;42(3):208–20.

    PubMed  Google Scholar 

  106. 106.

    Ristanis S, Tsepis E, Giotis D, et al. Electromechanical delay of the knee lexor muscles is impaired after harvesting hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med. 2009;37(11):2179–86.

    PubMed  Google Scholar 

  107. 107.

    Giles L, Webster KE, McClelland J, et al. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. Br J Sports Med. 2017;51:1688–94.

    PubMed  Google Scholar 

  108. 108.

    Whiteley R. Blood flow restriction training in rehabilitation: a useful adjunct or Lucy’s latest trick? J Orthop Sports Phys Ther. 2019;49(5):294–8.

    PubMed  Google Scholar 

  109. 109.

    Della Villa S, Boldrini L, Ricci M, et al. Clinical outcomes and return-to-sports participation of 50 soccer players after Anterior Cruciate Ligament reconstruction through a sport-specific rehabilitation protocol. Sports Health. 2012;4(1):17–24.

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Grindem H, Snyder-Mackler L, Moksnes H, et al. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50:804–8.

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Mjolsnes R, Arnason A, Osthagen T, et al. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports. 2004;14(5):311–7.

    PubMed  Google Scholar 

  112. 112.

    Seger JY, Arvidsson B, Thorstensson A. Specific effects of eccentric and concentric training on muscle strength and morphology in humans. Eur J Appl Physiol Occup Physiol. 1998;79(1):49–57.

    CAS  PubMed  Google Scholar 

  113. 113.

    Tomberlin JP, Basford JR, Schwen EE, et al. Comparative study of isokinetic eccentric and concentric quadriceps training. J Orthop Sports Phys Ther. 1991;14(1):31–6.

    CAS  PubMed  Google Scholar 

  114. 114.

    Boden BP, Dean GS, Feagin JA, et al. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23:573–8.

    CAS  PubMed  Google Scholar 

  115. 115.

    Chumanov ES, Schache AG, Heiderscheit BC, Thelen DG. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br J Sports Med. 2012;46(2):90.

    PubMed  Google Scholar 

  116. 116.

    Bourne M, Opar DA, Williams M, et al. Eccentric knee-flexor strength and hamstring injury risk in rugby union: a prospective study. Am J Sports Med. 2015;43(11):2663–70.

    PubMed  Google Scholar 

  117. 117.

    Fousekis K, Tsepis E, Poulmedis P, et al. Intrinsic risk factors of non-contact quadriceps and hamstring strains in soccer: a prospective study of 100 professional players. Br J Sports Med. 2011;45(9):709–14.

    PubMed  Google Scholar 

  118. 118.

    Timmins R, Bourne M, Shield A, et al. Strength and architectural risk factors for hamstring strain injury in elite Australian soccer: a prospective cohort study. J Sci Med Sport. 2015;19(Supplement):e20. https://doi.org/10.1016/j.jsams.2015.12.425.

    Article  Google Scholar 

  119. 119.

    van Dyk N, Bahr R, Whiteley R, et al. Hamstring and quadriceps isokinetic strength deficits are weak risk factors for hamstring strain injuries: a 4-year cohort study. Am J Sports Med. 2016;44(7):1789–95.

    PubMed  Google Scholar 

  120. 120.

    Bennell K, Wajswelner H, Lew P, et al. Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers. Br J Sports Med. 1998;32(4):309–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Suchomel TJ, Wagle JP, Douglas J, et al. Implementing eccentric resistance training—part 1: a brief review of existing methods. J Funct Morphol Kinesiol. 2019;4(2):38.

    PubMed Central  Google Scholar 

  122. 122.

    Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13(4):244–50.

    CAS  PubMed  Google Scholar 

  123. 123.

    Iga J, Fruer CS, Deighan M, et al. ‘Nordic’ hamstrings exercise: engagement characteristics and training responses. Int J Sports Med. 2012;33(12):1000–4.

    CAS  PubMed  Google Scholar 

  124. 124.

    Brughelli M, Mendiguchia J, Nosaka K, et al. Effects of eccentric exercise on optimum length of the knee flexors and extensors during the preseason in professional soccer players. Phys Ther Sport. 2010;11(2):50–5.

    PubMed  Google Scholar 

  125. 125.

    Clark R, Bryant A, Culgan J, et al. The effects of eccentric hamstring strength training on dynamic jumping performance and isokinetic strength parameters: a pilot study on the implications for the prevention of hamstring injuries. Phys Ther Sport. 2005;6:67–73.

    Google Scholar 

  126. 126.

    Kilgallon M, Donnelly AE, Shafat A. Progressive resistance training temporarily alters hamstring torque-angle relationship. Scand J Med Sci Sports. 2007;17(1):18–24.

    CAS  PubMed  Google Scholar 

  127. 127.

    Potier TG, Alexander CM, Seynnes OR. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol. 2009;105(6):939–44.

    PubMed  Google Scholar 

  128. 128.

    de Breno AR, Alvares J, Marques VB, Vaz MA, et al. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res. 2018;32(5):1254–62.

    Google Scholar 

  129. 129.

    Presland J, Timmins R, Bourne M, et al. The effect of high or low volume Nordic hamstring exercise training on eccentric strength and biceps femoris long head architectural adaptations. Scand J Med Sci Sports. 2018;28:1775–83.

    CAS  PubMed  Google Scholar 

  130. 130.

    Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with Nordic hamstring exercise. Scand J Med Sci Sports. 2018;28(1):88–94.

    CAS  PubMed  Google Scholar 

  131. 131.

    Bourne MN, Timmins RG, Williams MD, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469–77.

    PubMed  Google Scholar 

  132. 132.

    Lovell R, Knox M, Weston M, et al. Hamstring injury prevention in soccer: before or after training? Scand J Med Sci Sports. 2018;28(2):658–66.

    CAS  PubMed  Google Scholar 

  133. 133.

    Pain MT, Forrester SE. Predicting maximum eccentric strength from surface EMG measurements. J Biomech. 2009;42:1598–603.

    PubMed  Google Scholar 

  134. 134.

    Blazevich AJ, Cannavan D, Coleman DR, Horne S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol. 2007;103(5):1565–75.

    PubMed  Google Scholar 

  135. 135.

    Crosier JL, Ganteaume S, Binet J, et al. Strength imbalance and prevention of hamstring injury in professional soccer players: a prospective study. Am J Sports Med. 2008;36:1469–75.

    Google Scholar 

  136. 136.

    Arnason A, Andersen TE, Holme I, et al. Prevention of hamstring strains in elite soccer: an intervention study. Scand J Med Sci Sports. 2008;18:40–8.

    CAS  PubMed  Google Scholar 

  137. 137.

    Askling CM, Tengvar M, Tarassova O, Thorstensson A. Acute hamstring injuries in Swedish elite sprinters and jumpers: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2014;48:532–9.

    PubMed  Google Scholar 

  138. 138.

    Petersen J, Thorborg K, Nielsen MB, et al. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39:2296–303.

    PubMed  Google Scholar 

  139. 139.

    van der Horst N, Smits DW, Petersen J, et al. The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):1316–23.

    PubMed  Google Scholar 

  140. 140.

    Novacheck TF. The biomechanics of running. Gait Posture. 1998;7:77–95.

    CAS  PubMed  Google Scholar 

  141. 141.

    Higashihara A, Nagano Y, Ono T, et al. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting. J Sports Sci. 2018;36:1313–28.

    PubMed  Google Scholar 

  142. 142.

    Hawkins D, Hull ML. A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. J Biomech. 1990;23(5):487–94.

    CAS  PubMed  Google Scholar 

  143. 143.

    Visser JJ, Hoogkamer JE, Bobbert MF, et al. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol. 1990;61:453–60.

    CAS  PubMed  Google Scholar 

  144. 144.

    Sugiura Y, Saito T, Sakuraba K, et al. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters. J Orthop Sport Phys Ther. 2008;38:457–64.

    Google Scholar 

  145. 145.

    Powers CM. The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther. 2010;40(2):42–51.

    PubMed  Google Scholar 

  146. 146.

    Wakahara T, Miyamoto N, Sugisaki N, et al. Association between regional differences in muscle activation in one session of resistance exercise and in muscle hypertrophy after resistance training. Eur J Appl Physiol. 2012;112(4):1569–76.

    PubMed  Google Scholar 

  147. 147.

    Wakahara T, Fukutani A, Kawakami Y, et al. Nonuniform muscle hypertrophy: its relation to muscle activation in training session. Med Sci Sports Exerc. 2013;45(11):2158–65.

    PubMed  Google Scholar 

  148. 148.

    Bourne MN, Williams MD, Opar DA, et al. Impact of exercise selection on hamstring muscle activation. Br J Sports Med. 2017;51:1021–8.

    PubMed  Google Scholar 

  149. 149.

    Mendiguchia J, Arcos AL, Garrues MA, et al. The use of MRI to evaluate posterior thigh muscle activity and damage during Nordic Hamstring exercise. J Strength Cond Res. 2013;27(12):3426–35.

    PubMed  Google Scholar 

  150. 150.

    Mendiguchia J, Garrues MA, Cronin JB, et al. Nonuniform changes in MRI measurements of the thigh muscles after two hamstring strengthening exercises. J Strength Cond Res. 2013;27(3):574–81.

    PubMed  Google Scholar 

  151. 151.

    Ono T, Okuwaki T, Fukubayashi T. Differences in activation patterns of knee flexor muscles during concentric and eccentric exercises. Res Sports Med. 2010;18(3):188–98.

    PubMed  Google Scholar 

  152. 152.

    Ono T, Higashihara A, Fukubayashi T. Hamstring functions during hip-extension exercise assessed with electromyography and magnetic resonance imaging. Res Sports Med. 2011;19(1):42–52.

    PubMed  Google Scholar 

  153. 153.

    Zebis MK, Skotte J, Andersen CH, et al. Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris: an EMG study with rehabilitation implications. Br J Sports Med. 2013;47(18):1192–8.

    PubMed  Google Scholar 

  154. 154.

    Fernandez-Gonzalo R, Tesch PA, Linnehan RM, et al. Individual muscle use in hamstring exercises by soccer players assessed using functional MRI. Int J Sports Med. 2016;37(7):559–64.

    CAS  PubMed  Google Scholar 

  155. 155.

    Messer DJ, Bourne MN, Williams MD, et al. Hamstring muscle use in women during hip extension and the Nordic hamstring exercise: a functional magnetic resonance imaging study. J Orthop Sports Phys Ther. 2018;48(8):607–12.

    PubMed  Google Scholar 

  156. 156.

    Lynn SK, Costigan PA. Changes in the medial-lateral hamstring activation ratio with foot rotation during lower limb exercise. J Electromyogr Kinesiol. 2009;19(3):e197-205.

    PubMed  Google Scholar 

  157. 157.

    Buckthorpe M, Gimpel M, Wright S, et al. Hamstring muscle injuries in elite football: translating research into practice. Br J Sports Med. 2018;52(10):628–9.

    PubMed  Google Scholar 

  158. 158.

    Sale DG. Neural adaptations to resistance training. Med Sci Sports Exerc. 1988;20(Supplement 5):S135–45.

    CAS  PubMed  Google Scholar 

  159. 159.

    Buckthorpe MW, Erskine R, Fletcher G, Folland F. Neural adaptations explain the task specificity of strength changes after resistance training. Scand J Med Sci Sports. 2015;25:640–9.

    CAS  PubMed  Google Scholar 

  160. 160.

    Cacchio A, Don R, Ranavolo A, et al. Effects of 8-week strength training with two models of chest press machines on muscular activity pattern and strength. J Electromyogr Kinesiol. 2008;18:618–27.

    PubMed  Google Scholar 

  161. 161.

    Davis IS, Powers CM. Patellafemoral pain syndrome: proximal, distal and local factors, an international retreat. April 30-May 2, 2009, Fells Point, Baltimore, MD. J Orthop Sports Phys Ther. 2010;40(3):A1–16.

    PubMed  Google Scholar 

  162. 162.

    Ireland ML, Willson JD, Ballantyne BT, et al. Hip strength in females with and without patellafemoral pain. J Orthop Sports Phys Ther. 2003;33(11):671–6.

    PubMed  Google Scholar 

  163. 163.

    Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Hip muscle strength predicts non-contact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med. 2016;44(2):355–61.

    PubMed  Google Scholar 

  164. 164.

    Leetun DT, Ireland ML, Willson JD, et al. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926–34.

    PubMed  Google Scholar 

  165. 165.

    Zakulak BT, Hewett TE, Reeves NP, et al. Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical–epidemiological study. Am J Sports Med. 2007;35(7):1123–30.

    Google Scholar 

  166. 166.

    Zakulak BT, Hewett TE, Reeves NP, et al. The effects of core proprioception on knee injury: a prospective biomechanical–epidemiological study. Am J Sports Med. 2007;35(3):368–73.

    Google Scholar 

  167. 167.

    Kuszewski M, Gnat R, Saulicz E. Stability training of the lumbo-pelvo-hip complex influence stiffness of the hamstrings: a preliminary study. Scand J Med Sci Sports. 2009;19:260–6.

    CAS  PubMed  Google Scholar 

  168. 168.

    Schuermans J, Danneels L, Tiggelen DV, et al. Proximal neuromuscular control protects against hamstring injuries in male soccer players: a prospective study with electromyography time-series analysis during maximal sprinting. Am J Sports Med. 2017;45:1315–25.

    PubMed  Google Scholar 

  169. 169.

    Mills M, Frank B, Goto S, et al. Effects of restricted hip flexor muscle length on hip extensor muscle activity and lower extremity biomechanics in college-aged female soccer players. Int J Sports Phys Ther. 2015;10:946–54.

    PubMed  PubMed Central  Google Scholar 

  170. 170.

    Mendiguchia J, Alentorn-Geli E, Brughelli M. Hamstring strain injuries: are we heading in the right direction? Br J Sports Med. 2012;46(2):81–5.

    PubMed  Google Scholar 

  171. 171.

    Decker MJ, Torry MR, Noonan TJ, Riviere A, Sterett WI. Landing adaptations after ACL reconstruction. Med Sci Sports Exerc. 2002;34(9):1408–13.

    PubMed  Google Scholar 

  172. 172.

    de Fontenay BP, Argaud S, Blache Y, Monteil K. Motion alterations after anterior cruciate ligament reconstruction: comparison of the injured and uninjured lower limbs during a single-legged jump. J Athl Train. 2014;49(3):311–6.

    PubMed  PubMed Central  Google Scholar 

  173. 173.

    Goerger BM, Marshall SW, Beutler AI. Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: the JUMP-ACL study. Br J Sports Med. 2015;49:188–95.

    PubMed  Google Scholar 

  174. 174.

    Lee SP, Chow JW, Tillman MD. Persons with reconstructed ACL exhibit altered knee mechanics during high speed maneuvers. J Sports Med. 2014;35(6):528–33.

    Google Scholar 

  175. 175.

    Paterno MV, Ford KR, Myer GD, Heyl R, Hewett TE. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sports Med. 2007;17(4):258–62.

    Google Scholar 

  176. 176.

    Sterns KM, Pollard CD. Abnormal frontal plane knee mechanics during sidestep cutting in female soccer athletes after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2013;41(4):918–23.

    Google Scholar 

  177. 177.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–78.

    PubMed  PubMed Central  Google Scholar 

  178. 178.

    Paterno MV, Kiefer AW, Bonnette S, et al. Prospectively identified deficits in sagittal plane hip-ankle coordination in female athletes who sustain a second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Clin Biomech. 2015;30(10):1094–104.

    Google Scholar 

  179. 179.

    Hruska R. Pelvic stability influences lower extremity kinematics. Biomech. 1998;6:23–9.

    Google Scholar 

  180. 180.

    Loudon JK, Jenkins W, Loudon KL. The relationship between static posture and ACL injury in female athletes. J Orthop Sports Phys Ther. 1996;24(2):91–7.

    CAS  PubMed  Google Scholar 

  181. 181.

    Dill KE, Begalle RL, Frank BS, et al. Altered knee and ankle kinematics during squatting in those with limited weight-bearing–lunge ankle-dorsiflexion range of motion. J Athl Train. 2014;49(6):723–32.

    PubMed  PubMed Central  Google Scholar 

  182. 182.

    Palmieri-Smith RM, Lepley LK. Quadriceps strength asymmetry following ACL reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am J Sports Med. 2015;43(7):1662–9.

    PubMed  PubMed Central  Google Scholar 

  183. 183.

    Sahrmann S. Diagnosis and treatment of movement impairment syndromes. Oxford: Elsevier Health Sciences; 2013.

    Google Scholar 

  184. 184.

    Aman JE, Elangovan N, Yeh IL, Konczak J. The effectiveness of proprioceptive training for improving motor function: a systematic review. Front Hum Neurosci. 2014;8:1075.

    PubMed  Google Scholar 

  185. 185.

    Anderson K, Behm DG. The impact of instability resistance training on balance and stability. Sports Med. 2005;35(1):43–53.

    PubMed  Google Scholar 

  186. 186.

    Zebis MK, Andersen LL, Bencke J, et al. Identification of athletes at future risk of anterior cruciate ligament ruptures by neuromuscular screening. Am J Sports Med. 2009;37(10):1967–73.

    PubMed  Google Scholar 

  187. 187.

    Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35:359–67.

    PubMed  Google Scholar 

  188. 188.

    Dyhre-Poulsen P, Krogsgaard MR. Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol (1985). 2000;89(6):2191–5.

    CAS  Google Scholar 

  189. 189.

    Zebis MK, Andersen LL, Bencke J, et al. The effects of neuromuscular training on knee joint motor control during sidecutting in female elite soccer and handball players. Clin J Sport Med. 2008;18(4):329–37.

    PubMed  Google Scholar 

  190. 190.

    Della Villa F, Buckthorpe M, Grassi A, et al. Systematic video analysis of ACL injuries in professional male football (soccer): injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br J Sports Med. 2020. https://doi.org/10.1136/bjsports-2019-101247 ((published online first)).

    Article  PubMed  Google Scholar 

  191. 191.

    Koga H, Nakamae A, Shima Y, et al. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med. 2010;38:2218–25.

    PubMed  Google Scholar 

  192. 192.

    Waldén M, Krosshaug T, Bjørneboe J, et al. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Br J Sports Med. 2015;49:1452–60.

    PubMed  PubMed Central  Google Scholar 

  193. 193.

    Webster KE, Hewett TE. Meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs. J Orthop Res. 2018;36(10):2696–708.

    PubMed  Google Scholar 

  194. 194.

    Tillin NA, Pain MTG, Folland JP. Short-term unilateral resistance training affects the agonist-antagonist but not the force-agonist activation relationship. Muscle Nerve. 2011;43:375–84.

    PubMed  Google Scholar 

  195. 195.

    Thorstensson A, Karlsson J, Viitasalo HT, et al. Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand. 1976;98:232–6.

    CAS  PubMed  Google Scholar 

  196. 196.

    Beneke R, Taylor MJ. What gives Bolt the edge-A.V. Hill knew it already! J Biomech. 2010;43(11):2241–3.

    PubMed  Google Scholar 

  197. 197.

    Kivi DM, Maraj BK, Gervais P. A kinematic analysis of high-speed treadmill sprinting over a range of velocities. Med Sci Sports Exerc. 2002;34(4):662–6.

    PubMed  Google Scholar 

  198. 198.

    Folland JP, Buckthorpe MW, Hannah R. Human capacity for explosive force production: neural and contractile determinants. Scand J Med Sci Sports. 2014;24(6):894–906.

    CAS  PubMed  Google Scholar 

  199. 199.

    Buckthorpe M, Roi GS. The time has come to incorporate a greater focus on rate of force development training in the sports injury rehabilitation process. Muscles Ligaments Tendons J. 2018;7(3):435–41.

    PubMed  PubMed Central  Google Scholar 

  200. 200.

    Buckthorpe M, Wright S, Bruce-Low S, et al. Recommendations for hamstring injury prevention in elite football: translating research into practice. Br J Sports Med. 2019;53:449–56.

    PubMed  Google Scholar 

  201. 201.

    Bobbert MF, Van Soest AJ. Effects of muscle strengthening on vertical jump height: a simulation study. Med Sci Sports Ex. 1994;26(8):1012–20.

    CAS  Google Scholar 

  202. 202.

    Herman DC, Weinhold PS, Guskiewicz KM, Garrett WE, Yu B, Padua DA. The effects of strength training on the lower extremity biomechanics of female recreational athletes during a stop-jump task. Am J Sports Med. 2008;36(4):733–40.

    PubMed  Google Scholar 

  203. 203.

    Nagano A, Gerritsen KGM. Effects of neuromuscular strength training on vertical jumping—a computer simulation study. J Appl Biomech. 2001;17(2):113–28.

    Google Scholar 

  204. 204.

    Buckthorpe M, Stride M, Della VF. Assessing and treating gluteus maximus weakness—a clinical commentary. Int J Sports Phys Ther. 2019;14(4):655–69.

    PubMed  PubMed Central  Google Scholar 

  205. 205.

    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):1567–73.

    PubMed  PubMed Central  Google Scholar 

  206. 206.

    Andrade R, Pereira R, van Cingel R, et al. How should clinicians rehabilitate patients after ACL reconstruction? A systematic review of clinical practice guidelines (CPGs) with a focus on quality appraisal (AGREE II). Br J Sports Med. 2020;54(9):512–9.

    PubMed  Google Scholar 

  207. 207.

    van Melick N, van Cingel RE, Brooijmans F, et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br J Sports Med. 2016;50(24):1506–15.

    PubMed  Google Scholar 

  208. 208.

    Herrington L, Myer G, Horsley I. Task based rehabilitation protocol for elite athletes following anterior cruciate ligament reconstruction: a clinical commentary. Phys Ther Sport. 2013;14(4):188–98.

    PubMed  Google Scholar 

  209. 209.

    Brukner P, Nealon A, Morgan C, et al. Recurrent hamstring muscle injury: applying the limited evidence in the professional football setting with a seven-point programme. Br J Sports Med. 2014;48:929–38.

    PubMed  Google Scholar 

  210. 210.

    Oakley AJ, Jennings J, Bishop CJ. Holistic hamstring health: not just the Nordic hamstring exercise. Br J Sports Med. 2018;52(13):816–7.

    PubMed  Google Scholar 

  211. 211.

    Freeman BW, Young WB, Talpey SW, et al. The effects of sprint training and the Nordic hamstring exercise on eccentric hamstring strength and sprint performance in adolescent athletes. J Sports Med Phys Fit. 2019;59(7):1119–25.

    Google Scholar 

  212. 212.

    van den Tillaar R, Solheim JAB, Bencke J. Comparison of hamstring muscle activation during high-speed running and various hamstring strengthening exercises. Int J Sports Phys Ther. 2017;12:718–27.

    PubMed  PubMed Central  Google Scholar 

  213. 213.

    Dorn TW, Schache AG, Pandy MG. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J Exp Biol. 2012;215(Pt 11):1944–56.

    PubMed  Google Scholar 

  214. 214.

    Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of running. J Biomech. 2007;40:3555–62.

    PubMed  Google Scholar 

  215. 215.

    Woods C, Hawkins RD, Maltby S, et al. The Football Association Medical Research Programme: an audit of injuries in professional football- analysis of hamstring injuries. Br J Sports Med. 2004;38:36–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. 216.

    Barber-Westin SD, Noyes FR. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy. 2011;27(12):1697–705.

    PubMed  Google Scholar 

  217. 217.

    Timmins R, Bourne M, Shield A, et al. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2015;50(24):1524–35.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew Buckthorpe.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of Interest

The authors declare they have no conflicts of interest relevant to the content of this review.

Author Contributions

MB conceived the idea for the manuscript and wrote the first versions of the manuscript. All other authors provided intellectual contribution as part of the redrafting process within their clinical areas of expertise.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buckthorpe, M., Danelon, F., La Rosa, G. et al. Recommendations for Hamstring Function Recovery After ACL Reconstruction. Sports Med 51, 607–624 (2021). https://doi.org/10.1007/s40279-020-01400-x

Download citation